CRANY

CHARPEL

Chapel + LAPACK:
Linear Algebra Work-Horse Meets

A P A CK
-A P -A C K
A P A -C K
P -A -C K
A -P-ACK
-A -P A C K

r~rr~r~~r
|
>

High-Performance Jockey

lan J. Bertolacci - Colorado State University - ian.bertolacci@rams.colostate.edu

The use of a particular language is largely driven by the ecosystem of
libraries that it can readily utilize.

LAPACK is a very popular, mature, and performant linear algebra library
written Fortran that potential users have noted would allow them to
start using Chapel to develop their scientific applications.

LAPACK contains 1946 routines, and its C interface (LAPACKE) contains
3122 routines, making it too difficult to manually port to Chapel.

Further, the Fortran and C code lack much of the syntactic information
required to make semantic inferences, and full semantic analysis is

difficult.

An automated, heuristic based solution is required for timely
deployment.

LAPACK is well documented, and in a way that makes
extraction through regular expressions possible.

By mining the documentation, even in this brutish manner,

we can glean a wealth of semantic information that would

be nearly impossible to get from analyzing the code itself.

* Allows us to determine types and intents for arguments
required for generating external procedure declarations.

* Gives context to arguments that could be encapsulated
by a single Chapel array argument, and creating idiomatic
Chapel procedures.

 Reuse its documentation for chpldocs.

LAPACKE Multiple symbols Matrix Matrices Miscellaneous Array
— for same function information stored in arrays output information
procedures family

LAPACKE 8e5v< n, nrhs, a[], lda, ipiv[],b[], 1db)
LAPACKE cdesv

LAPACKE dgesv ‘ \
LAPACKE sdesv

ChalAPACK ghe symbol — 3 gesv(Al], ipiv[], B[]) {

procedures per family LAPACKE ?gesv([A.domain.dim(1l).size,

: B.domain.dim(2).size,
Call appropriate p) | T A, A.domain.dim(2).size
type of LAPACKE Pass array’s e B,

information to
LAPACKE function }

Automatically generated with minimal human input.
Provides:
 Fortran hooks (LAPACK).

 Cinterface hooks (LAPACKE).
* Chapel array conceptualized procedures (ChaLAPACK).

function LB.domain.dim(Z) .Slize) ;

 Column-major order option for arrays in Chapel
— LAPACKE must convert to CMO because of Fortran.

* Comprehensive testing.
— The Fortran tests are quite advanced, and could not be
immediately converted into Chapel code.

* General CInterface + Documentation — Chapel interface
generation framework.
— No more sketchy hand-carved magic bullets.

* More mathematics/scientific library interfaces.
— BLAS (Basic Linear Algebra Subroutines)
— GSL (GNU Scientific Library)

