
gf
a b

h
ed

i

c1
2
3
4
5

1 2 3 4 5

gf
ab

h
ed

i

c

1 2 3 4 5
1
2
3
4
5

(1, 3)

Sparse Matrix Topological Sorting in Chapel 
Ian J. Bertolacci 

University of Arizona 
ianbertolacci@email.arizona.edu

Matrix Toposort: Given permuted upper 
triangular square matrix, find new 
permutation map which converts it into a 
(possibly different) upper triangular matrix. 
Operates solely based on the domain 
(index set) of the matrix, specifically the 
non-zero indexes.
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Goal: Convert a potential user's Sparse Matrix Toposort benchmark from UPC to Chapel to 
illustrate it's parallel functionality and sparse data-structures.

Permutation Map: Simply maps individual 
rows and columns to new rows and 
columns. All values in a row/column stay 
are mapped to the same new row/column.
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Column Count:
Column index Sum:

Complete Work Queue:
[ 1,   3,    5,    2,   4 ] 

Basic Algorithm: To initialize, for each row count the number of 
non-zero columns, and sum their index index values. In the core of 
the algorithm, for each row from the queue, the column index sum 
of that row is an 'unsorted' column. That row and column are 
mapped to the first available diagonal position, starting at (N,N) 
and ending with (1,1). The counts of all rows containing that 
column are decremented, and the column subtracted from the 
sum. When any row's count is reduced to 1, it is enqueued.
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Added to the work queue

Current Performance Challenges: The sparse 
data structure must be optimized to allow 
contiguous iteration over columns (CSC 
works). Ordering of the work queue is highly 
dependent on the matrix, and deciding an 
ordering is equivalent to solving the algorithm. 
While all work in the queue can be performed 
in parallel (while protecting shared 
resources), the overhead relative to the work 
amount of work can dwarf the performance. 
In high density cases, thread scheduling is 
serialized as the queue is filled with few 
values (sometimes as few as 0 or 1), and in 
low density cases, it becomes embarrassingly 
parallel with almost no work per-thread. In 
both cases, a serial implementation can 
outperform a parallel implementation, often 
significantly.


