
gf
a b

h
ed

i

c1
2
3
4
5

1 2 3 4 5

gf
ab

h
ed

i

c

1 2 3 4 5
1
2
3
4
5

(1, 3)

Sparse Matrix Topological Sorting in Chapel
Ian J. Bertolacci

University of Arizona
ianbertolacci@email.arizona.edu

Matrix Toposort: Given permuted upper
triangular square matrix, find new
permutation map which converts it into a
(possibly different) upper triangular matrix.
Operates solely based on the domain
(index set) of the matrix, specifically the
non-zero indexes.

Permuted Upper
Triangular Matrix

New Permutation
Map

Topologically Sorted
Upper Triangular Matrix

2
1 2 3 4 5
5 3 4 1

3 2 4 1 5

Row

Column

Goal: Convert a potential user's Sparse Matrix Toposort benchmark from UPC to Chapel to
illustrate it's parallel functionality and sparse data-structures.

Permutation Map: Simply maps individual
rows and columns to new rows and
columns. All values in a row/column stay
are mapped to the same new row/column.

gf
ab

h
ed

i

c

1 2 3 4 5
1
2
3
4
5

Column Count:
Column index Sum:

Complete Work Queue:
[1, 3, 5, 2, 4]

Basic Algorithm: To initialize, for each row count the number of
non-zero columns, and sum their index index values. In the core of
the algorithm, for each row from the queue, the column index sum
of that row is an 'unsorted' column. That row and column are
mapped to the first available diagonal position, starting at (N,N)
and ending with (1,1). The counts of all rows containing that
column are decremented, and the column subtracted from the
sum. When any row's count is reduced to 1, it is enqueued.

(3,11)

(2, 7)

(1, 5)

(2,4)

(1,3)

(2,6)

(1,2)

(0,0)

(1,1)

(0,0)

(2,6)

(1,2)

(0,0)

(1,1)

(0,0)

(1,4)

(0,0)

(0,0)

Counts and Sums after a worked row from queue

(0,0)

(0,0)

(1,4)

(0,0)

(0,0)

(2, 4) (0,0)

(0,0)

(0,0)

(0,0)

(0,0)

Added to the work queue

Current Performance Challenges: The sparse
data structure must be optimized to allow
contiguous iteration over columns (CSC
works). Ordering of the work queue is highly
dependent on the matrix, and deciding an
ordering is equivalent to solving the algorithm.
While all work in the queue can be performed
in parallel (while protecting shared
resources), the overhead relative to the work
amount of work can dwarf the performance.
In high density cases, thread scheduling is
serialized as the queue is filled with few
values (sometimes as few as 0 or 1), and in
low density cases, it becomes embarrassingly
parallel with almost no work per-thread. In
both cases, a serial implementation can
outperform a parallel implementation, often
significantly.

