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Outline
● Limitations of OpenMP.
● Motivation for sequential transformations in OpenMP.
● Proposed Optimizations.

○ Unroll
○ Fuse
○ Tile

● Composition of loop transformations.
● Interaction with other OpenMP constructs.
● Discussion.
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Limitations

OpenMP Does:
● Loop Parallelism
● Task Parallelism
● Accelerator Offloading
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OpenMP Doesn't:
● Basic loop transformations

○ Unrolling
○ Fusion
○ Tiling



Why?
Why should OpenMP provide sequential loop optimizations?
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1. Provide standard for portable sequential loop optimization 
directives and semantics.

2. Sequential optimizations improve parallel code 
performance.

3. OpenMP semantics obscure/prevent them from being 
automatically performed by the compiler.



Performance Improvements with Loop Unroll
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CLOMPK (CORAL2 benchmark)



#pragma omp for unroll( 2 ) schedule( static, 1 ) nowait

for( int i = 0; i < n; i += 1 )

  A[i] += B[i] * c;
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Possible Unroll Syntax and Semantics Example
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#pragma omp for schedule( static, 1 ) nowait

for( int i = 0; i < n; i += 2 ){

  A[i] += B[i] * c;

  A[i+1] += B[i+1] * c;

}



Loop Chain Optimizations
Context:
● Data sharing between loop nests are an opportunity to exploit caching and 

reduce temporary storage.
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Problem:
● Manual modifications difficult.
● Automatic transformation requires complex analysis.

Solution:
● Provide user high-level loop transformation directives for fusion and tiling.
● Developer describes loop bounds and data accesses.
● Compiler uses information to perform transformations legally.



Loop Chain Annotations
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  for( int i = lb; i <= ub; i += 1 )

    A[i] = B[i−1] + B[i] + B[i+1];

  for( int i = lb; i <= ub; i += 1 )

    A[i] = A[i] / 3.0;



#pragma omplc loopchain schedule( /* ... */ )

{

  #pragma omplc for domain(lb:ub) \

    with (i) \

      read  B {(i−1), (i), (i+1)}, \
      write A {(i)}

  for( int i = lb; i <= ub; i += 1 )

    A[i] = B[i−1] + B[i] + B[i+1];
  #pragma omplc for domain(lb:ub) \

    with (i) \

      write A {(i)}, \

      read  A {(i)}

  for( int i = lb; i <= ub; i += 1 )

    A[i] = A[i] / 3.0;

}

Loop Chain Annotations
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Denotes loop nests. Defines iteration spaces.

Define read/writes set for dataspaces at iteration i.

Denotes that this scope contains loop-chain, 
and list scheduling operations.



Loop Chain Fusion
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schedule( fuse() )



Loop Chain Fusion with Explicit Shift
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schedule( fuse( (0), (1) ) )



Loop Chain Tiling
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schedule( tile( (2), parallel, serial ) )
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Composition of Multiple Sequential Loop Optimizations
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● How should sequential loop optimizations compose?
○ Previous loop chain tool easily composes optimizations.
○ How should we do this in OpenMP?

■ Unify into one framework?
■ Piecemeal?
■ Something in between?



Loop Chain Fuse + Tile
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schedule( fuse(), tile( (2), parallel, serial ) )
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Tile



Loop Chain Tile + Fuse
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Interaction With Other OpenMP Constructs
How do sequential loop optimizations interact with different 
OpenMP constructs?
● For example: what would loop fusion on two OpenMP parallel loops do? 

○ Union clauses?
○ Invalid?

● Cross product of constructs is large.
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Summary
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● OpenMP API can provide methods of prescribing sequential 
loop optimizations.

● Sequential loop optimizations have positive performance 
impacts for parallel code.

● Developer can augment portions of analysis.
● API can provide multiple pathways for performing same 

transformations.



Discussion
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● How could we compose different sequential loop optimizations?
○ Unified framework (à la loop chain)?
○ Piecemeal? 
○ Something in between?

● How do we deal with interactions between different sequential loop 
and other OpenMP constructs?
○ Unified model?
○ Explicitly connect different components?

● What is the set of important sequential loop optimizations?


