
Extending OpenMP to
Facilitate Loop Optimization

Ian Bertolacci
Michelle Mills Strout

Bronis R. de Supinski
Tom R. W. Scogland

Eddie C. Davis
Catherine Olschanowsky

- University of Arizona
- University of Arizona
- Lawrence Livermore National Laboratory
- Lawrence Livermore National Laboratory
- Boise State University
- Boise State University

Outline
● Limitations of OpenMP.
● Motivation for sequential transformations in OpenMP.
● Proposed Optimizations.

○ Unroll
○ Fuse
○ Tile

● Composition of loop transformations.
● Interaction with other OpenMP constructs.
● Discussion.

2

Limitations

OpenMP Does:
● Loop Parallelism
● Task Parallelism
● Accelerator Offloading

33

OpenMP Doesn't:
● Basic loop transformations

○ Unrolling
○ Fusion
○ Tiling

Why?
Why should OpenMP provide sequential loop optimizations?

4

1. Provide standard for portable sequential loop optimization
directives and semantics.

2. Sequential optimizations improve parallel code
performance.

3. OpenMP semantics obscure/prevent them from being
automatically performed by the compiler.

Performance Improvements with Loop Unroll

5

CLOMPK (CORAL2 benchmark)

#pragma omp for unroll(2) schedule(static, 1) nowait

for(int i = 0; i < n; i += 1)

 A[i] += B[i] * c;

6

Possible Unroll Syntax and Semantics Example

6

#pragma omp for schedule(static, 1) nowait

for(int i = 0; i < n; i += 2){

 A[i] += B[i] * c;

 A[i+1] += B[i+1] * c;

}

Loop Chain Optimizations
Context:
● Data sharing between loop nests are an opportunity to exploit caching and

reduce temporary storage.

7

Problem:
● Manual modifications difficult.
● Automatic transformation requires complex analysis.

Solution:
● Provide user high-level loop transformation directives for fusion and tiling.
● Developer describes loop bounds and data accesses.
● Compiler uses information to perform transformations legally.

Loop Chain Annotations

8

 for(int i = lb; i <= ub; i += 1)

 A[i] = B[i−1] + B[i] + B[i+1];

 for(int i = lb; i <= ub; i += 1)

 A[i] = A[i] / 3.0;

#pragma omplc loopchain schedule(/* ... */)

{

 #pragma omplc for domain(lb:ub) \

 with (i) \

 read B {(i−1), (i), (i+1)}, \
 write A {(i)}

 for(int i = lb; i <= ub; i += 1)

 A[i] = B[i−1] + B[i] + B[i+1];
 #pragma omplc for domain(lb:ub) \

 with (i) \

 write A {(i)}, \

 read A {(i)}

 for(int i = lb; i <= ub; i += 1)

 A[i] = A[i] / 3.0;

}

Loop Chain Annotations

9

Denotes loop nests. Defines iteration spaces.

Define read/writes set for dataspaces at iteration i.

Denotes that this scope contains loop-chain,
and list scheduling operations.

Loop Chain Fusion

10

Loop Chain

Loop Nest

Loop Nest

Original Loop Chain

Loop Nest

After Loop Fusion

schedule(fuse())

Loop Chain Fusion with Explicit Shift

11

Loop Chain

Loop Nest

Loop Nest

Original Loop Chain

Loop Nest

After Loop Fusion

schedule(fuse((0), (1)))

Loop Chain Tiling

12

Loop Chain

Loop Nest

Loop Nest

Original Loop Chain

schedule(tile((2), parallel, serial))

Loop Chain

Loop Nest

Tile Tile

Loop Nest

Tile Tile

After Tiling

Composition of Multiple Sequential Loop Optimizations

13

● How should sequential loop optimizations compose?
○ Previous loop chain tool easily composes optimizations.
○ How should we do this in OpenMP?

■ Unify into one framework?
■ Piecemeal?
■ Something in between?

Loop Chain Fuse + Tile

14

Loop Chain

Loop Nest

Loop Nest

Original Loop Chain

Loop Nest

After Loop Fusion

schedule(fuse(), tile((2), parallel, serial))

Loop Nest

Tile

After Tiling

Tile

Loop Chain Tile + Fuse

15

Loop Chain

Loop Nest

Loop Nest

Original Loop Chain

schedule(tile((2), parallel, serial), fuse())

Loop Chain

Loop Nest

Tile Tile

Loop Nest

Tile Tile

After Tiling

Loop Nest

Tile Tile

Tile Tile

After Loop Fusion

Interaction With Other OpenMP Constructs
How do sequential loop optimizations interact with different
OpenMP constructs?
● For example: what would loop fusion on two OpenMP parallel loops do?

○ Union clauses?
○ Invalid?

● Cross product of constructs is large.

16

Summary

17

● OpenMP API can provide methods of prescribing sequential
loop optimizations.

● Sequential loop optimizations have positive performance
impacts for parallel code.

● Developer can augment portions of analysis.
● API can provide multiple pathways for performing same

transformations.

Discussion

18

● How could we compose different sequential loop optimizations?
○ Unified framework (à la loop chain)?
○ Piecemeal?
○ Something in between?

● How do we deal with interactions between different sequential loop
and other OpenMP constructs?
○ Unified model?
○ Explicitly connect different components?

● What is the set of important sequential loop optimizations?

