
CHAPEL + LAPACK
“NEW DOG, MEET OLD DOG.”

Ian Bertolacci

INTRO: WHAT IS CHAPEL

Chapel is a high performance programming language that has been in development
at Cray since 2005.

It includes many parallel programming language features, from data-parallelism, to
task parallelism, to distributed computing.

Disclaimer: I worked for Cray Inc. with the Chapel team this summer (hence this talk),
but the opinions are all mine.

9/10/2015 IAN BERTOLACCI 2

INTRO: WHAT IS CHAPEL

var IterationSpace: domain(2) = {1..10,1..5};

var A, B, C : [IterationSpace] real;

for idx in A.domain do A[idx] = -idx : real;

forall idx in IterationSpace do B[idx] = 1/A[idx];

[value in A] value = value**2;

C = A + B;

var sum = + reduce C;

// learn more at: chapel.cray.com

// learnxinyminutes.com/docs/chapel/

9/10/2015 IAN BERTOLACCI 3

INTRO: WHAT IS LAPACK

Linear Algebra PACKage.

Interface, not a specific set of code

 Often comes from vendors, and is highly optimized for their machines.

 Lots of groups use/implement/port LAPACK

 Netlibs, PLAPACK, ScaLAPACK, MAGMA, PLASMA, MKL, LAPACK++, Nmath, Jblas, Matrix Toolkit Java, …

Related to Basic Linear Algebra Subprograms

 BLAS is used to implement LAPACK

9/10/2015 IAN BERTOLACCI 4

WHY?

1. The success of a language lies on more than just the features of
that language.

 Libraries are an enormous draw for developers, and programmers will use
whatever language the libraries can be easily interfaced with

2. (Potential) users had expressed that they needed LAPACK to be
comfortable adopting Chapel as their language of choice.

9/10/2015 IAN BERTOLACCI 5

GOALS

1.Create raw LAPACKE Chapel interface

 Not a reimplementation/src-src transformation!

9/10/2015 IAN BERTOLACCI 6

CHAPEL INTERFACE

Target LAPACKE (Netlibs/Intel C interface)

 3122 functions

Declare C functions as Chapel external procedures:

9/10/2015 IAN BERTOLACCI 7

int LAPACKE_dgesv(int n, int nrhs, double* a, int lda, int* ipiv, double* b, int ldb);

C declaration:

extern proc dgesv(n : c_int, nrhs : c_int, a : [] c_double, lda : c_int,

ipiv : [] c_int, b : [] c_double, ldb : c_int) : c_int;

Chapel declaration:

GOALS

1.Create raw LAPACKE Chapel interface

 Not a reimplementation/src-src transformation!

2.Create Chapel abstractions.

9/10/2015 IAN BERTOLACCI 8

CHAPEL ABSTRACTIONS

Many arguments could be abstracted by attributes of Chapel’s arrays and domains.

9/10/2015 IAN BERTOLACCI 9

Matrix

information

Array

information

Matrices

stored in arrays

Miscellaneous

output

n, nrhs, a[],lda, ipiv[],b[], ldb)

ChaLAPACK_gesv(A[], ipiv[], B[])

LAPACKE_dgesv(A.domain.dim(1).size, B.domain.dim(2).size,
A, A.domain.dim(2).size, ipiv, B,
B.domain.dim(2).size);

}

LAPACKE_dgesv(

{

GOALS

1.Create raw LAPACKE Chapel interface

 Not a reimplementation/src-src transformation!

2.Create Chapel abstractions.

3.Generate Chapel documentation.

9/10/2015 IAN BERTOLACCI 10

CHAPEL DOCUMENTATION

Utilize existing LAPACK documentation for chpldocs

9/10/2015 IAN BERTOLACCI 11

GOALS

1.Create raw LAPACKE Chapel interface

 Not a reimplementation/src-src transformation!

2.Create Chapel abstractions.

3.Generate Chapel documentation.

4.Column major array mapping.

9/10/2015 IAN BERTOLACCI 12

COLUMN MAJOR ARRAYS

Many LAPACK implementations are written in Fortran, where column major ordered in
memory

Chapel, C, and many other languages are row major order.

Converting from one to the other wastes cycles.

9/10/2015 IAN BERTOLACCI 13

GOALS

1.Create raw LAPACKE Chapel interface

 Not a reimplementation/src-src transformation!

2.Create Chapel abstractions.

3.Generate Chapel documentation.

4.Column major array mapping.

9/10/2015 IAN BERTOLACCI 14

SUCCESSES

1. Full coverage of LAPACKE.

2.Generated functions to abstract many of the
original arguments.

3. Too big. Also tripped on red tape.

4.We didn’t get around to it.

9/10/2015 IAN BERTOLACCI 15

EASY RIGHT?

Nope.

9/10/2015 IAN BERTOLACCI 16

WHY I DISLIKE C

foo(int* a)

What is a? Or rather, what’s at a?

 Scalar?

 Array?

 How big?

 Into… start, end, middle?

 Single dimension? Or Flat-packed multidimensional array?

 Column or Row major?

Repeat after me: C is a machine semantics language.

9/10/2015 IAN BERTOLACCI 17

WHAT DOES LAPACK ACTUALLY LOOK LIKE?

Actual LAPACKE function declaration:

lapack_int LAPACKE_dgesvd(

9/10/2015 IAN BERTOLACCI 18

int matrix_order,char jobu, char jobvt,

lapack_int m, lapack_int n, double* a,

lapack_int lda, double* s, double* u,

lapack_int ldu, double* vt, lapack_int ldvt,

double* superb);

Pointers to 2D arrays

Pointer to scalar

Pointer to 1D array

LETS TRY SEMANTIC ANALYSIS!

No, thank you.

Hard

 I tried to build ROSE and it took two weeks for me to give up.

Not guaranteed

 *(ptr+i) is the same as ptr[i] : False Negative

 ptr[0] is the same as *ptr : False positive

9/10/2015 IAN BERTOLACCI 19

DOCUMENTATION ANALYSIS

LAPACK is quite well documented; though occasionally broken (written by humans).

Arguments are documented with:

 Type (double, int, complex)

 Arrangement type (scalar, array)

 Intent (in, out, inout)

 Human description of what they are for (“n is the number of rows in matrix a”)

Most importantly, it can be searched through with regex.

However, we are still targeting LAPACKE; the documentation lives in LAPACK’s Fortran
source code.

9/10/2015 IAN BERTOLACCI 20

PROCESS: TYPES

1. Collect all LAPACKE and LAPACK functions, associate their symbols, and toss any
LAPACK functions that don’t exist in LAPACKE.

2. Fold type and arrangement type of LAPACK arguments onto their LAPACKE
associates.

 This identifies anonymous pointer arguments as scalars or arrays.

 Array arguments also contribute the size(s) of the master array (important later).

3. If there are any arguments or functions in LAPACKE that have not been properly
resolved: figure it out by actually reading the documentation (with eyes) and enter
information by hand

 Script creates a list of what it thinks should be there, and you verify (often quick)

 It happens, but often small enough to be accomplished in under an hour

4. Generate extern procedure declarations. (Satisfy goal #1)

9/10/2015 IAN BERTOLACCI 21

DOCUMENTATION ANALYSIS: MEANING

To create the Chapel abstracted functions, and remove arguments from the
procedures, it is necessary to know what those arguments mean.

The human readable documentation for each argument can be searched through with
a convoluted regular expression to find key terms (such as ‘rows’, ‘columns’) and the
name of the other arguments that they related to

9/10/2015 IAN BERTOLACCI 22

PROCESS: MEANING

1. Search the arguments documentation for key terms, and associate arguments.

2. Bind attribute arguments to components of their associate arguments.

3. Remove bound arguments from procedure signature.

4. Generate new function with truncated signature.

5. Fill body of function with call to original function, where each callee argument is
either a pass through of an argument from the caller, or an attribute of an
argument from the caller. (Satisfies goal #2)

9/10/2015 IAN BERTOLACCI 23

CONCLUSION

Using a rigid method of searching documentation text, it
was possible to create a Chapel interface to LAPACK via
the LAPACKE C interface.

Such methods may be viable for larger and more complex
codes, and may become stables of automated program
analysis

Program analysis is crucial to advance mature, important
software onto new hardware, paradigms, and languages.

9/10/2015 IAN BERTOLACCI 24

