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Abstract—Exposing opportunities for parallelization while ex-
plicitly managing data locality is the primary challenge to port-
ing and optimizing existing computational science simulation
codes to improve performance and accuracy. OpenMP provides
many mechanisms for expressing parallelism, but it primarily
remains the programmer’s responsibility to group computa-
tions to improve data locality. The loopchain abstraction, where
data access patterns are included with the specification of
parallel loops, provides compilers with sufficient information
to automate the parallelism versus data locality tradeoff. In
this paper, we present a loop chain pragma and an extension
to the omp for to enable the specification of loop chains and
high-level specifications of schedules on loop chains. We show
example usage of the extensions, describe their implementation,
and show preliminary performance results for some simple
examples.

1. Introduction

Several programming models, languages, and abstrac-
tions have been devised to expose parallelism in applications
including OpenMP [1], OpenCL [2], and OpenACC [3].
This has led to a data parallel programming style used in
many large production codes where the software is “mod-
ularized” into series of parallel and reduction loops. The
problem is that exploiting all possible parallelism without re-
gard to data locality leads to insufficient arithmetic intensity
and excessive memory traffic. Therefore this paper presents
a set of OpenMP pragma extensions that provide a way
to specify data access information and high-level schedules
that incorporate both data locality and parallelism to the
compiler.

Data locality and arithmetic intensity are essential to
execution performance. It is important for a programming
model to expose parallelism, but the reality that the memory
bandwidth bottleneck is often the main obstacle to perfor-

mance suggests that expressing data reuse is just as impor-
tant as expressing parallelism. While existing and emerging
parallel programming models provide many abstractions for
exposing parallelism, abstractions for expressing locality
tend to require significant work from the programmer and
can lead to performance portability issues based on how well
the programmer parameterizes the data and/or computation
aggregation decisions they must make.

The main limitations of previous work for expressing
data locality are that (1) the programmer has to aggregate
computations into tasks, (2) tasks are limited to groupings
of iterations within a single loop or user-defined functions,
and/or (3) the programmer has to rewrite full computations
in another programming model. The principal advantage of
the loop chain pragmas proposed here is that they can be
added to legacy applications; meaning that only the high-
level scheduling directives need to be adjusted for efficient
execution on various hardware.

The loop chain abstraction represents a sequence of
parallel and/or reduction loops that explicitly share data [4].
Such coding patterns are often found in stencil codes, and
other kinds of buffered producer/consumer codes, which we
target in particular. The loop chain abstraction requires that
each loop in the chain is parallel or a reduction (typically an
array reduction), has a well-defined domain, and has well-
defined access functions that indicate how each iteration
accesses data spaces. With these requirements, the loop
chain abstraction can be used to derive a partially ordered
set of iterations that makes scheduling and determining data
distributions across loops possible for a compiler and/or run-
time system. The flexibility to schedule across loops enables
better management of the data locality and parallelism trade-
off.

Providing data access information that enables the com-
piler to determine dependencies and high-level schedule
information in pragmas enables domain scientists to incre-
mentally parallelize large production codes. The pragmas
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1 c o n s t i n t D = 2 ;
2 Rea l l h s [ numCel ls ] ;
3 Rea l Fx [ numFaces ] ;
4 Rea l Fy [ numFaces ] ;
5 . . .
6 f o r ( i =0 ; i<szx +1; i ++)
7 f o r ( j =0 ; j<szy ; j ++)
8 Fx [ i ] [ j ] = KERNEL1 ( . . . ) ;
9

10 f o r ( i =0 ; i<szx ; i ++)
11 f o r ( j =0 ; j<szy ; j ++)
12 l h s [ i ] [ j ] = KERNEL2 (Fx [ i ] [ j ] ,
13 Fx [ i + 1 ] [ j ] ) ;
14 f o r ( i =0 ; i<szx ; i ++)
15 f o r ( j =0 ; j<szy +1; j ++)
16 Fy [ i ] [ j ] = KERNEL1 ( . . . ) ;
17
18 f o r ( i =0 ; i<szx ; i ++)
19 f o r ( j =0 ; j<szy ; j ++)
20 l h s [ i ] [ j ] += KERNEL2 (Fy [ i ] [ j ] ,
21 Fy [ i ] [ j + 1 ] ) ;

(a) Pseudocode for the evaluation of diffusive fluxes in a
computational combustion application. cells and their faces.
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Figure 1. To improve performance for the pseudocode in (a), a standard technique is to use OpenMP to do blocking within each loop. With loop
chain information, schedules that group iterations across loops are possible and this results in better performance than just blocking with OpenMP.

specify the loop chain abstraction and schedules for loop
chains, which were developed to navigate the tradeoff be-
tween data locality and parallelism while requiring minimal
extra information from programmers.

The current implementation focuses on expressing
schedules that balance data locality and parallelism for
shared-memory multicore architectures. However, the in-
formation provided could be used to automate high-level
schedule specification beneficial to accelerators as well. For
example, Grosser et al. [5] demonstrated the performance
advantages of split tiling for stencil codes on GPUs. Ad-
ditionally, they presented a mechanism for automatic code
generation of split tiling code. While currently beyond the
scope of this work, this is precisely the type of transforma-
tion that is a candidate for inclusion in loop chains.

Manual implementations of the transformations have
demonstrated their potential impact. In a previous paper, we
manually applied the loop chain abstraction and explored the
tradeoffs between parallelism and data locality by employing
different loop chain scheduling strategies [6]. Figure 1(a)
illustrates pseudocode for a small subset of the fourth-order
evaluation of diffusive fluxes in a computational combustion
application. There are four loops nests that share data and
that we consider to be part of a loop chain. Figure 1(b)
shows the execution times for three different scheduling
approaches. We found schedules enabled by loop chains
performed as much as 3.35× faster than the original blocked
OpenMP version resulting from a data parallel programming
style that primarily expresses parallelism.

The specific contributions of this work include

• a pragma grammar to specify loop chains and their
schedules,

• examples of how a user would annotate existing code
with the pragmas,

• a prototype source-to-source translator that imple-
ments the pragmas, and

• a discussion of the current limitations in the imple-
mentation.

Our preliminary results indicate that this programming
abstraction can serve as a useful tool for developers
and maintainers seeking to improve the performance of
their application without having to overhaul their code.

2. Specifying Loop Chains

In this work we provide developers with a set of com-
piler pragmas that can be inserted into application code. This
enables incremental changes to be made to existing appli-
cations. For the purpose of this paper we use the pragma
label omp-lc, indicating that the loop chain transformations
have the potential for inclustion with the OpenMP standard.
See Figure 5 for the full LoopChain directive grammar.

2.1. Loop Chain Directives

The loop chain directives need to communicate three
categories of information to the compiler: (1) The code
segment that contains all of the loop nests that should be
considered part of the loop chain, (2) the domain and access
patterns of each of the candidate loop nests, and (3) the
transformation recipe to be applied to the loop chain. This
information is passed using two different directive tags,
loopchain and for.
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#pragma omp−l c l o o p c h a i n \
s c h e d u l e ( . . . )
{

# pragma omp−l c f o r domain ( l b : ub ) \
wi th ( i ) w r i t e A { ( i )} , \

r e a d B { ( i ) , \
( i −1) , \
( i +1)}

f o r ( i n t i = l b ; i <= ub ; i += 1 )
A[ i ] = (B[ i −1] + B[ i ] + B[ i + 1 ] )

# pragma omp−l c f o r domain ( l b : ub ) \
wi th ( i ) w r i t e A { ( i )} , \

r e a d A { ( i )}
f o r ( i n t i = l b ; i <= ub ; i += 1 )

A[ i ] = A[ i ] * ( 1 . 0 / 3 . 0 )
}

Figure 2. Example of annotated source code (schedule hidden)

f o r ( i n t i = l b ; i <= ub ; i += 1 ){
A[ i ] = (B[ i −1] + B[ i ] + B[ i + 1 ] )
A[ i ] = A[ i ] * ( 1 . 0 / 3 . 0 )

}

Figure 3. Expected form of transformed code after loop fusion
(schedule(fuse))

The for tag is placed before each loop nest and captures
the iteration domain of the loop nest and the data access
patterns for data objects that are live among loop nests. The
loopchain tag communicates the beginning and end of the
code segment that should be considered for scheduling and
the schedule that should be applied.

Figure 2 shows an annotated input to the source-to-
source translator. Figures 3 and 4 show two possible outputs
depending on the choice of schedule, the first is a fuse and
the second is tiling.

2.2. Domains and Access Patterns

The domain and access pattern annotations provide key
information about the iteration space of a loop nest and the
accesses to data made within that space. Each nest in the
chain has its own domain and access pattern annotation. The
grammar specification shown in Figure 5 contains the formal
grammar definitions of both nest domain definition and
access definition. It is worth noting that these annotations
only inform the scheduling process, and do not themselves
modify or impart a scheduling on the nests they describe.

Specifying Domains. The domain clause withing the for
tag of the pragma takes form:

#pragma omp p a r a l l e l f o r
f o r ( i n t t i l e = f l o o r d ( lb , 1 0 ) ;

t i l e <= f l o o r d ( ub , 1 0 ) ;
t i l e = t i l e + 1) {

f o r ( i n t i = max (10 * t i l e , l b ) ;
i <= min (10 * t i l e + 9 , ub ) ;
i = i + 1 ) {

A[ i ] = B[ i − 1] + B[ i ] + B[ i + 1 ] ;
A[ i ] = A[ i ] * ( 1 . 0 / 3 . 0 ) ;

}
}

Figure 4. Expected form of transformed code after loop fusion and
tiling by 10 (schedule(fuse, tile( (10), parallel, serial)))

domain (d1_lb:d1_ub,d2_lb...)

The domain of a loop nest is specified as a list of inclusive
ranges representing the upper and lower bound of each
dimension of the loop nest. The domain may be of lower
dimension than the loop nest. In this case the domain can
specify a subset of the actual domain that should be used
for transformation. An N dimension loop nest defined by a
N-k dimension domain, describes the N-k outer loop nests
with the N-k+1 inner loop nests as the statement body.

While a domain can be retrieved through code analysis
it may be the case that the syntax of the loop nest does not
reflect the domain of interest for loop chain scheduling. For
example, the inner most loop(s) may be considered to be
the body of the outer most loop(s), such as when iterating
within the components of an array structure. This is common
in computation fluid dynamics codes, where various physical
components are stored at each mesh point in an array.

Specifying Access Patterns. The data access pattern is
expressed as a mapping between the iteration space and
the accesses into the data space. The map can either be
expressed as a read or a write access, depending on the
action taken in the code.

The data access pattern specification follows the domain
specification leading with the keyword with, and an ordered
list of the loop nest iterators. The data access clause takes
the following form, where f and g are expressions using the
available loop iterators:

with (i,j,...) read ID{(f(i,j,...)),
(g(i,j,...)),...}

read ID2{ ... }
write ID3{ ... }
...

In Figure 2 the access pattern for the first loop states
that the iteration i writes to the data space A using i, and
that it reads into the data space B using i− 1, i, and i+1.
This example illustrates a program where the access pattern
is obvious and would be easy to identify through program
analysis. However, unlike the domain, program analysis will
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not catch all access patterns of interest. In the following
example:

double* ptr_1 = buffer + mk_offset( ... );
double* ptr_2 = buffer + mk_offset( ... );

it is impossible at compile time to know if ptr 1 and
ptr 2 are the same or might result in overlapping accesses.
For this reason, we have the programmer specify the access
pattern explicitly.

2.3. Scheduling Loop-Chains

The loopchain tag, in addition to indicating the loop
chain, communicates the scheduling transformations to be
applied to the chain as a whole.

The transformations performed on an application bench-
mark, mini-flux-div [6], motivated our choice of loop trans-
formations. Transformations that are currently implemented
in our prototype tools are fuse and tile. Additional transfor-
mations are currently under development. The following is
a short description of each transformation.

Specifying Schedule Operations. Currently there are 5
schedule operations included in the directive grammar: se-
rial, parallel, fuse, wavefront, and tile. Syntactically, the
schedule directive is a list of these schedule operations in
the order they are to be applied. The formal grammar for
this portion of the directive can be found in the loopchain
annotation production in Figure 5.

Semantics of Schedule Operations.
fuse: All of the loops in the loop chain are fused using
a loop fusion transformation. Shifts and loop peeling are
done as necessary before the loop fusion to respect data
dependencies. The original order of the loops within the
loop chain is the order of statements is in the fused loop
body.

tile: The tile scheduling function takes parameters for the
tile size, the schedule over the tiles, and the schedule within
the tiles. The full grammar for this operation can be found
in the schedule atom production in Figure 5. Currently, only
constant sized tiles are supported.

The size of the desired tiles must be provided for each
dimension of the tile. Providing, tile(16), will tile the outer
loop of a loop nest in a single dimension with 16 iterations
in each tile. Specifying, tile(16,16,16), will create cubic tiles
of size 163. The dimensionality of the tiling specified cannot
exceed that of the domain provided to the for loop pragma.

wavefront: The inner loops of nest are skewed as necessary
as a function of the outer loops and parallelized.

serial: Typically only used in the context of tiling, indicates
that either the outer loop over tiles or within tiles should
not be parallelized.

parallel: Typically only used in the context of tiling, indi-
cates parallelizing the outer loop over tiles or the outer loop
within a tile.

3. Compiler Infrastructure

Two main components comprise the code transforma-
tion infrastructure. The first is an internal representation
specifically designed to represent and support loop chain
transformation, (LoopChainIR). The second is an prototype
implementation of a transformation pass written in the Rose
compiler framework [7] that utilizes the LoopChain direc-
tives and LoopChainIR to perform loop chain transforma-
tions. The transformation has been designed as a single,
discrete pass that could be used in composition with other
transformation passes within a compiler.

3.1. LoopChainIR

LoopChainIR is a C++ library that provides abstractions,
as classes, of loop nests (LoopNest), loop domains (Rect-
angularDomain), loop chains (LoopChain), code generation
ready schedules (Schedule), and transformations to apply
these schedules (Transformation hierarchy). Figure 6 shows
the structure of the current LoopChainIR library.

LoopChains are formed by an ordered list of Loop-
Nests, which consist of rectangular domains.The Schedule
class takes a LoopChain object and creates a mathematical
representation of the domains. A Schedule object can then
have transformations (in the form of Transformation objects)
applied to it. At any time (even before or in between
transformations) the Schedule object can generate code.

This library seeks to provide compiler developers with
simple abstractions with which to represent and manipulate
the loop chain, while hiding the mathematical specification
of the loop chain and the transformations on it.

3.2. Integer Set Library

LoopChainIR utilizes the Integer Set library (ISL) [8],
[9], [10] for code transformation and generation. When
a LoopChainIR Schedule is created it creates domains in
ISL representation. When the LoopChainIR Transformations
are applied, they form an ordered list of transformation
functions in ISL representation. When the LoopChainIR
Schedule performs code generation, ISL applies those trans-
formation functions to the union of those domains, and
outputs ISL’s AST representing C code.

The loop chain from Figure 2 would be represented to
ISL as the following domains

[lb,ub]->{ stmt_0[i] : lb <= i <= ub }
[lb,ub]->{ stmt_1[i] : lb <= i <= ub }

All loop chains are first ‘transformed’ to embed their
domains in a common iteration space. This is the function
for Figure 2.

stmt_0[i] -> [0, i, 0];
stmt_1[i] -> [1, i, 0];

The first index is the loop ordering (0’th and 1’st loop),
and the last index is the statement’s position within the loop
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〈nest annotation〉 → for 〈nest domain definition〉 〈access definition〉
〈nest domain definition〉 → domain ( 〈expression〉 : 〈expression〉 (, 〈expression〉 : 〈expression〉)* )
〈access definition〉 → with ( 〈id〉 (, 〈id〉)* ) 〈access atom〉 (, 〈access atom〉)*
〈access atom〉 → (read | write) 〈id〉 { 〈iterator expression〉 (, 〈iterator expression〉)* }
〈iterator expression〉 → ( 〈expression〉 (, 〈expression〉)* )

〈loopchain annotation〉 → loopchain schedule ( ( 〈schedule atom〉 (, 〈schedule atom〉)* )? )
〈schedule atom〉 → serial | parallel | wavefront | fuse

| tile ( ( 〈int〉 (, 〈int〉)* ) , 〈schedule atom〉 , 〈schedule atom〉 )
Figure 5. Full LoopChain directive grammar

Figure 6. UML class diagram of LoopChainIR

body. This gives the statement inside a loop nest a position
within the whole loop-chain iteration space.

A function can have conditional mapping. For example,
a fusion between two specific loops (1 and 2 in this hypo-
thetical case), that leaves other loops unchanged:

[src, i, stmt] -> [tgt, i, src] :
(src = 1 or src = 2)
and tgt = min(1, 2);

[src, i, stmt] -> [src, i, stmt] :
!(src = 1 or src = 2);

Without the second mapping, all other source loops where
!(source = 1 or source = 2) are dropped from the loop
chain.

/ / Parse s o u r c e i n t o Sage AST
S g P r o j e c t * p r o j e c t = f r o n t e n d ( argv ,

a r g c ) ;

/ / C a l l t h e LoopChain t r a n s f o r m a t i o n
TransformLoopChains ( p r o j e c t ) ;

/ / Genera te code i n s t e a d o f
/ / e x e c u t a b l e b i n a r y
p r o j e c t−>s k i p f i n a l C o m p i l e S t e p ( t r u e ) ;

/ / Genera te s o u r c e code from AST
backend ( p r o j e c t ) ;

Figure 7. Calling the LoopChain transformation pass

3.3. LoopChain Transformation Pass

The transformation pass is implemented as a visitor in
the Rose framework and performs the the actions required to
go from LoopChain directives to transformed and integrated
code. The call to transform source code based on loop chain
pragmas can be inserted at any point during rose compilation
when the Sage AST is stable. Figure 7 shows the interface
that triggers the transformations. The transformation results
in a valid AST and, therefore, can be followed by additional
transformations if desired. Figure 8 shows a larger overview
of process from front to back. Figure 9 gives an overview
of the LoopChain transformation process and the flow of
different ASTs an placement of various components. The
steps are numbered here to indicate their relationship to
Figure 9.

The first step (1) is to parse the LoopChain directives.
Parsing the nest annotations produces a series of
LoopNest objects, with associated iterator symbols and loop
bodies, while parsing the loopchain annotations
collects those LoopNest objects into a single LoopChain
object, and retrieves the scheduling directives.

The next step (2) is to take the LoopChain object and the
scheduling directives, and generate code. Once the schedul-
ing directives are brought together with the entire loop nest,
a series of LoopChainIR Transformation objects can be cre-
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Figure 8. A high-level overview of the usage scenario of this prototype infrastructure

Figure 9. Overview of the process within the LoopChain transformation pass

ated. A Schedule object is constructed from the LoopChain,
and the Transformation objects are added to it. The Schedule
object then applies the transformation functions (supplied by
the Transformation objects) over the domains (specified by
the LoopChain and its LoopNests). Now ISL can generate
its C AST representing the transformed loop chain (3).

The last step is to take that AST, and inject it back into
the source AST. The ISL To Sage translator (described in
Section 3.4) is responsible for the translation of ISL’s C
AST into Sage AST and injecting the resulting dangling
tree back into the original AST (4). The transformer then
maps the new iterator expression to their original iterator
symbols, and replaces the statement macros from ISL with
the original loop bodies. The original loop chain code is
then removed from the AST entirely, becoming replaced by
the new, transformed code (5).

The transformation does this for all annotated loop
chains in the input code. Once all annotated loop chains
have been transformed, the compiler can continue applying
other optimization and transformation passes.

3.4. ISL To Sage Translation

An critical component of the LoopChain Transformation
pass is the translation of ISL’s C AST into Rose’s Sage AST.

This is performed by a simple recursive traversal of the ISL
AST, and creating an image of it using the Rose SageBuilder
tools.

Importantly, in addition to the ISL AST, the ISL to Sage
translator must also take in the parent scope to the site in
the original Sage AST where the resulting new Sage AST
will be injected. This is required to match symbols that are
defined in or above the injection site that are referenced (in
name only) by the ISL AST, such as loop bounds and other
symbolic constants.

In addition to constructing the new Sage AST the
ISL to Sage translator also keeps track of the Sage AST
nodes it creates that are representations of the new loop
bodies. Because ISL does not know what the loop bod-
ies are when it creates its AST, it uses statement macros
(stmt 0(c1,c2), for example). These are collected and
passed upward to ease their replacement by the original loop
bodies later.

4. Preliminary Results

The performance (in speedup relative to the unmodi-
fied serial implementation) of two benchmarks, StreamTriad
were recorded for the original code and the code output from
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our transformation tool. The results are encouraging, demon-
strating a performance improvement with some schedules.

4.1. Experimental Setup

Benchmarks. StreamTriad is a simple array addition with
scalar multiplication benchmark: (Ai +Bi) ·α. To view the
effects of the transformations on this simple benchmark, we
artificially inflated the reuse distance and created additional
loops by splitting the addition and multiplication into two
loops. Blur9 is the average of an element with its 8 sur-
rounding neighbors: Ai,j = (Ai−1,j−1 + · · ·+Ai,j + · · ·+
Ai+1,j+1) ∗ (1/9). Again, we artificially inflated the reuse
and created additional loops by splitting the addition and
multiplication into two loops.

Compilers and Compiler Options. GCC g++ version 4.9.2
was used to compile all the benchmarks. The -O3 flag was
used to optimize.

Hardware. The test machines is single node, 2 socket Intel
Xeon E5-2620 v2 @ 2.10GHz with 6 cores (12 threads), for
a total of 12 cores (24 threads), with 32KB L1, 256KB L2,
and 15360KB L3 caches, 2 NUMA domains, and 63GB of
RAM.

Problem Size and Tiling Parameters. Double precision
values were used in both benchmarks. The StreamTriad
benchmark was tested on an input of 2 ∗ 108 (1.49GB)
totalling 6∗108 FLOPS, and the blur benchmark was tested
on an input of (2∗104+1)2 (2.98GB) computing (2∗104)2
values totalling 9 ∗ (2 ∗ 104)2 FLOPS.

Tile sizes for blur were chosen chosen to fit well
within L1 (20x20 or 3.125KB), tightly within L1 (60x60 or
28.125KB), and outside L1 (120x120 or 112.5KB). We also
compared parallelism over the tiles vs parallelism within the
tiles.

4.2. Speedup Results

The serial runtime of the naive implementation for
StreamTriad was 1.16 seconds (1.17 ∗ 108 FLOPS/second),
and for Blur9 it was 3.07 seconds (1.72 ∗ 109 FLOPS/sec-
ond). Figures 10(a) and 10(b) show speedup relative to the
naive serial implementation of the StreamTriad and Blur9
benchmarks. We can clearly see that in both StreamTriad
and Blur9 benchmarks, fused loops outperform the naive
implementation, typically by an increase of 1x speedup.

In Blur9, tiling does not seem to improve performance
over the naive implementation, and parallelism within a
tile performs much worse that parallelism within a tile.
However, this is probably an issue more to do with the tile
size, with which we did not extensively experiment.

5. Related Work

Application optimization with an awareness of data lo-
cality is an active research area with a rich history. This

section briefly highlights projects with similar aims and
approaches. Loop chaining differentiates itself from most
of the previous work by removing complex tasks from the
domain of the user. Specifically, task aggregation requires
users to rewrite large portions of the code. Loop chaining
depends only on the user annotating existing code. Other
directive- or annotation-based approaches do not provide
a data access pattern interface. This interface allows the
optimizing compiler to make decisions not always possible
through data analysis. The same is true for optimization
scripting languages. The advantage of loop chaining is that
it hides this complexity from the user, making optimizing
transformations more practical.

5.1. Improving Data Locality by Aggregating Com-
putation into Tasks

Various approaches have been developed to navigate the
tradeoff between parallelism and locality. We leverage the
concept that developing a static aggregation or tiling strategy
followed by dynamic execution of a task graph results in
improved data locality within each tile and concurrency, load
balancing, and memory latency tolerance between tiles. The
key difference between previous work and loop chaining
is that the programmer’s responsibilities are less while still
having feasible program analysis requirements.

The problem with having the programmer aggregate
computations into tasks is that the programmer has to make
some decision about task granularity across loops, and that
decision might not be portable. There are various ways
to aggregate computations into tasks: using an OpenMP
pragma and specifying the chunk size [11], tiling the loop
and having tile iterations be tasks [12], iteration space
slicing [13], [14], and encapsulating tasks within functions
that have parameters indicating the task granularity. The
OmpSs work [15], [16] has the programmer indicate tasks
by placing pragmas on C function definitions with in/out
information about parameters and whether a function should
be considered higher priority. Many new programming mod-
els [17], [18], [19], [20], [21], [22], [23] provide a task graph
abstraction and suggest that programmers rewrite existing
code with sequences of parallel loops in the form of task
graphs instead. Iteration space slicing techniques [13], [14]
that find sets of iterations across loops by doing transitive
closure with data dependence relation information help au-
tomate task aggregation but depend heavily on precise and
interprocedural data dependence analysis.

Once a task graph has been created, there are various
ways of optimizing the performance of the task graph.
In [24], the authors provide algorithms for scheduling task
graphs using a mix of task and data parallelism. Within each
task have data parallelism. In [25] the authors propose a
new tag for OpenMP that allows the user to provide locality
information through an affinity tag. Other work determines
the data locality between threads when scheduling tasks and
uses this to control thread affinity [26], [27], [28].

The loop chain abstraction can complement any and all
of these approaches by providing the needed information for
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Figure 10. Benchmark Speedup Results

creating tasks to the compiler and then using the appropriate
task graph based system as a backend. An issue we do
not address in the proposed work is generating distributed
memory code. Some aggregation approaches do provide
distributed memory implementations [22], [29]. We are
tackling the problem of providing effective shared memory
parallelism for individual MPI processes.

5.2. Programmer Guided Code Transformation

The idea of providing optimization hints to the compiler
through directives is not a new one. The Intel compiler
(among others) offers a range of pragmas to aid in optimiz-
ing applications. For example, the following Fortran code
uses the loop count directive.

!DIR\$ LOOP COUNT (10000)
do i =1,m
b(i) = a(i) +1
enddo

It is likely that with this information the compiler will
schedule the code differently than it would without. The
directives available through the Intel compiler that are most
related to our work are the loop optimization pragmas:
nofusion, unroll, and nounroll. There is not, however, a
pragma available that will simplify the data flow analysis
necessary for loop fusion and shifting in complex scientific
applications.

Other frameworks have been developed that allow the
programmer to apply more complex optimizations. Frame-
works such as Orio [30] involve annotating the source

code with instructions for optimizations. POET [31] and
CHiLL [32] each provide a scripting language for optimiza-
tion. The optimization scripts (or recipes) can be placed
within the source code or associated with the source code
from an external file.

6. Future Work

Gathering data using the current transformation infras-
tructure revealed several opportunities for improvement and
expansion. The primary improvements to be made include
altering the LoopChainIR data structure in order to improve
the composability of transformations, integrating the use
of data access information, parameterizing transformations,
and expanding the set of transformations available.

Transformation Composability. It is often the case that a
segment of code benefits from a series of transformations
being performed. For instance, one may fuse two loop nests,
causing a loss of parallelism by introducing loop carried
dependencies, tile the fused code, and apply a wavefront
to the result. During a transform, such as tiling the arity
of the integer set representing the iteration space changes.
The current LoopChainIR data structure does not contain
the necessary information to perform further transformations
after an arity change.

Unlocking Data Access Information. The expression of
data access information is a key defining feature of loop
chaining. This information will greatly expand the capabil-
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f o r ( i n t t = 1 ; t <= ub T / 2 ; ++ t ){
#pragma omp−l c l o o p c h a i n s c h e d u l e ( f u s e )

# pragma omp−l c f o r domain ( lb x , ub x )\
wi th ( i ) w r i t e A{ ( i )} , \

r e a d B{ ( i −1) , ( i ) , ( i + 1 )} ;
f o r ( i = lb x ; i <= ub x ; ++ i )

A[ i ] = (B[ i −1]+B[ i ]+B[ i + 1 ] ) / 3 ;
# pragma omp−l c f o r domain ( lb x , ub x )\

wi th ( i ) w r i t e B{ ( i )} , \
r e a d A{ ( i −1) , ( i ) , ( i +1)}

f o r ( i = lb x ; i <= ub x ; ++ i )
B[ i ] = (A[ i −1]+A[ i ]+A[ i + 1 ] ) / 3 ;

}

Figure 11. Jacobi (1D) Annotated Source Code

f o r ( i n t t = 1 ; t <= ub T / 2 ; ++ t ){
i n t i = lb x−i ;
A[ i ] = (B[ i −1]+B[ i ]+B[ i + 1 ] ) / 3 ;
# pragma omp p a r a l l e l f o r
f o r ( i = lb x ; i <= ub x−1; ++ i ){

A[ i +1] = (B[ i ]+B[ i +1]+B[ i + 2 ] ) / 3 ;
B[ i ] = (A[ i −1]+A[ i ]+A[ i + 1 ] ) / 3 ;

}
B[ i ] = (A[ i −1]+A[ i ]+A[ i + 1 ] ) / 3 ;

}

Figure 12. Jacobi (1D) Transformed Source Code

ities of the transformations. For instance, without this in-
formation, fusing subsequent loops in a stencil computation
requires that the user input the shift information. It is our
goal to remove that responsibility from the user and insert
any shifts necessary for legal transformation.

Figure 11 illustrates the planned format for pragmas in
this situation. The programmer simply identifies the domain,
the access patterns which most programmers understand
well, and states that the desired schedule is a fuse. The
LoopChainIR software should use the access information
to detect the need for a shift and add the shift to the fuse
transformation.

Beyond this simple case the inclusion of access patterns
enables a variety of other planned features. For instance,
transformations requested by the user that result in breaking
data dependencies or potentially introduce race conditions
can be flagged and the user warned. We plan to warn the
user and allow the transformation. This is because there are
cases where introducing this type of issue is not wrong; a
specific example of this is the Floyd-Warshall algorithm. A
long-term goal is to use these access information to suggest
transformations to the user as well.

Parameterizing Transformations. A significant amount of
effort has gone into parameterizing code generation for
transformations such as tiling. The foundation has been set
to be able to move forward with this work, however, it is not
supported in our current tool chain. A specific example of
this is tiling. It is common to sweep through a set of tile sizes
to determine the best performing configuration. However,
with our current configuration each tile size needs to be
determined at compilation time. It is preferable to change
this at runtime.

Expansion of Available Transformation. Our initial devel-
opment goal in this project was to get the entire path from
annotated code to transformed code functional on only one
or two transformations. With this achieved we were able
to test the design and identify deficiencies in the design
before investing a large amount of time in more complex
transformations. We will continue to add transformations
and update the infrastructure in response to our findings.
The first set of transformations that will be added include
all of those used in our previously published work [6] (shift,
fuse, tile, wavefront, and overlapped tiling). We hope to
expand that set in the future to include more advanced tiling
including: diamond tiling, split tiling and overlapped tiling.

Interaction With Existing Optimizations. The current
implementation of our work does not utilize other opti-
mizations that are commonly implemented in compilers,
such as unrolling and vectorization. It is important to un-
derstand how our work would interact with these existing
optimizations. Specifically, we would like to know how they
change the optimization process, and how they can affect
code performance. Loop unrolling, for instance, exposes
loop chains that could be optimized by our work, and we
would expect to improve performance. However, loop chain
optimizations could make vectorization optimizations more
challenging, and we may lose the ability to perform that
optimization. We would like to explore these interactions in
detail, and have experimentally backed predictions of their
effects.

7. Conclusions

There exist programming models, languages, and ab-
stractions that can expose and exploit parallelism in appli-
cations. However, exploiting maximum parallelism without
respecting data locality results in poor performance through
excessive memory traffic. We have presented (1) a novel
programming abstraction though OpenMP style pragmas,
and (2) a software framework to describe and transform
loop chains. These tools can provide developers of new
applications, and maintainers of legacy applications, with
the ability to identify and transform loop chains in order to
increase arithmetic intensity by simultaneously increasing
both parallelism and data locality.

Further, we have created a prototype code transformation
pass, and used it to demonstrate the potential of these tools
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to effectively transform simple benchmarks. Our perfor-
mance results are encouraging. We believe that this program-
ming abstraction can work reasonably well for developers
looking to increase the performance of their application
without requiring them to overhaul their codes.
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