
Identifying and Scheduling
Loop Chains Using Directives

Ian J. Bertolacci
Michelle Mills Strout

Stephen Guzik
Jordan Riley

Catherine Olschanowsky

- University of Arizona
- University of Arizona
- Colorado State University
- Colorado State University
- Boise State University

Problem Space
● Stencil computations are a large part of

physical simulation applications.

● Plenty of opportunities for parallelism.

● Memory pressure causes poor
performance.

22

Performance results of loop chain optimizations in mini-flux-div
benchmark [1]. Baseline is the original highly optimized
implementation.

● Scheduling holistically, across adjacent
loop nests, provides balance between
parallelism and data locality [1].

[1] C. Olschanowsky, M. M. Strout, S. Guzik, J. Loffeld, and J. Hittinger, “A Study on
Balancing Parallelism, Data Locality, and Recomputation in Existing PDE
Solvers,” in To be published in The IEEE/ACM International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), 2014.

Loop Chain Optimizations

3

Loop Chain

Loop Nest

Loop Nest

Original Loop Chain

Loop Nest

After Loop Fusion

Loop Nest

Tile

After Tiling

Tile

1. Currently, Loop chain optimizations laboriously performed by hand.
2. Fully automating loop chain optimizations is not realistic.
3. Rewriting in a domain specific language may not be feasible.

Can we find a middle ground?

Yes!
Using annotations on existing code to inform compiler.

4

Specific Problem

1. Developed annotations to describe loop chains and
specify loop chain optimizations.

2. Early implementation of a loop chain optimization
compiler pass utilizing these annotations.

Our Contributions

5

Annotations

6

● #pragma ...
○ … loopchain schedule([transformations])

■ Denote a block as a loop chain.
■ Specifies the ways in which loops should be transformed.

● Currently have fusion and tiling transformations.
● schedule(fuse, tile((10,20), parallel, serial))

○ … for domain([domain of nest]) with [access patterns]

■ Denote a loop nest in the parent loop chain.
■ Specifies the bounds of the nest.
■ Specifies how the loop nest reads and writes data at each iteration.

Schedule Example

7

Loop Chain

Loop Nest

Loop Nest

Original Loop Chain

Loop Nest

After Loop Fusion

schedule(fuse)

Schedule Example

8

Loop Chain

Loop Nest

Loop Nest

Original Loop Chain

Loop Nest

After Loop Fusion

Loop Nest

Tile

After Tiling

Tile

schedule(fuse, tile((2,2), parallel, serial))

Schedule Example

9

Loop Chain

Loop Nest

Loop Nest

schedule(

 tile((2,2), serial, serial),

 fuse,

)

Original Loop Chain

Loop Chain

Loop Nest

Tile Tile

Loop Nest

Tile Tile

After Tiling

Loop Nest

Tile Tile

Tile Tile

After Fusing

Compiler Pass Toolbox
● Rose Compiler Framework

○ Performs all parsing and compilation.
○ API for performing code synthesis and manipulation.

● LoopChainIR
○ Our intermediate representation for loop chains and transformations.

● Integer Set Library (ISL)
○ Takes loop domains and transformation functions specified in

LoopChainIR performs the mathematical transformations and code
generation.

10

Compiler Pass Overview

11

Transformations

Transform

Generate
Code

Convert ISL C
AST

To Sage AST

Loop-chain
replacement

Rose
AST

Rose
AST

ISL C
AST

Rose
AST

Loop Chain
Representation

Schedule
Parse

LoopChain
pragmas

Loop Chain Transformation Compiler Pass

Conclusion
● We are working towards using code annotations to enable

automated optimizations on loop chains.
● In this work we have provided:

○ Code annotations to describe loop chains, their access into data,
and the ways they are to be scheduled.

○ An early implementation of a compiler pass that uses these
annotations to perform code transformations.

● Future work
○ Automate shifting before loop fusions.
○ Additional schedule operations, overlapped tiling in particular.

12

