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Problem Space
● Stencil computations are a large part of 

physical simulation applications.

● Plenty of opportunities for parallelism.

● Memory pressure causes poor 
performance.
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Performance results of loop chain optimizations in mini-flux-div 
benchmark [1]. Baseline is the original highly optimized 
implementation.

● Scheduling holistically, across adjacent 
loop nests, provides balance between 
parallelism and data locality [1].

[1] C. Olschanowsky, M. M. Strout, S. Guzik, J. Loffeld, and J. Hittinger, “A Study on 
Balancing Parallelism, Data Locality, and Recomputation in Existing PDE 
Solvers,” in To be published in The IEEE/ACM International Conference for 
High Performance Computing, Networking, Storage and Analysis (SC), 2014.



Loop Chain Optimizations
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1. Currently, Loop chain optimizations laboriously performed by hand.
2. Fully automating loop chain optimizations is not realistic.
3. Rewriting in a domain specific language may not be feasible.

Can we find a middle ground?

Yes!
Using annotations on existing code to inform compiler.
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Specific Problem



1. Developed annotations to describe loop chains and 
specify loop chain optimizations.

2. Early implementation of a loop chain optimization 
compiler pass utilizing these annotations.

Our Contributions
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Annotations
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● #pragma ...
○ … loopchain schedule( [transformations] )

■ Denote a block as a loop chain.
■ Specifies the ways in which loops should be transformed.

● Currently have fusion and tiling transformations.
● schedule( fuse, tile( (10,20), parallel, serial) )

○ … for domain( [domain of nest] ) with [access patterns]

■ Denote a loop nest in the parent loop chain.
■ Specifies the bounds of the nest.
■ Specifies how the loop nest reads and writes data at each iteration.



Schedule Example
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Schedule Example
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Schedule Example
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Compiler Pass Toolbox
● Rose Compiler Framework

○ Performs all parsing and compilation.
○ API for performing code synthesis and manipulation.

● LoopChainIR
○ Our intermediate representation for loop chains and transformations.

● Integer Set Library (ISL)
○ Takes loop domains and transformation functions specified in 

LoopChainIR performs the mathematical transformations and code 
generation.
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Compiler Pass Overview
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Conclusion
● We are working towards using code annotations to enable 

automated optimizations on loop chains.
● In this work we have provided:

○ Code annotations to describe loop chains, their access into data, 
and the ways they are to be scheduled.

○ An early implementation of a compiler pass that uses these 
annotations to perform code transformations.

● Future work
○ Automate shifting before loop fusions.
○ Additional schedule operations, overlapped tiling in particular.

12


