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Abstract

The multiple sequence alignments computed by an aligner for different settings of its
parameters, as well as the alignments computed by different aligners using their default
settings, can differ markedly in accuracy. Parameter advising is the task of choosing a
parameter setting for an aligner to maximize the accuracy of the resulting alignment.
We extend parameter advising to aligner advising, which in contrast chooses among a
set of aligners to maximize accuracy. In the context of aligner advising, default advising
selects from a set of aligners that are using their default settings, while general advising
selects both the aligner and its parameter setting.

In this paper, we apply aligner advising for the first time, to create a true ensemble
aligner. Through cross-validation experiments on benchmark protein sequence
alignments, we show that parameter advising boosts an aligner’s accuracy beyond its
default setting for virtually all of the standard aligners currently used in practice.
Furthermore, aligner advising with a collection of aligners further improves upon
parameter advising with any single aligner, though surprisingly the performance of
default advising on testing data is actually superior to general advising due to less
overfitting to training data.

The new ensemble aligner that results from aligner advising is significantly more
accurate than the best single default aligner, especially on hard-to-align sequences. This
successfully demonstrates how to construct out of a collection of individual aligners, a
more accurate ensemble aligner.

keywords: Multiple sequence alignment, parameter advising, aligner advising,
accuracy estimation, ensemble methods.

1 Introduction 1

While it has long been known that the multiple sequence alignment computed by an 2

aligner strongly depends on the settings for its tunable parameters, and that different 3

aligners using their default settings can output markedly different alignments of the 4

same input sequences, there has been relatively little work on how to automatically 5

choose the best parameter settings for an aligner, or the best aligner to invoke, to 6

obtain the most accurate alignment of a given set of input sequences. 7

Automatically choosing the best parameter setting for an aligner on a given input 8

was termed by Wheeler and Kececioglu [1], parameter advising. In their framework, an 9
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(a) Lower-accuracy alignment computed by MUMMALS

(b) Higher-accuracy alignment computed by Opal
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d1flma 8   ... fevlknegvvAIATQgedgphlvntwnsylkv-ldgnrivvpvggmhkteanva-rde ...  63 
d1ci0a 18  ... tkw-fn--------eakedpret-------------lpeaiTFSS-------Aelpsg ...  46 
d1nrga 16  ... aaw-fe--------eavqcpdig-------------eanamCLAT-------Ct-rdg ...  43 
d1ejea 22  ... hriltprptvMVTTVdeegninaapfsftmpvsidppvvafasapdhhtarnie-sth ...  78 
d1i0ra 8   ... ykisyglyIVTSEsngrkcgqiant---vfqltskpvqiavclnkendthnavk-esg ...  61 

 
 
 

(A) MUMMALS/SUP_080  
Accuracy: 28.9% 
Estimator: 0.540 

 
 

d1flma 1   ... ------mlpgtffevlkne-----gvvAIATQg-edgph--lvntwnsylk---vldg ...  41 
d1ci0a 12  ... d-dpidlftkwfneakedpretlpeaiTFSSAelpsgr----vssrillfk---eldh ...  59 
d1nrga 9   ... sldpvkqfaawfeeavqcpdigeanamCLATCt-rdgk----psarmlllk---gfgk ...  56 
d1ejea 11  ... s-mdfedfpvesahriltpr----ptvMVTTVd-eegn----inaapfsftmpvsidp ...  56 
d1i0ra 1   ... --mdveafykisy------------glyIVTSE-sngrkcgqiantvfqlt---s-kp ...  39 

 
 
 

(B) Opal/sup_080  
Accuracy: 49.9% 
Estimator: 0.578 
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(B) Opal/sup_080  
Accuracy: 49.9% 
Estimator: 0.578 
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Fig 1. Aligner choice affects the accuracy of computed alignments. (a) Part of an
alignment of benchmark sup 125 from the SABRE [2] suite computed by MUMMALS [3]
using its default parameter choice; this alignment has accuracy value 28.9%, and
Facet [4] estimator value 0.540. (b) Alignment of the same benchmark by Opal [1] using
its default parameter choice, which has 49.9% accuracy, and higher Facet value 0.578.
In both alignments, the positions that correspond to core blocks of the reference
alignment, which should be aligned in a correct alignment, are highlighted in bold.

advisor takes a set of parameter settings, together with an estimator that estimates the 10

accuracy of a computed alignment, and invokes the aligner on each setting, evaluates 11

the accuracy estimator on each resulting alignment, and chooses the setting that gives 12

the alignment of highest estimated accuracy. Analogously, we call automatically 13

choosing the best aligner for a given input, aligner advising. 14

To make this concrete, Figure 1 shows an example of advising on a benchmark set of 15

protein sequences for which a correct reference alignment is known, and hence for which 16

the true accuracy of a computed alignment can be determined. In this example, the 17

Facet estimator of DeBlasio and Kececioglu [5] is used to estimate the accuracy of two 18

alignments computed by the Opal [6] and MUMMALS [3] aligners. For these two 19

alignments, the one of higher Facet value also has higher true accuracy as well, so an 20

advisor armed with the Facet estimator would in fact output the more accurate 21

alignment to a user. 22

For a collection of aligners, this kind of advising is akin to an ensemble approach to 23

alignment, which selects a solution from those output by different methods to obtain in 24

effect a new method that ideally is better than any individual method. Ensemble 25

methods have been studied in machine learning [7], which combine the results of 26

different classifiers to produce a single output classification. Typically such ensemble 27

methods from machine learning select a result by voting. In contrast, an advisor 28

combines the results of aligners by selecting one via an estimator. 29

In this paper, we extend the framework of parameter advising to aligner advising, 30

and obtain by this natural approach a true ensemble aligner. Moreover as our 31

experimental results show, the resulting ensemble aligner is significantly more accurate 32

than any individual aligner. 33

Related work 34

We very briefly summarize prior work on alignment advising. Wheeler and 35

Kececioglu [1] introduced the notion of parameter advisors; Kececioglu and DeBlasio [4] 36

investigated the construction of alignment accuracy estimators, resulting in the Facet 37

estimator [5]; and DeBlasio and Kececioglu [8] investigated how to best form the set of 38
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parameter choices for an advisor, called an advisor set, developing an efficient 39

approximation algorithm for finding a near-optimal advisor set for a given estimator. 40

All this prior work applied parameter advising to boosting the accuracy of the Opal 41

aligner [6]. In contrast, this paper applies parameter advising to all commonly-used 42

aligners, and aligner advising to combine them into a new, more accurate, ensemble 43

aligner. 44

To our knowledge, the only prior work on combining aligners is by Wallace, 45

O’Sullivan, Higgins, and Notredame [9] on the M-Coffee aligner, Collingridge and Kelly 46

who developed the MergeAlign [10] tool and by Muller, Creevey, Thompson, Arendt, 47

and Bork [11] on the AQUA tool. AQUA chooses between an alignment computed by 48

MUSCLE [12] or MAFFT [13] based on their NorMD [14] score. Our prior work [4] shows 49

that for choosing the more accurate alignment, the NorMD score used by AQUA is much 50

weaker than the Facet estimator used here for aligner advising. M-Coffee uses a 51

standard progressive alignment heuristic to compute an alignment under 52

position-dependent substitution scores whose values are determined by alignments from 53

different aligners. MergeAlign produces a consensus alignment of several alignments of 54

the same input sequences but constructing a partial order alignment graph that 55

represents all of the alignments, the path with the highest support is then returned. As 56

Section 3.3 later shows, when run on the same set of aligners, M-Coffee and 57

MergeAlign are both strongly dominated by the ensemble approach of this paper. 58

Plan of the paper 59

In the next section, we review our approach to learning an alignment advisor. An 60

advisor selects aligners and parameter values from a small set of choices that is drawn 61

from a larger universe of all possible choices. Section 2.2 describes how we construct 62

this universe of aligners and their parameter choices for advisor learning. Section 3 then 63

experimentally evaluates our approach to ensemble alignment on real biological 64

benchmarks. 65

2 Methods 66

2.1 Learning an alignment advisor 67

To make the paper self-contained, we briefly review our prior work on how to learn an 68

alignment advisor. We first review the concept of parameter advising, which requires an 69

estimator of alignment accuracy and a set of parameter choices for the advisor, and 70

then summarize our prior techniques for learning both an estimator and an advisor set. 71

In Section 3, we apply these techniques for the first time to aligner advising to yield a 72

new ensemble aligner. 73

2.1.1 Parameter advising 74

The goal of parameter advising is to find the parameter setting for an aligner that yields 75

the most accurate alignment of a given set of input sequences. The accuracy of a 76

computed alignment is measured with respect to the “correct” alignment of the 77

sequences (which often is not known). For special benchmark sets of protein sequences, 78

the gold-standard alignment of the proteins, called their reference alignment, is usually 79

obtained through structural alignment by finding the best superposition of the known 80

three-dimensional structures of the proteins. Columns of the reference alignment that 81

contain a residue from every protein in the set (where a residue is the amino acid at a 82

particular position in a protein), and for which the residues in the column are all 83

mutually close in space in the superposition of the structures, are called core columns. 84
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Runs of consecutive core columns are called core blocks, which represent the regions of 85

the structural alignment with the highest confidence of being correct. Given such a 86

reference alignment with identified core blocks, the accuracy of a different, computed 87

alignment is the fraction of the pairs of residues aligned in the core blocks of the 88

reference alignment that are also aligned in the computed alignment. (So a computed 89

alignment of 100% accuracy completely agrees with the reference on its core blocks, 90

though it may disagree elsewhere.) The best computed alignment is one of highest 91

accuracy, and the task of a parameter advisor is to find a setting of the tunable 92

parameters of an aligner that yields an accurate output alignment. This setting can be 93

highly input dependent, as the best choice of parameter values for an aligner can vary 94

for different sets of input sequences. 95

When aligning sequences in practice, a reference alignment is almost never known, in 96

which case the true accuracy of a computed alignment cannot be measured. Instead our 97

parameter advisors rely on an accuracy estimator E that for an alignment A, gives a 98

value E(A) in the range [0, 1] that estimates the true accuracy of alignment A. An 99

estimator should be efficiently computable and positively correlated with true accuracy. 100

To choose a parameter setting, an advisor takes a set of choices P , where each 101

parameter choice p ∈ P is a vector that assigns values to all the tunable parameters of 102

an aligner, and picks the choice that yields a computed alignment of highest estimated 103

accuracy. 104

Formally, given an accuracy estimator E and a set P of parameter choices, a 105

parameter advisor tries each parameter choice p ∈ P , invokes an aligner to compute an 106

alignment Ap using choice p, and then selects the parameter choice p∗ that has 107

maximum estimated accuracy: 108

p∗ ∈ argmax
p∈P

{
E(Ap)

}
.

Since the advisor runs the aligner |P | times on a given set of input sequences, a crucial 109

aspect of parameter advising is finding a small set P for which the true accuracy of the 110

output alignment Ap∗ is high. 111

To construct a good advisor, we need to find a good estimator E and a good set P . 112

The estimator and advisor set are learned on training data consisting of benchmark sets 113

of protein sequences for which a reference alignment is known. The learning procedure 114

tries to find an estimator E and set P that maximize the true accuracy of the resulting 115

advisor on this training data, which we subsequently assess on separate testing data. 116

Note that the process of advising is fast: for a set P of k parameter choices, advising 117

involves computing k alignments under these choices, which can be done in parallel, 118

evaluating the estimator on these k alignments, and taking a max. (Section 3.8 gives 119

actual running times.) The separate process of training an advisor, by learning an 120

estimator and an advisor set as we review next, is done once, off-line, before any 121

advising takes place. 122

2.1.2 Learning an accuracy estimator 123

Kececioglu and DeBlasio [4, 16] present an efficient approach for learning an accuracy 124

estimator that is a linear combination of real-valued alignment feature functions, based 125

on solving a large-scale linear programming problem. This approach resulted in the 126

Facet estimator [5], which is currently the most accurate estimator for parameter 127

advising [4, 8]. 128

This approach assumes we have a collection of d real-valued feature functions 129

g1(A), . . . , gd(A) on alignments A, where these functions gi are positively correlated 130

with true accuracy. The alignment accuracy estimator E is a linear combination of 131

these functions, E(A) =
∑

1≤i≤d ci gi(A), where the coefficents ci specify the 132
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Fig 2. Relationship of estimators to true accuracy. Each point in a scatterplot
corresponds to an alignment whose true accuracy is on the horizontal axis, and whose
value under a given estimator is on the vertical axis. Both scatterplots show the same
set of 3,000 alignments (randomly sampled from the more than 209,000 alignments
generated by the experiments in Section 3) under the accuracy estimators Facet [4] and
TCS [15].

estimator E. When the feature functions have range [0, 1] and the coefficients form a 133

convex combination, the resulting estimator E will also have range [0, 1]. Facet uses a 134

collection of five feature functions, many of which make use of predicted secondary 135

structure for the protein sequences [4]. Figure 2 shows the relationship to true accuracy 136

of both the Facet and TCS [15] estimators. 137

A parameter advisor uses the estimator to effectively rank alignments, so an 138

estimator just needs to be monotonic in true accuracy. The difference-fitting approach 139

learns the coefficients of an estimator that is close to monotonic by fitting the estimator 140

to differences in true accuracy for pairs of training alignments. 141

Let function F (A) give the true accuracy of alignment A, and set P be a collection 142

of ordered pairs of alignments from training data, where every pair (A,B) ∈ P satsifies 143

F (A) < F (B). Difference fitting tries to find an estimator E that increases at least as 144

much as accuracy F on the pairs in P, by minimizing the amount that E falls short. 145

Formally, we find the estimator E∗ given by the vector of coefficients c∗ ∈ Rd that 146

minimizes 147∑
(A,B)∈P

wAB max

{(
F (B)−F (A)

)
−
(
E(B)−E(A)

)
, 0

}
,

where wAB weights the above error for a pair (A,B). Finding the optimal 148

coefficients c∗ can be reduced to solving a linear programming problem as follows. 149

**** EDIT THIS: All pairs from a particular benchmark such that 150

F(A)¿F(B)+0.005 limit of 30,000 per benchmark weight pairs evenly within benchmark, 151

then across benchmark bins. 152

The linear program has a variable ci for each estimator coefficient, and an error 153

variable eAB for each pair (A,B) ∈ P. The constraints are ci ≥ 0 and
∑

i ci = 1, which 154

ensure the coefficients form a convex combination, together with eAB ≥ 0, and 155

eAB ≥
(
F (B) − F (A)

)
−
(
E(B) − E(A)

)
.

(Note that the expressions E(A) and E(B) are linear in the variables ci, while the 156

quantities F (A) and F (B) are constants.) The linear program then minimizes the 157

objective function
∑

(A,B)∈P wAB eAB . 158

For the linear program to be of manageable size for a large number of training 159

alignments, the set P of pairs must be quite sparse. Kececioglu and DeBlasio [4] 160
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describe how to find a good sparse set P together with a good set of weights wAB by an 161

efficient graph algorithm. 162

Learning an accuracy estimator with d feature functions using a set P of p pairs, 163

involves solving the above linear program with p + d variables and Θ(p + d) inequalities. 164

Evaluating the Facet estimator on an alignment with m sequences and n columns, after 165

secondary structure has been predicted for the protein sequences, takes Θ(m2n) time. 166

2.1.3 Learning an advisor set 167

DeBlasio and Kececioglu [8,17] present an efficient approximation algorithm for learning 168

a near-optimal set of parameter choices for an advisor that uses a given estimator. The 169

approximation algorithm follows a greedy strategy, so we call the sets found by the 170

approximation algorithm greedy sets, in contrast to exact sets that are optimal for the 171

training data, and which can be found by exhaustive search for small instances. These 172

greedy sets tend to generalize better than exact sets, with the remarkable behavior that 173

the greedy sets often outperform exact sets on testing data [8]. 174

The problem of learning an optimal set P of parameter choices for an advisor is 175

formulated as follows. Let U be the universe of possible parameter choices that might 176

be included in advisor set P . (Section 2.2 describes how we construct the universe U for 177

aligner advising.) The training data is a collection of reference alignments Ri, one for 178

each benchmark Bi, and a collection of alternate alignments Aij , where each 179

alignment Aij is computed by running the aligner on the sequences in benchmark Bi 180

using parameter choice j ∈ U . By comparing each alternate alignment to the reference 181

alignment for its benchmark, we can measure the true accuracy aij of each 182

alignment Aij . 183

For a candidate set P ⊆ U of parameter choices for an advisor that uses estimator E, 184

the set of parameter choices from P that could potentially be output by the advisor on 185

benchmark Bi is 186

Oi(P ) = argmax
j ∈P

{
E(Aij)

}
,

where the argmax gives the set of parameter choices j ∈ P that are tied for maximizing 187

the estimator E on the benchmark. The advisor could output any parameter choice 188

from Oi(P ), as all of them appear equally good under the estimator, so we assume the 189

advisor selects a choice uniformly at random from this set. Then the expected accuracy 190

achieved by the advisor on benchmark Bi using parameter set P is 191

Ai(P ) =
1∣∣Oi(P )

∣∣ ∑
j ∈Oi(P )

aij ,

where again aij is the true accuracy of alignment Aij . 192

In learning an advisor set P , we seek a set P that maximizes the advisor’s expected 193

accuracy Ai(P ) on the training benchmarks Bi. Formally, we want a set P that 194

maximizes the objective function 195

f(P ) =
∑
i

wi Ai(P ) ,

where i indexes the benchmarks, and wi is the weight placed on benchmark Bi. (The 196

benchmark weights correct for sampling bias in the training data, as discussed in 197

Section 3.) In words, we want to find an advisor set P ⊆ U that maximizes the 198

expected accuracy of the parameter choices selected by the advisor, averaged across 199

weighted training benchmarks. 200

DeBlasio and Kececioglu [8] prove that for a given bound k on the size of advisor 201

set P , finding an optimal set P ⊆ U with |P | ≤ k that maximizes objective f(P ) is 202

NP-complete. 203
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Greedy sets While this NP-completeness result implies it is unlikely we can 204

efficiently find an optimal advisor set, there is a natural greedy algorithm that is 205

guaranteed to efficiently find a near-optimal set. For any constant `, the optimal 206

advisor set of cardinality at most ` can be found in polynomial time by exhaustive 207

search. The following procedure Greedy builds on this idea to find a near-optimal 208

advisor set for cardinality bound k, by starting with an optimal set of size at most `, 209

where ` ≤ k, and greedily augmenting it. 210

procedure Greedy(k, `) begin

Find an optimal subset P ⊆ U of size |P | ≤ `

that maximizes f(P ).

P̃ := P˜̀ := |P |
for cardinalities ˜̀+1, . . . , k do begin

Find parameter choice j∗ ∈ U−P̃ that

maximizes f(P̃ ∪ {j∗}).
P̃ := P̃ ∪ {j∗}
if f(P̃ ) ≥ f(P ) then

P := P̃

end

output P

end

211

DeBlasio and Kececioglu [8] prove that procedure Greedy is an (`/k)-approximation 212

algorithm for finding an optimal advisor set, for any constant ` with ` ≤ k. 213

Learning a greedy advisor set for cardinality bound k when `=1, which is the value 214

we use in practice, for the Facet estimator on a universe of u parameter choices and a 215

training set of t benchmarks, takes Θ(k2ut) time. 216

Oracle sets A useful notion in parameter advising introduced by Wheeler and 217

Kececioglu [1] is the concept of an oracle, which is a perfect advisor that has access to 218

the true accuracy of an alignment. For a given advisor set P , an oracle selects parameter 219

choice argmaxp∈P
{
F (Ap)

}
, where again function F gives the true accuracy of an 220

alignment. (Equivalently, an oracle is an advisor that uses the perfect estimator F .) An 221

oracle always picks the parameter choice that yields the highest accuracy alignment. 222

While an oracle is impossible to construct in practice, it gives a theoretical limit on 223

the accuracy achievable by advising with a given set. Furthermore, if we can find the 224

optimal advisor set for an oracle for a given cardinality bound k, which we call an oracle 225

set, then the performance of an oracle on an oracle set gives a theoretical limit on how 226

well advising can perform for a given bound k on the number of parameter choices. 227

Kececioglu and DeBlasio [4] show that finding an oracle set is NP-complete, and give 228

the following integer linear program for finding an optimal oracle set. In our prior 229

notation, an optimal oracle set for cardinality bound k is a set P ⊆ U with |P | ≤ k that 230

maximizes
∑

i wi maxj∈P aij . To formulate this as an integer linear programming 231

problem, let yj for all j ∈ U , and xij for all benchmarks Bi and all j ∈ U , be integer 232

variables that either have the value 0 or 1, where yj = 1 iff parameter choice j is 233

selected for oracle set P , and xij = 1 iff choice j is used by the oracle on benchmark Bi. 234

The constraints are 0 ≤ xij ≤ yj ≤ 1,
∑

j yj ≤ k, and for each benchmark Bi the 235

constraint
∑

j xij = 1. The objective function is to maximize
∑

i wi

∑
j xij aij . An 236

optimal solution to this integer linear program gives an optimal oracle 237

set P ∗ = {j ∈ U : yj = 1}. 238

Learning an optimal oracle set of cardinality k, for a universe of u parameter choices 239

and a training set of t benchmarks, involves solving the above integer linear program 240
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with Θ(ut) variables and Θ(ut) inequalities. Kececioglu and DeBlasio [4] show that 241

using the CPLEX integer linear programming solver, this formulation permits finding 242

optimal oracle sets in practice even for cardinalities up to k = 25. 243

2.2 Constructing the universe for aligner advising 244

We extend parameter advising with a single aligner to aligner advising with a collection 245

of aligners, by having the choices in the advisor set now specify both a particular aligner 246

and a parameter setting for that aligner. To specify the universe that such an advisor 247

set is drawn from during learning, we must determine what aligners to consider, and 248

what parameter settings to consider for those aligners. 249

2.2.1 Determining the universe of aligners 250

For default aligner advising, where the advisor set consists of distinct aligners, each 251

using their default parameter setting, we learned advisor sets over a universe containing 252

as many of the commonly-used aligners from the literature as possible. Specifically, the 253

universe for default advising consisted of the following 17 aligners: Clustal [18], 254

Clustal2 [19], Clustal Omega [20], DIALIGN [21], FSA [22], Kalign [23], MAFFT [13], 255

MUMMALS [3], MUSCLE [24], MSAProbs [25], Opal [1], POA [26], PRANK [27], Probalign [28], 256

ProbCons [29], SATé [30], and T-Coffee [31]. 257

2.2.2 Determining the universe of parameter settings 258

For general aligner advising, we created an parameter universe for each of the 259

aligners we used for default aligner advising, the full list of parameters used is found in 260

Table 1. For each aligner, we enumerated parameter settings by forming a cross product 261

of values for each of its tunable parameters. We determined the values for each tunable 262

parameter by one of two ways. For aligners with web-server versions (namely 263

Clustal Omega and ProbCons), we used all values recommended for each parameter. 264

For all other aligners, we chose either one or two values above and below the default 265

value for each parameter, to attain a cross product with less than 200 parameter settings. 266

If a range was specified for a numeric parameter, values were chosen to cover this range 267

as evenly as possible. For non-numeric parameters, we used all available options. 268
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Table 1. Universe of Parameter Settings for General Aligner Advising
Parameter Tunable

Aligner settings parameters Version Parameter name Default value, v Alternate values

ClustalW2 [19] 162 5 2.1

Substitution matrix GONNET PAM, BLSM

Gap open penalty 10 5, 20
Gap extension penalty 0.2 0.1,0,4
Gap distance 4 2,8
End gaps Off On

Clustal Omega [20] 120a 5 1.2.0

Number of guide tree iterations 0 1, 3, 5
Number of HMM iterations 0 1, 3, 5
Number of combined iterations 0 1, 3, 5
Distance matrix calculations, initial mBed Full alignments
Distance matrix calculations, iterations mBed Full alignments

Disalign-T [32] 162 5 0.2.2

Substitution matrix BLSM62 BLSM75, BLSM90

Overlap 0 1
Global Minimum 40 20,60
Threshold 4 2,6
Even threshold 4 2,6

Disalign-TX [21] 162 5 1.0.2

Substitution matrix BLSM62 BLSM75, BLSM90

Probability Distribution BLOSUM.diag prob t10 BLOSUM75.diag prob t2

Sensitivity 0 1,2
Threshold 4 2,6
Even threshold 4 2,6

FSA [22] 200 5 1.15.3

Estimate indel probabilities On Off
Estimate emission probabilities On Off
Regularize learned emission and gap probabilities On Off
Maximum number of iterations of EM 3 1,5,10, 20
Minimum fractional increase per iteration 0.1 0.01,0.05,0.15,0.2

Kalign [23] 162 4 2.04

Gap open penalty 55 40, 70
Gap extension penalty 8.5 7, 10
Terminal gap penalty 4.25 3.5, 5
Bonus No Yes

MAFFT [13] 175 3 6.923b
Substitution matrix BLSM62 BLSM30, BLSM45, BLSM80, VTML120, VTML200, VTML350

Gap open penalty 1.53 1
4
v, 1

2
v, 3

2
v, 2v

Gap extension penalty 0.123 1
2
v, 2v, 4v

MSAProbs [25] 175 3 0.9.7
Passes of consistency transformation 2 0,1,3,4,5
Passes of iterative-refinement 10 0,2,5,20,50,75,100

MUSCLE [24] 160 3 3.8.31

Profile score Log-expectation: VTML240 Sum-of-pairs: PAM200, VTML240

Objective functionb spm dp, ps, sp, spf, xp

Gap open penalty, profile dependent γ = vc 1
2
v, 3

4
v, 5

4
v, 3

2
v

Gap extension penalty γ 1
2
γ

MUMMALS [3] 29 3d 1.01
Differentiate match states in unaligned regions Yes No
Solvent accessibility categories 1 2, 3
Secondary structure types 3 1

Opal [1] 162 5 3.0b

Substitution matrix VTML200e BLSM62e, VTML40e

Internal gap open penalty γ = 45 70, 95
Terminal gap open penalty 0.4γ 0.05γ, 0.75γ
Internal gap extension penalty λ = 42 40, 45
Terminal gap extension penalty λ − 3 λ

POA [26] 144 2 1.0.0

Substitution matrix BLSM80 BLSM62, VTML120, VTML200

Gap penalty 1 12 3, 24
Gap penalty 2 6 1, 3
Progressive alignment Yes No
Global alignment Yes No

PRANK [27] 165 3 .140603

Gap rate 0.005 1
5
v, 1

2
v, 3

2
v, 2v

Gap extension 0.5 1
5
v, 1

2
v, 3

2
v, 2v

Terminal gaps Alternate scoring Normal scoring
Force insertions to be always skipped Yes No
Iterations 5 1

ProbCons [29] 168f 3 1.4
Consistency repetitions 2 0, 1, 3, 4, 5
Iterative refinement repetitions 100 0, 500, 1000
Pre-training repetitions 0 1, 2, 3, 4, 5, 20

Probalign [28] 124 3 1.12
Thermodynamic temperature 5 1, 3, 5, 10
Gap open 22 1, 11, 33, 55
Gap extension 1 0.25, 0.5, 1.5, 3

T-Coffee [31] 180 3 10.00.r1613
Substitution matrix BLSM62 BLSM40, BLSM80, PAM120, PAM250, PAM350

Gap open 0 -50, -500, -1000, -5000
Gap extension 0 -1, -3, -5, -7, -10

Total 2338

aParameter settings retrieved from the Clustal Omega web-server at EBI (www.ebi.ac.uk/Tools/msa/clustalo).
bsp: sum-of-pairs score; spf: dimer approximation of sum-of-pairs score; spm: input dependent (sp if input is less than 100 sequences, spf otherwise); dp: dynamic

programming score; ps: average profile sequence score; xp: cross profile score.
cDefault values for the gap open penalty are -2.9 when the log-expectation profile is chosen, -1439 for sum-of-pairs using PAM200, and -300 for sum-of-pairs using VTML240.

Alternate values are multiples of this default value.
dMUMMALS is distributed with 29 precomputed hidden Markov models, each of which is associated with a setting of three tunable parameters.
eThe substitution matrices used by Opal are shifted, scaled, and rounded to integer values in the range [0, 100].
fParameter settings retrieved from the ProbCons web-server at Stanford (probcons.stanford.edu).
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3 Results and Discussion 269

We evaluate the performance of advising through experiments on a collection of protein 270

multiple sequence alignment benchmarks. A full description of the benchmark collection 271

is given in [4], and is briefly summarized below. The experiments compare the accuracy 272

of parameter and aligner advising to the accuracy of individual aligners using their 273

default parameter settings. 274

The benchmark suites used in our experiments consist of reference alignments that 275

are largely induced by performing structural alignment of the known three-dimensional 276

structures of the proteins. Specifically, we use the BENCH suite of Edgar [33], 277

supplemented by a selection of benchmarks from the PALI suite [34]. The entire 278

benchmark collection consists of 861 reference alignments. 279

As is common in benchmark suites, easy-to-align benchmarks are highly 280

over-represented in this collection, compared to hard-to-align benchmarks. To correct 281

for this bias when evaluating average advising accuracy, we binned the 861 benchmarks 282

in our collection by difficulty, where the difficulty of a benchmark is its average accuracy 283

under three commonly-used aligners, namely Clustal Omega, MAFFT, and ProbCons, 284

using their default parameter settings. We then divided the full range [0, 1] of accuracies 285

into 10 bins with difficulties [(j−1)/10, j/10] for j = 1, . . . , 10. The weight wi of 286

benchmark Bi falling in bin j that we used for training is wi = (1/10)(1/nj), where nj 287

is the number of benchmarks in bin j. These weights wi are such that each difficulty 288

bin contributes equally to the advising objective function f(P ). Note that with this 289

weighting, an aligner that on every benchmark gets an accuracy equal to its difficulty, 290

will achieve an average advising accuracy of roughly 50%. 291

3.1 Parameter advising 292

We first examine the results of parameter advising for a single aligner using the Facet 293

estimator. We learned the coefficients for Facet by difference fitting on computed 294

alignments obtained using the oracle set of cardinality k=17 found for the parameter 295

universe for each aligner. (We trained the estimator on an oracle set of this cardinality 296

to match the size of the universe for default aligner advising.) Given this estimator, we 297

constructed greedy advisor sets for each aligner. 298

Figure 3 shows the accuracy of parameter advising using greedy advisor sets of 299

cardinality k≤15, for each of the 10 aligners in Table 1, under 12-fold cross-validation. 300

The plot shows advising accuracy on the testing data, averaged over all benchmarks and 301

folds. 302

Almost all aligners benefit from parameter advising, though their advising accuracy 303

eventually reaches a plateau. While our prior work [8] showed that parameter advising 304

boosts the accuracy of the Opal aligner, Figure 3 shows this result is not aligner 305

dependent. 306

3.2 Aligner advising 307

To evaluate aligner advising, we followed a similar approach, constructing an oracle set 308

of cardinality k=17 over the union of the universe for default advising from 309

Section 2.2.1 and the universe for general advising from Section 2.2.2, learning 310

coefficients for Facet using difference fitting, and constructing greedy sets using Facet 311

for default and general advising. 312
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	  	  Opal	   	  	  MUSCLE	   	  	  Clustal	  Omega	  
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Fig 3. Accuracy of parameter advising using Facet. The plot shows advising accuracy
for each aligner from Table 1, using parameter advising on greedy sets with the Facet

estimator learned by difference fitting. The horizontal axis is the cardinality of the
advisor set, and the vertical axis is the advising accuracy on testing data averaged over
all benchmarks and folds, under 12-fold cross-validation.
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Facet

Fig 4. Aligner advising and parameter advising using Facet. The plot shows default
and general aligner advising accuracy, and parameter advising accuracy for Opal,
MUMMALS, and Probalign, using the Facet estimator. The horizontal axis is the
cardinality of the advisor set, and the vertical axis is advising accuracy on testing data
averaged over all benchmarks and folds under 12-fold cross-validation.
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Fig 5. Aligner advising and parameter advising using TCS. The plot shows default and
general aligner advising accuracy, and parameter advising accuracy for Opal, MUMMALS,
Probalign, and ProbCons, using the TCS estimator. The horizontal axis is the
cardinality of the advisor set, and the vertical axis is advising accuracy on testing data
averaged over all benchmarks and folds under 12-fold cross-validation.

Figure 4 shows the accuracy of default and general advising using greedy sets of 313

cardinality k≤15, along with the three best parameter advising curves from Figure 3, 314

for Opal, Probalign, and MUMMALS. The plot shows advising accuracy on testing data, 315

averaged over benchmarks and folds. 316

The dashed red curve in Figure 4 also shows the accuracy of Opal for parameter 317

advising with greedy sets computed over an alternate universe of much more 318

fine-grained parameter choices. To construct this alternate universe, we first started 319

with a set of over 16,000 parameter settings, and for each training fold chose the 15 320

parameters with highest average accuracy on each difficulty bin. Unioning these choices 321

across the bins, and removing duplicates, gave a universe of 147 to 150 settings for each 322

fold. Note that the dashed curve for parameter advising with Opal, using greedy sets 323

from these finer universes for each fold, essentially matches the accuracy of general 324

advising at cardinality k ≥ 4. 325

3.2.1 Testing the significance of improvement 326

To test the statistical significance of the improvement in default advising accuracy over 327

using a single default aligner, we used the one-tailed Wilcoxon sign test [35]. Performing 328

this test in each difficulty bin, we found a significant improvement in accuracy 329

(p < 0.05) on benchmarks with difficulty (0.3, 0.4] at all cardinalities 2≤k≤15, and on 330

benchmarks with difficulty at most 0.4 at cardinality 6≤k≤9. 331

We also tested the significance of the improvement of default advising over the best 332

parameter advisor at each cardinality k (namely MUMMALS for k≤4 and Opal for k≥5), 333

and found that at cardinality k≥5 there is again significant improvement (p<0.05) on 334

benchmarks with difficulty (0.3, 0.4]. 335
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Fig 6. Accuracy of aligner advising compared to M-Coffee. The plot shows average
accuracy for aligner advising using Facet, and meta-alignment using M-Coffee, on
oracle sets of aligners. Performance on the default M-Coffee set of six aligners is
indicated by large circles on the dotted vertical line. The horizontal axis is cardinality
of the oracle sets, and the vertical axis is average accuracy on testing data over all
benchmarks and folds under 12-fold cross-validation.

3.2.2 Advising with an alternate estimator 336

We also evaluated in the same way parameter advising and aligner advising on greedy 337

sets using the TCS estimator [15] (the best other estimator for advising from the 338

literature). Figure 5 shows results using TCS for parameter advising (on the four most 339

accurate aligners), and for general and default aligner advising. Note that while TCS is 340

sometimes able to increase accuracy above using a single default parameter, this 341

increase is smaller than for Facet; moreover, TCS often has a decreasing trend in 342

accuracy for increasing cardinality. 343

3.3 Comparing ensemble alignment to meta-alignment 344

Another approach to combining aligners is the so-called meta-alignment approach of 345

M-Coffee [9] (described in Section 1). M-Coffee computes a multiple alignment using 346

position-dependent substitution scores obtained from alternate alignments generated by 347

a collection of aligners. By default, M-Coffee uses the following six aligners: Clustal2, 348

T-Coffee, POA, MUSCLE, MAFFT, Dialign-T [32], PCMA [36], and ProbCons. The tool 349

also allows use of Clustal, Clustal Omega, Kalign, AMAP [37], and Dialign-TX. 350

Figure 6 shows the average accuracy of both M-Coffee and our ensemble approach with 351

Facet, using the default aligner set of M-Coffee (the dotted vertical line with large 352

circles), as well as oracle sets constructed over this M-Coffee universe of 13 aligners. 353

3.4 Advising accuracy within difficulty bins 354

Figure 7 shows advising accuracy within difficulty bins for default aligner advising 355

compared to using the default parameter settings for the three aligners with highest 356
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Fig 7. Accuracy of default aligner advising, and aligners with their default settings,
within difficulty bins. In the bar chart on the left, the horizontal axis shows all ten
benchmark bins, and the vertical bars show accuracy averaged over just the benchmarks
in each bin. The accuracy of default advising using the Facet estimator is shown for
the greedy sets of cardinality k=5, along with the accuracy of the default settings for
Probalign, Opal, and MUMMALS. The bar chart on the right shows accuracy uniformly
averaged over the bins. In parentheses above the bars are the number of benchmarks in
each bin.

average accuracy, namely MUMMALS, Opal, and Probalign. The figure displays the 357

default advising result from Section 3.2 at cardinality k=5. The bars in the chart show 358

average accuracy over the benchmarks in each difficulty bin, as well as the average 359

accuracy across all bins. (The number of benchmarks in each bin is in parentheses 360

above the bars.) Note that aligner advising gives the greatest boost for the 361

hardest-to-align benchmarks: for the bottom two bins, advising yields an 8% increase in 362

accuracy over the best aligner using its default parameter setting. 363

3.5 Generalization of aligner advising 364

The results thus far have shown advising accuracy averaged over the testing data 365

associated with each fold. We now compare the training and testing advising accuracy 366

to assess how our method might generalize to data not in our benchmark set. 367

Figure 8 shows the average accuracy of default and general aligner advising on both 368

training and testing data. Note that the drop between training and testing accuracy is 369

much larger for general advising than for default advising, resulting in general advising 370

performing worse than default advising though its training accuracy is much higher. 371

This indicates that general advising is strongly overfitting to the training data, but 372

could potentially achieve much higher testing accuracy. Additionally, there is a drop in 373

training accuracy for default advising with increasing cardinality, though after its peak 374

an advisor using greedy sets should remain flat in training accuracy as cardinality 375

increases when using a strong estimator. 376
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Fig 8. General and default aligner advising on training and testing data. The plot
shows general and default aligner advising accuracy using Facet. Accuracy on the
training data is shown with dashed lines, and on the testing data with solid lines. The
horizontal axis is cardinality of the advisor set, and the vertical axis is advising accuracy
averaged over all benchmarks and folds under 12-fold cross-validation.

3.6 Theoretical limit on advising accuracy 377

An oracle is an advisor that uses a perfect estimator, always choosing the alignment 378

from a set that has highest true accuracy. To examine the theoretical limit on how well 379

aligner advising can perform, we compare the accuracy of aligner advising using Facet 380

with the performance of an oracle. Figure 9 shows the accuracy of both default and 381

general aligner advising using greedy sets, as well as the performance of an oracle using 382

oracle sets computed on the default and general advising universes. (Recall an oracle set 383

is an optimal advisor set for an oracle.) The plot shows advising accuracy on testing 384

data, averaged over all benchmarks and folds. The large gap in performance between 385

the oracle and an advisor using Facet shows the increase in accuracy that could 386

potentially be achieved by developing an improved estimator. 387

3.7 Composition of advisor sets 388

Table 2 lists the greedy advisor sets for both default and general advising for all 389

cardinalities k ≤ 10. A consequence of the construction of greedy advisor sets is that 390

the greedy set of cardinality k consists of the entries in a column in the first k rows of 391

the table. The table shows these sets for just one fold from the 12-fold cross-validation. 392

For general advising sets, an entry specifies the aligner that is used, and for aligners 393

from the general advising universe, a tuple of parameter values in the order listed in 394

Table 1. The two exceptions are MUMMALS, whose 6-tuple comes from its predefined 395

settings file, and whose last three elements correspond to the three parameters listed in 396

Table 1; and MSAProbs, whose empty tuple stands for its default setting. It is 397

interesting that other than MSAProbs, the general advising set does not contain any 398

aligner’s default parameter settings, though its values are close to the default setting. 399
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Fig 9. Accuracy of aligner advising using a perfect estimator. The plot shows advising
accuracy for default and general aligner advising, both on oracle sets for a perfect
estimator, and on greedy sets for the Facet estimator. The horizontal axis is the
cardinality of the advisor set, and the vertical axis is advising accuracy on testing data
averaged over all benchmarks and folds under 12-fold cross-validation.

Table 2. Greedy Default and General Advising Sets

Default advising General advising

1 MUMMALS MUMMALS (0.2, 0.4, 0.6, 1, 2, 3)
2 Opal Opal (VTML200, 45, 2, 45, 45)
3 Probalign Opal (BLSM62, 70, 3, 45, 42)
4 Kalign MUMMALS (0.15, 0.2, 0.6, 1, 1, 3)
5 MUSCLE Opal (BLSM62, 45, 33, 42, 42)
6 T-Coffee MSAProbs ()
7 PRANK Kalign (55, 8.5, 4.25, 0)
8 Clustal Omega MAFFT (VTML200, 0.7515, 0.492)
9 DIALIGN Opal (BLSM62, 95, 4, 45, 42)

10 ProbCons Opal (BLSM62, 45, 2, 45, 42)
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3.8 Running time for advising 400

We compared the time to evaluate the Facet estimator on an alignment to the time 401

needed to compute that alignment by the three aligners used for determining alignment 402

difficulty: Clustal Omega, MAFFT, and ProbCons. To compute the average running time 403

for these aligners on a benchmark, we measured the total time for each of these aligners 404

to align all 861 benchmarks on a desktop computer with a 2.4 GHz Intel i7 8-core 405

processor and 8 Gb of RAM. The average running time for Clustal Omega, MAFFT, and 406

ProbCons was less than 1 second per benchmark, as was the average running time for 407

Facet. As stated in Section 2.1.2, the time complexity for Facet is linear in the number 408

of columns in an alignment, and should take relatively less time than computing an 409

alignment for benchmarks with long sequences; the standard benchmark suites tend to 410

include short sequences, however, which are fast to align. This time to evaluate Facet 411

does not include the time to predict protein secondary structure, which is done once for 412

the sequences in a benchmark, and was performed using PSIPRED [38] version 3.2 with 413

its standard settings. Secondary structure prediction with a tool like PSIPRED has a 414

considerably longer running time than alignment, due to an internal PSI-BLAST search 415

during prediction; on average, PSIPRED took just under 6 minutes per benchmark to 416

predict secondary structure. 417

3.9 Further research 418

An important question left to explore is how to learn advisor sets that have improved 419

generalization. While greedy advisor sets for general aligner advising achieve very high 420

accuracy on training data, this does not translate to similar accuracy on testing data 421

due to overfitting. Standard techniques from machine learning for improving 422

generalization like regularization do not apply here, as the number of parameters for 423

each aligner and the number of choices in the advisor set are both fixed. Applying this 424

advising framework to DNA and RNA sequence alignment also seems fruitful. 425
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