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Abstract. When aligning biological sequences, the choice of parameter
values for the alignment scoring function is critical. Small changes in gap
penalties, for example, can yield radically different alignments. A rigor-
ous way to compute parameter values that are appropriate for biological
sequences is inverse parametric sequence alignment. Given a collection of
examples of biologically correct alignments, this is the problem of find-
ing parameter values that make the example alignments score close to
optimal. We extend prior work on inverse alignment to partial examples
and to an improved model based on minimizing the average error of the
examples. Experiments on benchmark biological alignments show we can
find parameters that generalize across protein families and that boost the
recovery rate for multiple sequence alignment by up to 25%.

1 Introduction

A fundamental issue in molecular sequence analysis is deciding what parame-
ter values to use when aligning biological sequences. For example, the stan-
dard scoring function for protein sequence alignment requires determining values
for 210 substitution scores and two gap penalties. An interesting approach to
determining these values is inverse parameteric sequence alignment [6,10], where
parameters are set using examples of correct alignments. Informally, inverse
alignment tries to find parameter values that make the examples be optimal-
scoring alignments of their strings. In practice, parameter values rarely exist
that make a collection of biological examples optimal, so the problem becomes
finding values that make the examples score close to optimal. An important
issue is determining what measure of error between the scores of the examples
and the scores of optimal alignments should be optimized.

Recently, Kececioglu and Kim [8] discovered a new method for inverse align-
ment based on linear programming that for the first time could quickly find
values for all 212 parameters in the standard protein sequence alignment model
from hundreds of examples of complete alignments. Their approach minimized
the maximum relative error across the examples. In this paper we extend this
work in three directions: (1) to examples consisting of partial alignments, which
are the type of examples currently available in the standard suites of benchmark
protein alignments, and which consist of incomplete sequence alignments; (2) to
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an improved error model involving minimization of average error across the ex-
amples; and (3) to experimentally study the performance of parameters learned
by inverse alignment in terms of their recovery rate on benchmark alignments.

Related Work. Inverse parametric alignment was introduced in the seminal
paper of Gusfield and Stelling [6]. They considered the problem for two para-
meters and one example, and gave an indirect approach to inverse alignment
that attempted to avoid computing a parametric decomposition of the parame-
ter space. Sun, Fernández-Baca and Yu [10] gave the first direct algorithm for
inverse alignment for the case of three parameters and one example; given two
strings of length n, their algorithm finds parameters that make the example op-
timal in O(n2 log n) time. Kececioglu and Kim [8] gave the first polynomial-time
algorithm for arbitrarily-many parameters and examples; their algorithm finds
parameters that make the examples score as close to optimal as possible in terms
of relative error. As they demonstrated, it is also fast in practice.

The authors recently learned that Eppstein [5] independently discovered a
general approach to inverse parametric optimization that is similar to [8]. Epp-
stein applied it in the context of minimum spanning trees, and considered finding
parameters that make an example tree the unique optimal solution; in the con-
text of biological sequence alignment, however, this rarely has a solution.

Alternate approaches for determining alignment parameters have been re-
cently proposed based on machine learning. Do, Gross and Batzoglou [4] use
discriminative training on conditional random fields to find parameter values for
a hidden Markov model of sequence alignment. Their approach requires solv-
ing a convex numerical optimization problem (which becomes nonconvex in the
presence of partial alignments), and does not provide a polynomial-time guaran-
tee on running time. Yu, Joachims, Elber and Pillardy [12] describe a support-
vector-machine approach for learning parameters to align a protein sequence to
a protein structure. Their approach involves solving a quadratic numerical op-
timization problem with linear constraints, and for the first time incorporates a
measure of alignment recovery directly into the problem formulation.

In contrast to these machine learning approaches, our method for inverse
alignment uses linear programming (which can be solved quickly even for very
large instances) and for the first time we rigorously address partial examples.

Overview. The next section presents several variations of inverse alignment,
with relative or absolute error, and with complete or partial examples. Section 3
reduces these variations to linear programmming, and develops an iterative ap-
proach to partial examples. Finally Section 4 presents results from experiments
on recovering benchmark protein alignments when using learned parameters for
both pairwise and multiple sequence alignment.

2 Inverse Alignment and Its Variations

The conventional sequence alignment problem is, given a pair of strings and a
scoring function f on alignments, find an alignment A of the strings that has
optimal score under f . The inverse alignment problem turns this around: given
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an alignment A of a pair of strings, find parameter values for scoring function f
that makes A be an optimal alignment of its strings. To learn parameter val-
ues that are useful in practice this basic form of inverse alignment, which was
originally studied in [6,10], must be generalized in several directions.

When function f has many parameters, many input alignments A are needed
to determine reliable values for the parameters. Accordingly we consider inverse
alignment where the input is a large collection of example alignments. In prac-
tice there are usually no parameter values that make the example alignments
have optimal score. Consequently we consider finding parameters that make the
examples score near-optimal, and we examine two criteria for measuring the
error between the example scores and the optimal alignment scores: minimiz-
ing relative error or absolute error. Finally, the type of benchmark alignments
that are available in practice for learning parameters actually consist of regions
where the alignment is specified, interspersed with stretches where no alignment
is specified. We call such an input alignment a partial example, since it is only a
partial alignment of its strings. When an example specifies a complete alignment
of its strings, we call it a complete example.

Our approach to inverse alignment from partial examples builds upon a solu-
tion to the problem with complete examples, which we discuss first.

Complete Examples. Inverse alignment from complete examples with arbi-
trarily many parameters was first considered by Kececioglu and Kim [8]. They
examined the relative-error criterion, which we review below.

Let f be the alignment scoring function, which gives score f(A) to align-
ment A. Typically f is a function of several parameters p1, p2, . . . , pt, which as-
sign scores or penalites to various alignment features such as substitutions and
gaps. (For example, the standard scoring model for aligning protein sequences
has 210 substitution scores for all unordered pairs of amino acids, plus two gap
penalties for opening and extending a gap, for a total of t = 212 parameters.)
We view the entire set of parameters as a vector p = (p1, . . . , pt). When we want
to emphasize the dependence of f on its parameters p, we write fp.

The input consists of many example alignments Ai, where each example aligns
a corresponding set of strings Si. (Typically the examples Ai are induced pairwise
alignments that come from a structural multiple alignment; in this case, each Si

contains two strings.) For scoring function f and parameters p, we write f∗
p (Si)

for the score of an optimal alignment of strings Si under fp. The following
definitions assume that an optimal alignment maximizes scoring function f .
(The original formulation [8] was in terms of minimizing f .)

Definition 1 (Complete examples under relative error). Inverse Align-
ment from complete examples under the relative error criterion is the follow-
ing problem. Let the alignment scoring function be fp with parameter vector
p = (p1, . . . , pt) drawn from domain D. The input is a collection of complete
alignments A1, . . . , Ak that respectively align the sets of strings S1, . . . , Sk. The
output is parameter vector x∗ := argminx∈D Erel(x), where

Erel(x) := max
1≤i≤k

f∗
x(Si) − fx(Ai)

f∗
x(Si)

.
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In other words, the output vector x∗ minimizes the maximum relative error of
the alignment scores of the examples. ��

While Erel(x) is not well-defined for f∗
x(Si) ≤ 0, we will avoid this in Section 3.

When scoring function fp is linear in its parameters p, inverse alignment under
relative error can be solved in polynomial time [8] as long as an optimal alignment
can be computed in polynomial time for any fixed parameter choice. We review
the solution in Section 3, which uses a reduction to linear programming. The
above formulation considers the maximum error of the examples, because as we
will see later, minimizing the average relative error would lead to an optimization
problem with nonlinear constraints.

We also consider here a new model: minimizing absolute error. This has the
advantage that we can minimize the average error of the examples and still have
a formulation that is efficiently solvable by linear programming.

Definition 2 (Complete examples under absolute error). Inverse Align-
ment from complete examples under the absolute error criterion is the follow-
ing problem. The input is a collection of complete alignments Ai of strings Si

for 1≤ i≤k. The output is parameter vector x∗ := argminx∈D Eabs(x) where

Eabs(x) :=
1
k

∑

1≤i≤k

(
f∗

x(Si) − fx(Ai)
)
.

Output vector x∗ minimizes the average absolute error of the example scores. ��

A key issue in the above formulations of inverse alignment is that the problem
is degenerate. In both formulations, the trivial parameter choice x = (0, 0, . . . , 0)
is an optimal solution (as it makes every alignment, including the example, be
an optimal alignment). This trivial solution must be ruled out in an application-
specific manner that depends on the particular form of the alignment problem
being considered. Section 3 presents a new approach for avoiding degeneracy
that applies to both global and local alignment of protein sequences.

Partial Examples. For inverse alignment of protein sequences, the best ex-
ample alignments that are available come from multiple alignments of protein
families that are determined by aligning the three-dimensional structures of fam-
ily members. Several suites of such benchmark alignments are now available [1]
and are widely used for evaluating the accuracy of software for multiple align-
ment of protein sequences. Most all these benchmark alignments, however, are
partial alignments. The benchmark alignment has regions that are reliable and
where the alignment is specified, but between these regions the alignment of the
strings is effectively left unspecified. These reliable regions are usually the core
blocks of the multiple alignment, which are gapless sections of the alignment
where structure is conserved across the family.

For our purposes a partial example is an alignment A of strings S where each
column of A is labeled as being either reliable or unreliable. A complete example
is a partial example whose columns are all labeled reliable.
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When learning parameters by inverse alignment from partial examples, we
treat the unreliable columns as missing information: such columns do not spec-
ify the alignment of the strings. Given a partial example A for strings S, a
completion A of A is a complete example for S that agrees with the reliable
columns of A. In other words, a completion A can change A on the substrings
that are in unreliable columns, but must not alter A in reliable columns.

We define inverse alignment from partial examples as the problem of finding
the optimal parameter choice over all possible completions of the examples.

Definition 3 (Partial examples). Inverse Alignment from partial examples
is the following problem. The input is a collection of partial alignments Ai of
strings Si for 1≤ i≤k. The output is parameter vector

x∗ := argmin
x∈D

min
A1,...,Ak

E(x),

where error function E is either Eabs or Erel. In other words, vector x∗ minimizes
the error of the example scores over all completions of the partial examples. ��

In the next section we reduce inverse alignment from complete examples to linear
programming, and approach the problem with partial examples by solving a
series of problems on complete examples.

3 Solution by Linear Programming

When the alignment scoring function fp is linear in its parameters p, inverse
alignment from complete examples under relative error can be reduced to lin-
ear programming [8], and a similar reduction applies to absolute error. We
define a linear scoring function as follows. Suppose f scores an alignment A
by measuring t+1 features of A through functions g0, g1, . . . , gt and combines
these measures into one score through a weighted sum involving parameter vec-
tor p = (p1, . . . , pt) by fp(A) := g0(A) +

∑
1≤i≤t pi gi(A). Then we say f is

linear in parameters p1, . . . , pt.
For example, in the standard scoring model for alignment of protein sequences,

for every unordered pair a, b of amino acids there is a substitution score σab, plus
gap penalty γ for opening a gap and penalty λ for extending a gap. This gives
a scoring function with 212 parameters σab, γ, λ for the alphabet of 20 amino
acids. The functions gab count the number of substitutions of each type a, b in A,
and functions gγ and gλ count the number of gaps and the total length of all
gaps in A.

Complete Examples. As described in [8], for inverse alignment from complete
examples with relative error, we first consider the problem assuming a fixed
upper bound ε on the relative error. For a given bound ε, we test whether there
is a feasible solution x with relative error at most ε by solving a linear program.
We then find the smallest ε∗, to a given accuracy, for which there is a feasible
solution using binary search on ε. The feasible solution x∗ found at bound ε∗ is
an optimal solution to inverse alignment under relative error.
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We briefly summarize this linear programming approach for the standard
model of protein sequence alignment. The parameters of the scoring function
are the variables of the linear program. The domain D of the parameters is de-
scribed by the inequalities (−1, 0, 0) ≤ (σab, γ, λ) ≤ (1, 1, 1). When the alignment
problem is to maximize the score f of an alignment, substitution scores σab are
usually allowed to be both positive and negative, and parameter values can al-
ways be rescaled so the largest magnitude hits 1 without changing the alignment
problem. We also add the inequalities σab ≤ σaa for all a �= b, since an identity
should score better than any substitution involving that letter. To ensure relative
error Erel(x) is well-defined, we constrain fx(Ai) ≥ 0 for all examples.

For the relative error criterion, the remaining inequalities in the linear pro-
gram enforce that the relative error of all examples is at most ε. For each exam-
ple Ai, and every alignment Bi of strings Si, the linear program has an inequality

fx(Ai) ≥ (1 − ε) fx(Bi).

Notice that for a fixed value of ε, this is a linear inequality in parameters x,
since function fx is linear in x. Example Ai satisfies all these inequalities iff the
inequality with Bi = B∗ is satisfied, where B∗ is an optimal-scoring alignment
of Si under parameters x. In other words, the inequalities are all satisfied iff
the score of Ai has relative error at most ε under fx. Finding the minimum ε
for which this system of inequalities has a feasible solution x corresponds to
minimizing the maximum relative error of the example scores.

This linear program has an exponential number of inequalities, since for an
example Ai there are exponentially-many alignments Bi of Si (in terms of the
lengths of the strings). Nevertheless, this program can be solved in polynomial
time using a far-reaching result from linear programming theory. This result,
known as the equivalence of optimization and separation [2], states that one
can solve a linear program in polynomial time iff one can solve the separation
problem for the linear program in polynomial time. The separation problem is,
given a possibly infeasible vector x̃ of parameter values, to report an inequality
from the linear program that is violated by x̃, or to report that x̃ satisfies the
linear program if there is no violated inequality.

We can solve the separation problem in polynomial time for the above linear
program by the following algorithm. Given a vector x̃ of parameter values, for
each example Ai we compute an optimal-scoring alignment B∗ of Si under fx̃.
If the above inequality is satisfied when Bi = B∗, the inequalties are satisfied for
all Bi, and if the above inequality is not satisfied for B∗, this gives the requi-
site violated inequality. For a problem with k examples, solving the separation
problem involves computing at most k optimal alignments.

In practice, this leads to the following cutting plane algorithm [2] for solving
a linear program consisting of inequalities L.

(1) Start with a small subset P of the inequalities in L.
(2) Compute an optimal solution x̃ to the linear program given by subset P .

If no such solution exists, halt and report that L is infeasible.
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(3) Call the separation algorithm for L on x̃. If the algorithm reports that x̃
satisfies L, output x̃ and halt: x̃ is an optimal solution for L.

(4) Otherwise, add the violated inequality returned by the separation algo-
rithm in Step (3) to P , and loop back to Step (2).

While such cutting plane algorithms are not guaranteed to terminate in polyno-
mial time, they can be fast in practice [8]. For inverse alignment, we start with
subset P containing just the trivial inequalities that specify parameter domain D.

For the absolute error criterion, we modify the linear program as follows. For
each example Ai we have an additional error variable δi. The inequalities for
each example Ai are replaced by

fx(Ai) ≥ fx(Bi) − δi.

Finally, the objective function for the linear program is to minimize
∑

i δi. An
optimal solution x∗ to this linear program gives a parameter vector that mini-
mizes the average absolute error of the example scores. Again the program has
exponentially-many inequalities, but the same separation algorithm that com-
putes an optimal alignment B∗ solves the separation problem in polynomial time,
so in principle the linear program can be solved in polynomial time. In practice
we use a cutting plane algorithm as described above.

Partial Examples. Inverse alignment from partial examples involves optimiz-
ing over all possible completions of the examples. While for partial examples we
do not know how to efficiently find an optimal solution, we present a practical
iterative approach which as demonstrated in Section 4 finds a good solution.

Start with an initial completion A(0)
i for each partial example Ai. These initial

completions may be formed by computing alignments of the unreliable regions
that are optimal with respect to a default parameter choice x(0). (In practice
for x(0) we use a standard substitution matrix [7] with appropriate gap penal-
ties.) Alternately, an initial completion may be trivially obtained by taking the
alignment of the unreliable regions in the partial example as the completion.

We then iterate the following for j = 0, 1, . . .. Compute an optimal para-
meter choice x(j+1) by solving the inverse alignment problem on the complete
examples A(j)

i . Given x(j+1), form a new completion A(j+1)
i of Ai by (1) com-

puting alignments of the unreliable regions that are optimal with respect to
parameters x(j+1), and (2) concatenating them to form a complete example.
Such a completion optimally stitches together the reliable regions of the partial
example, using the current estimate for parameter values. This iterative scheme
repeatedly solves inverse alignment using improved complete examples. As the
following result shows, each iteration yields a better parameter estimate.

Theorem 1 (Error convergence for partial examples). For the iterative
scheme for inverse alignment from partial examples, denote the error in score
for iteration j ≥ 1 by ej := E

(
x(j)

)
, where E is error criterion Eabs or Erel

measured on completions A(j−1)
i . Then
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e1 ≥ e2 ≥ · · · ≥ e∗,

where e∗ is the optimum error for inverse alignment from partial examples Ai.

Proof sketch. Since A(j)
i is an optimal-scoring completion of Ai with respect

to parameters x(j),

fx(j)

(
A(j)

i

)
≥ fx(j)

(
A(j−1)

i

)
.

This implies that with respect to the new complete examples A(j)
i , the old pa-

rameters x(j) are still feasible at error ej . So for the new examples, error ej is
achievable. Since the optimum error ej+1 for the new examples cannot be worse,
ej+1 ≤ ej . Furthermore e∗ lower bounds the error for all completions. ��

By the above result, the error of the iterative scheme converges, though it may
converge to a value larger than the optimum error e∗. As shown in Section 4,
choosing a good initial completion can reduce the error. In practice we iterate
this scheme until the improvement in error becomes too small or a bound on the
number of iterations is reached. Moreover as the error improves across iterations,
recovery of the examples generally improves as well.

Eliminating Degeneracy. To eliminate the degenerate solution x = (0, . . . , 0)
we use the following approach. When the alignment problem is to maximize scor-
ing function f , substitution scores σab are typically both positive and negative,
where a positive score indicates letters a, b are similar, and a negative score indi-
cates they are dissimilar. For the σab to be appropriate for local alignment, the
expected score of a substitution in an alignment of two random strings should
be strictly negative. (Otherwise, extending a local alignment by concatenating
columns tends to increase its score, so an optimal local alignment degenerates
into a trivial global alignment that substitutes as much as possible.) Similarly for
global alignment, this expected score should be negative so random substitutions
are considered dissimilar.

Let threshold τ be the expected score of a random substitution for a de-
fault substitution scoring matrix. Values of τ for commonly-used BLOSUM [7]
and PAM [3] substitution matrices at standard amino acid frequencies are shown
below, where each matrix has been scaled so its scores lie in interval [−1, 1].

BLOSUM45 BLOSUM62 BLOSUM80 PAM250 PAM160 PAM120
τ −0.056 −0.091 −0.136 −0.050 −0.056 −0.138

Note that as the percent identity value for the matrix increases (corresponding
to increasing BLOSUM or decreasing PAM numbers), threshold τ gets more negative.

To eliminate degeneracy, we add to the linear program the inequality
∑

a

q2
a σaa +

∑

a,b : a�=b

2 qaqb σab ≤ τ,
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Table 1. Dataset characteristics. For sets U , P , Q, and S of PALI benchmarks, the table
reports the number of benchmarks in each set, and averaged across its benchmarks,
their number of strings, their string length, and the percent identity of their induced
pairwise alignments. Also shown averaged for the core blocks, or reliable regions of the
benchmarks, are their percent coverage of the strings and their percent identity.

core blocks
Datasets benchmarks strings length identity coverage identity

U 102 14 239 29.1 40.4 35.8
P 51 15 239 29.7 41.0 37.1
Q 51 12 239 28.1 39.9 33.8
S 25 20 245 27.4 33.2 33.5
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Fig. 1. Improvement in recovery and error for the iterative approach to partial exam-
ples. Each curve shows either the recovery or error across the iterations starting from
a given initial completion. Recovery is the percentage of columns from reliable regions
that are present in an optimal alignment computed using the estimated parameters.
Results are plotted for two initial completions: the default, which aligns the unreliable
regions using default parameters, and the trivial, which takes all columns of the partial
alignment including unreliable ones. The set of examples for the curves is all induced
pairwise alignments of the PALI benchmark with SCOP identifier b.1.8.1.

where qa is the probability of amino acid a appearing in a random protein se-
quence. This forces the optimal solution x∗ of the linear program to be as nonde-
generate as the default substitution matrix from which τ was measured. (In our
experiments we use the τ value of BLOSUM62.) When τ is negative, which holds for
standard scoring schemes, this inequality cuts off the trivial solution (0, . . . , 0).

4 Experimental Results

To evaluate the performance of this approach to inverse alignment, we ran several
types of experiments on biological data. For the examples, we used benchmark
alignments from the PALI [1] suite of structural multiple alignments of proteins.
For each family from the SCOP [9] classification of protein families, PALI contains
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Table 2. Recovery rates for variations of inverse alignment. For PALI benchmarks in
set S, the table reports the average recovery rate across the examples, which are all
induced pairwise alignments of the benchmark. Recovery is measured using the learned
parameters to either compute optimal pairwise alignments of the example strings, or
to compute a multiple alignment of the benchmark strings using the tool Opal [11].
Parameters are learned under the absolute or relative error criteria. Recovery is also
shown for pairwise alignments computed using the BLOSUM62 substitution matrix with
learned gap penalties, and for multiple alignments computed with Opal using its default
parameters, which are BLOSUM62 with carefully-chosen gap penalties. To save space we
do not list every benchmark, but the average row is across all benchmarks in S. The
relative-error binary search is to a precision of 0.01%. When parameters are used for
alignment they are rounded to an integer scale of 100.

SCOP Pairwise alignment Multiple alignment
identifier absolute relative BLOSUM62 default absolute
c.95.1.1 47.8 34.3 39.0 45.2 70.1
e.3.1.1 50.6 33.1 46.2 66.6 77.4
c.95.1.2 69.4 32.9 46.8 64.9 82.9
d.32.1.3 56.6 38.9 45.4 64.3 84.7
a.127.1.1 73.1 47.5 71.1 82.9 89.8
a.104.1.1 80.0 69.0 80.7 89.6 90.7
d.54.1.1 67.4 54.3 51.9 70.4 91.7
b.43.3.1 76.0 57.2 58.6 82.2 93.4
d.81.1.1 85.6 67.8 69.2 85.2 98.4
b.1.8.1 91.0 85.9 79.2 89.6 98.6
average 78.6 64.9 68.3 82.3 91.5

a multiple alignment of the sequences of the family members, computed by
aligning their three-dimensional structures. In total, PALI has 1655 benchmark
alignments, from which we selected a subset U of 102 benchmarks consisting
of all alignments with at least 7 sequences that have nontrivial gap structure.
We also perform a detailed study of a smaller subset S ⊂ U containing the
25 benchmarks with the most sequences. Set U was also partitioned into two
equal-size subsets P, Q for the purpose of conducting training-set/test-set cross-
validation experiments. Table 1 summarizes the characteristics of these datasets.
Each of these PALI benchmarks consists of partial (not complete) examples.

Figure 1 illustrates the improvement in error for the iterative approach to
partial examples discussed in Section 3. As the error in alignment scores improves
across the iterations, the recovery of the example alignments tends to improve
as well. Generally, smaller error correlates with higher recovery.

Table 2 shows a detailed comparison of recovery rates from different scenarios
for inverse alignment. Parameters are learned from all induced pairwise align-
ments in a given PALI benchmark, and are applied to the strings in the same
benchmark, either to compute pairwise alignments or a multiple alignment of
the strings. A key conclusion from this comparison is that the absolute error
criterion substantially outperforms the relative error criterion with respect to
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Table 3. Recovery rates for cross validation experiments on training and test sets. Pa-
rameters learned on training sets �U, �P , �Q using the absolute error criterion are applied
to test sets U, P, Q. For a generic set X of PALI benchmarks, the examples in training
set �X are a subset of the induced pairwise alignments of the benchmarks in X. Set �X
contains pairwise alignments selected by their recovery rate in a multiple alignment
of the benchmark computed with Opal using default parameters. Set �X selects one
alignment of median rank from each benchmark, together with a sample of alignments
that occur at equally-spaced ranks in the union of the benchmarks in X. Parameters
from a given training set were used in Opal to compute multiple alignments of the
benchmarks in the test set, and the table reports the average benchmark recovery.

Training set characteristics Test set recovery
dataset examples identity U P Q

�U 204 33.1 83.4 84.8 82.0
�P 153 34.5 82.9 86.1 82.2
�Q 153 31.9 82.8 84.4 81.2

recovery of example alignments. When used for pairwise alignment, the parame-
ters learned using absolute error outperform the standard BLOSUM62 [7] matrix
in recovery by up to 20%; when used for multiple alignment in the tool Opal [11],
which scores alignments under the sum-of-pairs objective, they outperform the
default parameters of Opal in recovery by up to 25%. Also note that the recovery
rates of parameters when used for multiple alignment are generally much higher
than when used for pairwise alignment. In short by performing inverse alignment
from partial examples one can learn parameters for multiple sequence alignment
that are tailored to a given protein family and that yield very high recovery.

Finally, Table 3 presents recovery results from cross validation experiments.
Parameters learned on sparse training sets using the absolute error criterion are
applied to full test sets. Their recovery is measured when computing multiple
sequence alignments of the benchmarks in the test sets using the learned pa-
rameters within Opal. Note there is only a small difference in recovery when
parameters are applied for multiple sequence alignment to disjoint test sets,
compared to their recovery on their training set. This suggests that the absolute
error method is not overfitting the parameters to the training data.

To give a sense of running time, performing inverse alignment on a given
training set involved around 6 iterations for completing partial examples and
took about 4 hours total on a 3.2 GHz Pentium 4 with 1 GB of RAM. An
iteration took roughly 40 minutes and required around 4,000 cutting planes.

5 Conclusion

We have explored a new approach to inverse parametric sequence alignment
that for the first time carefully treats partial examples. The approach minimizes
the average absolute error of alignment scores, and iterates over completions of
partial examples. We also studied for the first time the performance of learned
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parameters when used for multiple sequence alignment, and showed that a sub-
stantial improvement in alignment accuracy can be achieved on individual pro-
tein families. Furthermore our results suggest that parameters learned across a
sampling of protein families generalize well to other families.

Further Research. Inverse alignment can be extended in several directions:
to more general models of protein sequence alignment that use an ensemble of
hydrophobic gap penalties [4], to formulations that directly incorporate example
recovery [12], and to formulations that use regularization to improve parameter
generalization [4,12].
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