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Preface

The problem of aligning multiple protein sequences is essential to many bi-
ological analyses, but most standard formulations of the problem are NP-
complete. Due to both the difficulty of the problem and its practical impor-
tance, there are many heuristic multiple sequence aligners that a researcher
has at their disposal. A basic issue that frequently arisesis that each of these
alignment tools has a multitude of parameters that must be set, and which
greatly affect the quality of the alignment produced. Most users rely on the
default parameter setting that comes with the aligner, which is optimal on
average, but can produce a low-quality alignment for the given inputs.

This book develops an approach called parameter advising to find a pa-
rameter setting that produces a high-quality alignment for each given input.
A parameter advisor aligns the input sequences for each choice in a collection
of parameter settings, and then selects the best alignment from the resulting
alignments produced. A parameter advisor has two major components: (i)
an advisor set of parameter choices that are given to the aligner, and (ii) an
accuracy estimator that is used to rank alignments produced by the aligner.

Alignment accuracy is measured with respect to a known reference align-
ment, in practice a reference alignment is not available, and we can only
estimate accuracy. We develop a new accuracy estimator that we call called
Facet (short for “feature-based accuracy estimator”) that computes an ac-
curacy estimate as a linear combination of efficiently-computable feature
functions, whose coefficients are learned by solving a large scale linear pro-
gramming problem. We also develop an efficient approximation algorithm
for finding an advisor set of a given cardinality for a fixed estimator, whose
cardinality should ideally small, as the aligner is invoked for each parameter
choice in the set.

Using Facet for parameter advising boosts advising accuracy by almost
20% beyond using a single default parameter choice for the hardest-to-align
benchmarks.

This book further applies parameter advising in two ways: (i) to ensem-
ble alignment, which uses the advising process on a collection of aligners to
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choose both the aligner and its parameter settings, and (ii) to adaptive local
realignment, which can align different regions of the input sequences with
distinct parameter choices to conform to mutation rates as they vary across
the lengths of the sequences.
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Chapter 1
Introduction and Background

Overview

While multiple sequence alignment is an essential step in many biological
analyses, all of the standard formulation of the problem are NP-Complete.
As a consequence, many heuristic aligners are used in practice to construct
multiple sequence alignments. Each of these aligners contains a large num-
ber of tunable parameters that greatly affect the accuracy of the alignment
produced. In this chapter, we introduce the concept of a parameter advi-
sor, which selects a setting of parameter values for a particular set of input
sequences.

1.1 Introduction

The problem of aligning a set of protein sequences is a critical step for
many biological analyses, including creating phylogenetic trees, predicting
secondary structure, homology modeling of tertiary structure, and many oth-
ers. One issue is that while we can find optimal alignments of two sequences
in polynomial time [76], all of the standard formulations of the multiple se-
quence alignment problem are NP-complete [58, 104]. Due to the importance
of multiple sequence alignment and its complexity, it is an active field of
research.

A multiple sequence alignment of set of sequences {S7,S55...,5k} is a k
by ¢ matrix of characters, where row 7 in the matrix contains the char-
acters of sequence S;, in order, possibly with gap characters inserted. The
length of the alignment ¢ is at least the length of the longest sequence, so
£ > maxi<;<i{|Si|}. Characters from two sequences are said to be aligned
when they appear in the same column of the alignment. When the two
aligned characters are the same, the pair is called an identity otherwise it
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is a mismatch. In general, identities and mismatches are both called substi-
tutions. The unweighted edit distance between two sequences is defined as
the minimum number single-character edits to transform one sequence into
the other. The edit value of an alignment is its total number of inserted
gap characters and mismatches. For two sequences, you can find the opti-
mal alignment of minimum value using dynamic programming [76]. Finding
an optimal alignment of more than two sequences is NP-Complete [104]. For
multiple sequence, alignment many heuristic approaches have been developed
that typically use one of two common objectives. The sum-of-pairs score
(SPS) of a multiple sequence alignment is the sum of the values of induced
pairwise alignments Alternately, the tree-alignment objective, is the sum of
pairwise alignment values align all of the branches of an input phylogenetic
tree, minimized over all possible choices of ancestral sequence.

The number of alignment tools tools, or aligners, available for finding
multiple sequence alignments continues to grow because of the need for high
quality alignments. Many methods have been published that produce mul-
tiple sequence alignments using various heuristic strategies to deal with the
problem’s complexity. The most popular general method is progressive align-
ment which aligns sequences using a guide tree (a binary tree where the leaves
are the input sequences, [42]). Starting with two neighboring leaves a progres-
sive aligner will optimally align these two sequences and replace the subtree
that contained only these sequences by the alignment of the two sequences.
The progressive alignment method then repeats the process proceeds in a
bottom up manner aligning two of the remaining leaves (but some leaves
may now contain sub-alignments). In this way a progressive aligner is only
ever aligning two sequences, or alignments, to each other. This strategy has
been used successfully for general alignment methods such as Clustal [98],
MAFFT [55], Muscle [38,39], Kalign [66], and Opal [106]. Additionally, pro-
gressive alignment strategies have also been successfully applied to specialized
alignment tools such as those for whole genome alignment like mauve [22]
those for RNA specific alignment like PMFastR [24, 25| and mLocARNA [110].
Other aligners use consistency information from a library of two-sequence
alignments; such as T-Coffee [77], or collect sequence information into an
HMM, as in PROMALS [83]. For most of the studies presented in this book,
we focus on the Opal aligner, but will later consider other aligners.

For the user, choosing an aligner is only a first step in producing a multi-
ple sequence alignment for analysis. Each tool has a set of parameters whose
values can greatly impact the quality of the computed alignment. The align-
ment parameters for protein sequences typically consist of the gap-open
and gap-extension penalties, as well as the choice of substitution penalties
for each pair of the 20 amino acids, but the available tunable parameters
can differ greatly between aligners. A parameter choice for an aligner is
an assignment of values to all of the alignment parameters. Work has been
done [60] to efficiently find the optimal parameter choices for an aligner that
yields the highest accuracy alignments on average across a set of training
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benchmarks. This particular parameter choice would be the optimal default
parameter choice. While such a default parameter works well in general, it
can produce very low accuracy alignments for some benchmarks. Figure 1.1
shows the effect of aligning the same set of five sequences under two different
alignment parameter choices, one of which is the optimal default choice.
Setting the 214 parameters for the standard protein alignment model is
made easier by the fact that amino acid substitution scores are well studied.
Generally one of three substitution matrix families is used for alignment:
PAM [23], BLOSUM [49], and VTML [75], but others also exist [63]. Recent work
has shown that the highest-accuracy alignments are generally produced using
BLOSUM and VTML matrices, so these are the only ones we consider [40].

dlgvoa 203 ... gsvenrarlvlevvdavcnewsad-RIGIRVSPigtfgnvdngpnee--adalyl--- ... 255
d2dora 141 ... ydfeatekllke----- vitfftk-PLGVKLPPyf--——--—-—-—-——-—-———-—— dlvhfdim ... 178
dloyb 215 ... gsienrarftlevvdalveaighe-KVGLRLSPygvfnsmsggaetgivaqyayvage ... 272
dlo94al 193 ... gslenrarfwletlekvkhavgsdcAIATRFGV----—-——-———-—————— dtvygpgqg ... 234
dlep3a 147 ... tdpevaaalvka----- ckavskv-PLYVKLSPnvt-—--—--——-—-———-—— divpiaka ... 185

(a) Higher Accuracy Alignment

dlgvoa 184 ... yl-lhgflspssngrtdgyggsvenrarlvlevvdavcnewsad-RIGIRVSPigtfg ... 240
d2dora 159 ... kP-LGVKLPPyf--dlvhfdimaeilngfpltY¥VNSV-nsig----nglfidpeaesv ... 209
dloyb 196 ... yl-lngfldphsntrtdeyggsienrarftlevvdalveaighe-KVGLRLSPygvfn ... 252
dlo94al 174 ... yl-plgflnpyynkrtdkyggslenrarfwletlekvkhavgsdcAIATRF---GVdt ... 228
dlep3a 164 ... kvPLYVKLSPnv-tdivpiakaveaagadGLTMIntl--------- mgvrfdlktrgp ... 212

(b) Lower Accuracy Alignment

Fig. 1.1 (a) Part of an alignment of benchmark sup_155 from the SABRE [102] suite
computed by Opal [106] using non-default parameter choice (VIML200, 45, 6,40, 40);
this alignment has accuracy value 75.8%, and Facet [56] estimator value 0.423.
(b) Alignment of the same benchmark by Opal using the optimal default parame-
ter choice (BLSM62,65,9,44,43); this alignment has lower accuracy 57.3%, and lower
Facet value 0.402. In both alignments, the positions that correspond to core blocks
of the reference alignment, which should be aligned in a correct alignment, are high-
lighted in bold.

We attempt to select a parameter choice that is best for a given input set
of sequences (rather than on average) using an approach we call parameter
advising, which we describe in the next section.

1.2 Parameter advising

The true accuracy of a computed alignment is measured as the fraction of
substitutions that are also present in core columns of a reference alignment
for these sequences. (Reference alignments represent the “correct” alignment
of the sequences.) These reference alignments for protein sequences are typi-
cally constructed by aligning the three-dimensional structures of the proteins.
Core columns of this reference alignment, on which we measure accuracy,
are those sections where the aligned amino acids from all of the sequences are
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all mutually close in three-dimensional space. Figure 1.2 shows an example
of computing true accuracy for a computed alignment.

What we have described and use throughout this book is the sum-of-
pairs definition of alignment accuracy. Another definition of multiple sequence
alignment accuracy is known as “total-column” accuracy. The total-column
accuracy is the fraction of core columns from the reference multiple sequence
alignment that are completely recovered in the computed alignment. For the
example in Figure 1.2 the sum-of-pairs accuracy is 66%, but the total-column
accuracy is only 50%. Even though there is only one out of place amino acid
in the alignment on the right that is from a core columns this means the
whole column is misaligned; therefore, only one of the two core columns is
recovered in the computed alignment. While arguments can be made for the
merits of both the total-column and sum-of-pairs accuracy measurements,
the total-column measure is more sensitive to small errors in the alignment.
This is why we use the more fine-grained sum-of-pairs measure in this book.

DE DE
SR SR
SH S-H

(a) Reference alignment (b) Computed alignment

(ii)

Fig. 1.2 A section of a reference and computed alignment. Accuracy of a computed
alignment (b) is measured with respect to a known reference alignment (a). We pri-
marily use the sum-of-pairs accuracy measure which is the fraction of aligned residues
from the computed alignment recovered in the computed alignment. In the example
above the aligned residue pair (i) is correctly recovered, while (ii) is not. This value
is calculated only on core columns of an alignment (shown in red). In the example
the accuracy is 66%, because 4 of the 6 aligned residue pairs in core columns of the
reference alignment are recovered in the computed alignment.

In the absence of a known reference alignment, we are left to estimate the
accuracy of a computed alignment. Estimating the accuracy of a computed
multiple sequence alignment (namely, how closely it agrees with the correct
alignment of its sequences), without actually knowing the correct alignment,
is an important problem. A good accuracy estimator has very broad util-
ity: for example, from building a meta-aligner that selects the most accurate
alignment output by a collection of aligners, to boosting the accuracy of a
single aligner by choosing values for the parameters of its alignment scoring
function to yield the best output from that aligner.

Given an accuracy estimator F, and a set P of parameter choices, a pa-
rameter advisor A tries each parameter choice p € P, invokes an aligner
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to compute an alignment A, using parameter choice p, and then “selects”
the parameter choice p* that has maximum estimated accuracy E(A,-). Fig-
ure 1.3 shows a diagram of the parameter advising process.

unaligned

sequences qMKFGLFFLFDTLAVyenhfsnngvvldamsegrfafhkiindafttgychpnnd
MKFGNFLLFDTVWLlehhftefgllldgmskgrfrfydlmkegfnegyiaadne
mtkKWNYGVFFLYDVVAFsehhidksyn
mnkWNYGVFFVYDVINIddhvlvkkds

( . A
Parameter Advisor
> . —.> accuracy
Allgner H - Accuracy —> cstimate g,
aignment] & | Estimator |-} ! N
n —> )_> alignment
(Ye,Y1,AE,A1,0) labelled
parameter alternate alternate
\_ choices alignments alignments )
aligned K PONFLLEDTVRLIchh £oefa111ame ks £ £yineqtneariasine | g
sequences mt kWNYGVFFLYDVVAFsehhidksyn Y
mnkWNYGVFFVYDVINIddhvlvkkd

Fig. 1.3 Overview of the parameter advising process. For the Opal aligner a
parameter choice consists of gap penalties vg,v1, A, A\ as well as the substitution
scoring matrix o. A candidate alignment is generated for each parameter choice, so the
advisor set should be small. An accuracy estimator labels each candidate alignment
with an accuracy estimate. Finally, the alignment with the highest estimated accuracy
is chosen by the advisor.

An advisor has two crucial elements:

(1) the advisor estimator which estimates the accuracy of a com-
puted alignment, and which the advisor will use to choose between
alternate alignments, and

(2) the advisor set, which is the set of parameter choices that is tried
by to the aligner to produce the alternate alignments that the ad-
visor will choose among.

We say that an advisor’s accuracy on a set of input sequences is the true
accuracy of the alignment obtained using the parameter choice selected from
the advisor set ' with highest estimated accuracy.

We develop a new advisor estimator we call Facet (feature-based
accuracy estimator) in Chapters 2 and 3. Our accuracy estimator is a lin-
ear combination of efficiently-computable feature functions. We describe the
framework for the estimator and the methods for finding its coeflicients in
Chapter 2. We find the estimator coefficients using mathematical optimiza-



6 1 Introduction and Background

tion, linear programming (LP), to identify coefficients that when used in
the estimator can distinguish high accuracy alignments from low. The fea-
ture functions are measures of some aspect of an alignment that is easily
computable and has a bounded value. iThe description of how to use lin-
ear programming to find an estimator as well the description of the feature
functions used in Facet are described in Chapter 3.

To create a parameter advisor we also need to be able to find advisor sets
that are of small cardinality (since the advisor will invoke the aligner for each
of the parameter choices in the set) and give the best advising accuracy. An
advisor set is a subset of the parameter universe, which is the enumeration
of all possible combinations of settings for all of the parameters. We find
advisor sets both for the oracle estimator (one that always returns the true
accuracy of an alignment) and for a fixed estimator in Chapter 5. While find-
ing optimal advisor sets is NP-complete, we can find optimal sets of constant
cardinality in polynomial time using exhaustive search. To find advising sets
of any cardinality we give a polynomial-time %-appro:cimation algorithm
for finding an advisor set of cardinality k when provided an initial optimal
solution of constant size ¢ < k.

The problem of finding an optimal advisor is to simultaneously find the
advisor set and advisor estimator that together yield a parameter advisor
with the highest possible advising accuracy. This problem can be formulated
as an integer linear program (ILP), which can be restricted to find optimal
advisor sets for a fixed estimator, or an optimal advisor estimator for a fixed
set. Solving the ILP is intractable in practice, even for very small training
sets and using the restrictions described. Finding the optimal advisor is NP-
complete (see Chapter 4), as are the problems of finding an optimal advisor,
and an optimal estimator (the two restrictions to the ILP).

To learn an advisor, we collect a training set of example alignments whose
true accuracy is known, and find estimator coefficients, and advising sets for
the estimator, that give the best advising accuracy. We form the training set
by:

(1) collecting reference alignments from standard suites of benchmark
protein multiple alignments;

(2) for each such reference alignment, calling a multiple sequence
aligner on the reference alignment’s sequences with all parameter
choices in the universe, producing a collection of alternate align-
ments; and

(3) labeling each such alternate alignment by its true accuracy with
respect to the reference alignment for its sequences.

We use suites of benchmarks for which the reference alignments are obtained
by structural alignment of the proteins using their known three-dimensional
structures. The alternate alignments together with their labeled accuracies
form the examples in our training set. Chapter 6 describes these examples
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in detail and experimentally demonstrates the increase in accuracy resulting
from using our new advisor.

Chapters 7 and 8 show results on using the advising process for ensem-
ble alignment (choosing both an aligner and its parameters in Chapter 7),
and adaptive local realignment (realigning regions under different parameter
choices in Chapter 8).

Since true accuracy is only measured on the core columns of an alignment
identifying these columns could boost the accuracy of our estimator and
hence our advisor. Chapter 9 describes a method to predict how much of
a column in a computed alignment is from core columns of an unknown
reference alignment, using a variant of nearest neighbor classification.

Finally, Chapter 10 provides a summary of our work and future directions
for research.

1.3 Survey of related work

Parameter advising as described earlier can be called a posteriori advising:
that is, advising on a parameter choice after seeing the resulting computed
alignments. To our knowledge this is the first successful method for selecting
alignment parameter values for a given input by choosing among computed
alignments.

Work related to parameter advising can be divided into four major cate-
gories:

(i) accuracy estimation, which attempts to provide a score for an
alignment, similar to the score produced by Facet,

(ii) a priort advising which attempts to predict good parameter val-
ues_for aligner from unaligned sequences as apposed to examining
alignment accuracy after an alignment is generated,

(iii) meta-alignment, which takes the output of multiple alignment
methods that are known to work well, and combines together seg-
ments of those alignments, and

(iv) column confidence scoring, which gives a confidence score to
each column in an alignment rather than the alignment as a whole,
and can be used to exclude low-confidence regions of the alignment
from further analysis.

Work from each of these categories is described below.
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1.3.1 Accuracy estimation

Several approaches have been developed for assessing the quality of a com-
puted alignment without knowing a reference alignment for its sequences.
These approaches follow two general strategies for estimating the accuracy
with which a computed alignment recovers the unknown correct alignment.!

The first general strategy, which we call scoring-function-based, is to
develop a new scoring function on alignments that ideally is correlated with
accuracy [see 1, 2, 78, 81, 99]. These scoring functions combine local at-
tributes of an alignment into a score, and typically include a measure of the
conservation of amino acids in alignment columns [1, 81].

The second general strategy, which we call support-based, is to:

(a) examine a collection of alternate alignments of the same sequences,
where the collection can be generated by changing the method used
for computing the alignment, or by changing the input to a method;
and then

(b) measure the support for the original computed alignment among
the collection of alternate alignments

(See 61, 64, 67, 85.) In this strategy, the support for the computed alignment,
which essentially measures the stability of the alignment to changes in the
method or input, serves as a proxy for accuracy.

1.3.1.1 Scoring-function-based approaches

Approaches that assess alignment quality via a scoring function include
COFFEE [78], AL2CO [81], NorMD [99], PredsSP [2], and StatSigMa [86].
Several recently developed methods also consider protein tertiary (3-dimensional)
structure; due to the limitations this imposes on our benchmark set we do not
compare our method with these but they include iRMSD [7], STRIKE [59],
and an LS-SVM approach [79]. We briefly describe each in turn.

COFFEE [78] evaluates a multiple alignment by realigning its sequences
pairwise; using the matches in all these pairwise alignments to determine
transformed substitution scores for pairs of residues? in the columns of the
multiple alignment, where these position-dependent transformed scores are
in the range [0, 1]; accumulating the weighted sum of scores of all induced
pairwise alignments in the multiple alignment without penalizing gaps, where
substitutions are evaluated using the above transformed scores; and finally

1 Here correctness can be either in terms of the unknown structural alignment (as
in our present work on protein sequence alignment), or the unknown evolutionary
alignment (as in simulation studies).

2 A residue is a position in a protein sequence together with the amino acid at that
position.
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normalizing by the weighted sum of the lengths of all induced pairwise align-
ments. COFFEE is a component of the T-Coffee alignment package [77].
Updated versions of the COFFEE estimator have been published under a new
name TCS [18] that use an updated library of pairwise alignments but follow
the same basic principals to construct an estimation of alignment accuracy.

AL2CO [81] uses conservation measures on alignment columns that are
based on weighted frequencies of the amino acids in the column, and assesses
an alignment by averaging this measure over all its columns.

NorMD [99] develops an elaborate alignment scoring function that trans-
forms standard amino acid substitution scores on pairs of aligned residues into
a geometric substitution score defined on a 20-dimensional Euclidean space;
takes a weighted average of all these substitution scores in a column; trans-
forms this average substitution score through exponential decay; sums these
transformed scores across columns; then includes affine gap penalties [46],
and Wilbur-Lipman hash scores [108] for normalization. NorMD is used in
several systems, including RASCAL [101], LEON [100], and AQUA [74].

PredsP [2] fits a beta distribution from statistics to the true accuracies
associated with a sample of alignments, where the mean and variance of the
distribution are transforms of a linear combination of four alignment features.
The features they use are sequence percent identity, number of sequences,
alignment length, and a conservation measure that is the fraction of residues
in conserved columns as identified by a statistical model that takes into ac-
count amino acid background probabilities and substitution probabilities [1].
The accuracy that is predicted for the alignment is essentially the mean of
the fitted beta distribution; a predicted confidence interval on the accuracy
can also be quoted from the fitted distribution.

StatSigMa [86] scores an input alignment based on a phylogenetic tree,
where the tree can be given by the user or based on an alignment of a second
set of sequences with the same labels. A scoring function is generated based
on how well the alignment fits the tree. They then test the probability of
each branch in the tree given the test alignment using Karlin-Altschul [53]
alignment statistics (the same statistics used for BLAST [3] homology search).
The p-value assigned to the alignment is then the maximum p-value over all
branches of the tree.

iRMSD [7] uses known tertiary structure that has been assigned to all
sequences in the alignment. For each pair of sequences, and for each pair of
columns, they compare the distance of the pair of columns in each protein.
This difference in tertiary distances is summed and weighted to generate a
score for an alignment.

STRIKE [59] scoring uses a generated amino acid replacement matrix that
scores based on how often two amino acids are in contact in the tertiary
structure. The scoring algorithm infers the tertiary structure of a multiple
sequence alignment from the known structure of a single protein in that
alignment. They then examine the pairs of columns that are in contact (close
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in 3-D space) in the tertiary structure, and sum the STRIKE matrix score for
each sequence’s amino acid pairs at the columns in the alignment.

The LS-SVM approach [79] uses a similar feature-based estimator strategy
to Facet. They have developed 14 feature functions for an alignment, these
function each output a single numerical value and are combined to get a final
accuracy estimation for an alignment. The functions used in the LS-SVM ap-
proach rely on tertiary structure, and additional information about the pro-
tein sequences obtained by querying PBD [10], PFam [43], Uniprot [6] and
the Gene Ontology [GO, 14] databases — which means these databases must
be available at all times. As this method makes use of tertiary structure
annotations of the proteins, it severely reduces the universe of analyzable
sequences. The calculated features are fed into a least-squares support vector
machine (LS-SVM) that has been trained to predict accuracy.

1.3.1.2 Support-based approaches

Approaches that assess alignment quality in terms of support from alternate
alignments include MOS [67]; HoT [64]; GUIDANCE [85]; and PSAR [61]. We
briefly summarize each below.

MOS [67] takes a computed alignment together with a collection of alternate
alignments of the same sequences; and over all residue pairs aligned by the
computed alignment, measures the average fraction of alternate alignments
that also align the residue pair. In other words, MOS measures the average
support for the substitutions in the computed alignment by other alignments
in the collection.

HoT [64] considers a single alternate alignment, obtained by running the
aligner that generated the computed alignment on the reverse of the se-
quences and reversing the resulting alignment, and reports the MOS value of
the original alignment with respect to this alternate alignment.

GUIDANCE [85] assumes the computed alignment was generated by a so-
called progressive aligner that uses a guide tree, and obtains alternate align-
ments by perturbing the guide tree and reinvoking the aligner. GUIDANCE
reports the MOS value of the original alignment with respect to these alternate
alignments.

PSAR [61] generates alternate alignments by probabilistically sampling
pairwise alignments of each input sequence versus the pair-HMM obtained by
collapsing the original alignment without the input sequence. PSAR reports
the MOS value of the original alignment with respect to these alternates.

Note that in contrast to other approaches, HoT and GUIDANCE require
access to the aligner that computed the alignment. They essentially measure
the stability of the aligner to sequence reversal or guide tree alteration.

Note also that scoring-function-based approaches can estimate the accu-
racy of a single alignment, while support-based approaches inherently require
a set of alignments.
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1.3.2 A priori advising

As apposed to examining alignment accuracy after an alignment is generated,
a priori advising attempts to make a prediction about an aligner’s out-
put from just the unaligned sequences. Such methods include AlexSys [4],
PACA1CI [80], GLProbs [114], and FSM [63].

AlexSys [4] uses a decision tree to classify the input sequences and iden-
tify which aligner should be used. At each step it tests the sequence’s pair-
wise identity, sequence length differences, hydrophobicity characteristics, or
PFam information to find relationships between sequences in the input.

PACA1CI [80] uses similar methods to Facet and the LS-SVM ap-
proach described earlier, removing the features that rely on the alignment
itself. Again features are combined using an LS-SVM. By querying multiple
databases and finding similarity in tertiary structure, PACA1CT predicts the
alignment accuracy of several major alignment tools (under default parame-
ters).

GLProbs [114] uses average pairwise percent-identity to determine which
Hidden Markov Model (HMM) to use for alignment. While the actual diffi-
culty assessment is simple, it then allows the HMM parameters to be specific
to similarity of the particular sequences being aligned.

FSM [63] uses BLAST to find which family of SABmark benchmark se-
quences is most similar to the input sequences. It then recommends a sub-
stitution matrix that is specially tailored to these families. While BLAST is
relatively fast, the applicability of this method is restricted to a narrow range
of input sequences.

1.3.3 Meta-alignment

Meta-alignment uses alignments output from several aligners to construct a
new alignment. Here the final alignment has aspects of the input alignments,
but in contrast to other advising methods, it is not necessarily the output of
any single aligner. Such methods include ComAlign [13], M-Coffee [103],
Crumble and Prune[90], MergeAlign [19], and AQUA [74].

ComAlign [13] identifies paths through the standard m-dimensional dy-
namic programming table (which in principle would yield the optimal multi-
ple sequence alignment of the m input sequences) that corresponds to each
of the candidate input multiple sequence alignments. They then find points
where these paths intersect, and construct a consensus alignment by combin-
ing the highest-scoring regions of these paths.

M-Coffee [103] uses several alignment programs to generate pairwise
alignment libraries. They then use this library (rather than simply the op-
timal pairwise alignments) to run their T-Coffee algorithm. T-Coffee
produces multiple alignments by aligning pairs of alignments to maximize
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the support from the library of all matching pairs of characters in each col-
umn. In this way they attempt to find the alignment with the most support
from the other aligners.

Crumble and Prune [90] computes large-scale alignments by splitting
the input sequences both vertically (by aligning subsets of sequences) and
horizontally (by aligning substrings). The Crumble procedure finds similar
substrings and uses any available alignment method to align these regions;
then for the overlapping regions between these blocks, it realigns these in-
tersections to generate a full alignment. The Prune procedure splits an in-
put phylogenetic tree into subproblems with a smalls number of sequences;
these subproblems are then replaced by their consensus sequence when par-
ent problems are aligned, allowing large numbers of sequences to be aligned.
This method aims to reduce the computational resources needed to align
large inputs, as opposed to increasing multiple sequence alignment accuracy.

MergeAlign [19] generates a weighted directed acyclic graph (DAG),
where each vertex represents a column in one of the input alignments, and
an edge represents a transition from one column to its neighbor (the column
directly to the right) in the same alignment. The weight of each edge is the
number of alignments that have that transition. The consensus alignment
is constructed as the maximum-weight single-source/single-sink path in the
DAG.

AQUA [74] chooses between an alignment computed by Muscle [39] or
MAFFT [54], based on their NorMD [99] score. Chapter 6 shows that for the
task of choosing the more accurate alignment; the NorMD score used by AQUA
is much weaker than the Facet estimator used here. AQUA can also be used as
a meta-aligner because it chooses between the outputs of multiple aligners,
rather than two parameter choices for a singe aligner. Chapter 7 gives results
on using Facet in the context of meta-alignment.

1.3.4 Column confidence scoring

In addition to scoring whole alignments, work has been done to identify
poorly-aligned regions of alignments. This can help biologists to find unreli-
able homology in an alignment to ignore for further analysis, as in programs
like GBLOCKS [17] and ALISCORE [72]. Many of the accuracy estimators
discussed earlier also provide column level scoring, such as TCS.

GBLOCKS [17] identifies columns that are conserved and surrounded by
other conserved regions, using only column percent-identity. Columns that
contain gaps are eliminated, as well as runs of conservation that do not meet
length cutoffs.

ALISCORE [72] uses a sliding window across all pairwise alignments, and
determines if the window is statistically different from two random sequences.
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This score is evaluated on a column by counting the number of windows
containing it that are significantly non-random.

Recently, [88] developed a new method to classify columns with an SVM.
This method uses 5 features of an alignment that are passed into the SVM to
classify whether or not the column should be used for further analysis. Their
study focuses mainly on using alignments for phylogenetic reconstruction.

1.4 Review of protein secondary structure

Multiple sequence alignment benchmarks of protein sequences are normally
constructed by aligning the three-dimensional structure (sometimes referred
to as tertiary structure) of the folded proteins. Amino acids that are close
in 3-D space are considered aligned, and those that are simultaneously very
close in all sequences are labeled as core columns of the alignment. The
amino acid sequence of a protein is referred to as the primary structure.
The secondary structure of a protein is an intermediate between primary and
tertiary structure. Secondary structure labels each amino acid as being in one
of three structure classes: a-heliz, 5-sheet, or coil (other, or no structure).
These structural classes tend to be conserved when the function of related
proteins is conserved.

This book is focused on protein multiple sequence alignment, and we ex-
ploit the fact that proteins fold into structures to perform functions within
the cell when computing alignments of proteins sequences.

The tertiary structure of the proteinsin a set of input sequences is not
normally known, as it usually requires examining the crystalline structure
of the protein, which is slow and costly. Instead we use secondary struc-
ture in our accuracy estimator, and to predict the secondary structure, we
use PSIPRED [51].The output of PSIPRED is not only a label from the 3
secondary structure classes for each amino acid in the sequence, but also a
confidence that the position in each sequence is in each structure state. We
normalize the confidences so that for any amino acid the sum of the confi-
dences for all three structure types sums to 1.

PSIPRED can make predictions using either the amino acid sequence alone,
or by searching through a database of protein domains to find similar se-
quences using BLAST [3]. The accuracy of PSIPRED is increased substan-
tially when using a BLAST search, so all of our results shown later are
with the version of PSIPRED that searches through the UniRef90 [96]
database of protein domains (which is a non-redundant set of domains from
the UniProt database [see 97]) filtered using the pfilt program provided
with PSIPRED.
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1.5 Plan of the book

Chapter 2 next describes our approach to estimating alignment accuracy as
a linear combination of feature functions. It also describes how to find the
coefficients for such an estimator.

Chapter 3 describes our estimator Facet (short for “feature-based accuracy
estimator”). In particular, the chapter describes the efficiently computable
feature functions we used in Facet.

Chapter 4 defines the problem of finding an optimal advisor (finding both
the advisor set and the advisor estimator coefficients simultaneously). We
also consider restrictions to finding just an optimal advisor set, or optimal
advisor coefficients. We show that all of these problems are NP-complete.

Chapter 5 details the method we use to find advisor sets for a fixed estima-
tor. While finding an optimal advisor set is NP-Complete, we have present an
efficient approximation algorithm for finding near-optimal sets that perform
well in practice. The chapter also describes an integer linear program for find
an optimal advisor (which cannot at present be solved in practice).

Chapter 6 provides experimental results for parameter advising, and dis-
cusses the approach we use to assess the effectiveness of advising.

Chapter 7 expands the universe of parameter choices in advising to include
not only the settings of the alignment parameters, but also the choice of the
aligner itself which we call aligner advising. This yields the first-true ensem-
ble aligner. We also compare the accuracy of the alignments produced by
the ensemble aligner to those obtained using a parameter advisor with a fixed
aligner.

Chapter 8 presents an approach called adaptive local realignment that
computes alignments that can use different parameter choices in different
regions of the alignment. Since regions of a protein have distinct mutation
rates, using different parameter choices across an alignment can be necessary.

Chapter'9 describes an approach to predicting how much of a column in
a computed alignment comes from core columns of an unknown reference
alignment using a variant of nearest-neighbor classification. Since true accu-
racy is only measured on core columns, inferring such columns can boost the
accuracy of our advisor.

Finally, Chapter 10 summarizes our results and gives future directions for
research.



Chapter 2
Accuracy Estimation

Overview

The accuracy of a multiple sequence alignment is commonly measured as the
fraction of aligned residues from the core columns of a known reference align-
ment that are also aligned in the computed alignment. Usually this reference
alignment is unavailable, in which case we can only estimate the accuracy.
We present a reference-free approach that estimates accuracy that is a linear
combination of bounded feature functions of an alignment. In this chapter,
we describe this framework for accuracy estimation and show that all higher-
order polynomial estimators can be reduced to a linear estimator. We also
give several approaches for learning the coefficients of the estimator function
through mathematical optimization.

2.1 Introduction

Without- knowing a reference alignment that establishes the ground truth
against which the true accuracy of an alignment is measured, we are left
with only being able to estimate the accuracy of an alignment. Our approach
to obtaining an estimator for alignment accuracy is to (a) identify multi-
ple features of an alignment that tend to be correlated with accuracy, and
(b) combine these features into a single accuracy estimate. Each feature, as
well as the final accuracy estimator, is a real-valued function of an alignment.

The simplest estimator is a linear combination of feature functions, where
features are weighted by coefficients. These coefficients can be learned by
training the estimator on example alignments whose true accuracy is known.
This training process will result in a fixed coefficient or weight for each fea-
ture. Alignment accuracy is usually represented by a value in the range [0, 1],

This chapter was adapted from portions of previous publications [34, 56].
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with 1 corresponding to perfect accuracy. Consequently, the value of the
estimator on an alignment should be bounded, no matter how long the align-
ment or how many sequences it aligns. For boundedness to hold when using
fixed feature weights, the feature functions themselves must also be bounded.
Hence, we assume that the feature functions also have the range [0,1]. (The
particular features we use are presented in Chapter 3.) We can then guaran-
tee that the estimator has range [0, 1] by ensuring that the coefficients found
by the training process yield a convex combination of features. In practice,
we have found that not all the features naturally span the entire range [0, 1],
so we relax the convex combination condition, and instead only require that
the estimator value is in the range [0, 1] on all training examples.

2.2 The estimator

In general, we consider estimators that are polynomial functions of alignment
features. More precisely, suppose the features that we consider for align-
ments A are measured by the k feature functions f;(A) for. 1 < i < k. Then
our accuracy estimator E(A) is a polynomial in the & variables f;(A). For
example, for a degree-2 polynomial,

E(A) = ao + Y. afilA) + Y ayfi(4) f;(A).

1<i<k 1<4,5<k

For a polynomial of degree d, our accuracy estimator E(A) has the general

form,
E(A) = Z Apr ... i H (fi(A))pl,
propr €ET 1<i<k

pitetpr < d

where Z* denotes the nonnegative integers, and the coefficients on the terms
of the polynomial are given by the a,,, . p,. In this summation, there are
k- index variables p;, and each possible assignment of nonnegative integers
to the p; that satisfies >, p; < d specifies one term of the summation, and
hence the powers for one term of the polynomial.

2.2.1 Encoding higher-order polynomial estimators

Learning an estimator from example alignments, as discussed in Section 2.3,
corresponds to determining the coefficients for its terms. We can efficiently
learn optimal values for the coefficients, that minimize the error between the
estimate F(A) and the actual accuracy of alighment A on a set of training
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examples, even for estimators that are polynomials of arbitrary degree d.
This can be done for arbitrary degree essentially because such an estimator
can always be reduced to the linear case by a change of feature functions, as
follows. For each term in the degree-d estimator, where the term is specified
by the powers p; of the f;, define a new feature function

g4 = [ ()™,

1<i<k

that has an associated coefficient ¢; := ap, . p,. Then in terms of the new
feature functions g;, the original degree-d estimator is equivalent to the linear

estimator
E(A) = o+ Y. ¢g(A),
1<j<t

where ¢ is the number of terms in the original polynomial. For a degree-d
estimator with k original feature functions, the number of coefficients ¢ in the
linearized estimator is at least P(d, k), the number of integer partitions of d
with k£ parts. This number of coefficients grows very fast with d, so overfitting
can become an issue when learning a high-degree estimator. (Even a cubic
estimator on 10 features already has 286 coefficients.) In our experiments, we
focus on linear estimators.

The coefficients of the estimator polynomial are found by mathematical
optimization which we will describe next.

2.3 Learning the estimator from examples

In Section 1.2 we described the set of examples: benchmark sequences that
have been aligned under various parameter choices by the aligner, and whose
alignment are labeled with their true accuracy. In addition, we record the fea-
ture function values for each of these examples. We then use these examples,
with their associated accuracy and feature values, to find coefficients that fit
the accuracy estimator to true accuracy by two techniques that we describe
below.

2.3.1 Fitting to accuracy values

A natural criterion for fitting the estimator is to minimize the error on the
example alignments between the estimator and the true accuracy value. For
alignment A in our training set S, let E.(A) be its estimated accuracy where
vector ¢ = (co, - . ., ¢i—1) specifies the values for the coefficients of the estima-
tor polynomial, and let F(A) be the true accuracy of example A.
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Formally, minimizing the weighted error between estimated accuracy and
true accuracy yields estimator F* := E.« with coefficient vector

p

)

¢* = argmin Z wa ‘EC(A) — F(A)
cE€R' Acs

where power p controls the degree to which large accuracy errors are penal-
ized. Weights w4 correct for sampling bias among the examples, as explained
below.

When p = 2, this corresponds to minimizing the Ly norm between the
estimator and the true accuracies. The absolute value in the objective func-
tion may be removed, and the formulation becomes a quadratic programming
problem in variables ¢, which can be efficiently solved. (Note that E, is linear
in ¢.) When p = 1, the formulation corresponds to minimizing the L; norm.
This is less sensitive to outliers than the L, norm, which can be advanta-
geous when the underlying features are noisy. Minimizing the L; norm can
be reduced to a linear programming problem as follows. In addition to vari-
ables ¢, we have a second vector of variables e with an entry e4 for each
example A € S to capture the absolute value in the L; norm, along with the
inequalities,

ea > E.(A) — F(A),
ea > F(A) — E.(A),

which are linear in variables ¢ and e. We then minimize the linear objective

function
E WA €EA.

For n examples, the linear program has n+ t variables and O(n) inequalities,
which is solvable even for very large numbers of examples.

If the feature functions all have range [0, 1], we can ensure that the resulting
estimator E* also hasrange [0, 1] by adding to the the linear inequalities,

Ci207

Z ngl

0<i<t

But as mentioned earlier, it may be useful to not restrict the coefficients to
be a convex combination because while the features are bounded, they may
not have values across the whole range. Instead we can also add the following
inequalities for each training example A that ensure E* has range [0, 1].

0
1.
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The weights ws on examples aid in finding an estimator that is good
across all accuracies. In the suites of protein alignment benchmarks that are
commonly available, a predominance of the benchmarks consist of sequences
that are easily alignable, meaning that standard aligners find high-accuracy
alignments for these benchmarks.! In this situation, when training set S
is generated as described earlier, most examples have high accuracy, with
relatively few at moderate to low accuracies. Without weights on examples,
the resulting estimator E* is strongly biased towards optimizing the fit for
high accuracy alignments, at the expense of a poor fit at lower accuracies. To
prevent this, we bin the examples in S by their true accuracy, where B(A) C S
is the set of alignments falling in the bin for example A, and then weight the
error term for A by wa = 1/|B(A4)|. (In our experiments, we form 10 bins
equally spaced at 10% increments in accuracy.) In the objective function
this weights bins uniformly (rather than weighting examples uniformly) and
weights the error equally across the full range of accuracies.

2.3.2 Fitting to accuracy differences

Many applications of an accuracy estimator E will use it to choose from
a set of alignments the one that is estimated to be most accurate. (This
occurs, for instance, in parameter advising as discussed in Chapter 6.) In such
applications, the estimator is effectively ranking alignments, and all that is
needed is for the estimator to be monotonic in true accuracy. Accordingly,
rather than trying to fit the estimator to match accuracy values, we can
instead fit it so that differences in accuracy are reflected by at least as large
differences in the estimator. This fitting to differences is less constraining
than fitting to values, and hence might be better achieved.

More precisely, suppose we have selected a set P C S2 of ordered pairs
of example alignments, where every pair (A, B) € P satsifies F(4) < F(B).
Set P holds pairs of examples on which accuracy F' increases for which we
desire similar behavior from our estimator E. (Later we discuss how we select
a small set P of important pairs.) If estimator E increases at least as much
as accuracy F' on a pair in P, this is a success, and if it increases less than F,
we consider the amount it falls short an error, which we try to minimize.
Notice this tries to match large accuracy increases, and penalizes less for not
matching small increases.

We formulate fitting to differences as finding the optimal estimator E* := F«
given by coefficients

1 This is mainly a consequence of the fact that proteins for which reliable structural
reference alignments are available tend to be closely related, and hence easier to align.
It does not mean that typical biological inputs are easy.
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c¢* = argmin Z WAB (111&)({(17(B)—F(A))—(EC(B)—EC(A))7 0}>pa

t
CER' (A B)eP

where wap weights the error term for a pair. When power p is 1 or 2, we
can reduce this optimization problem to a linear or quadratic program as
follows. We introduce a vector of variables e with an entry esp for each
pair (A, B) € P, along with the inequalities,

eap > 0,
eap > (F(B)-F(A)) — (E.(B)—E.(4)),

which are linear in variables ¢ and e. We then minimize the objective function,

Z WAB (eAB)pa

(A,B)eP

which is linear or quadratic in the variables forp =1 or 2.

For a set P of m pairs, these programs have m + ¢ variables and m in-
equalities, where m = O(n?) in terms of the number of examples n. For the
programs to be manageable for large n, set P must be quite sparse.

We can select a sparse set P of important pairs using one of two methods:
threshold-minimum accuracy difference pairs, or distributed-example pairs.
Recall that the training set S of examples consists of alternate alignments of
the sequences in benchmark reference alignments, where the alternates are
generated by aligning the benchmark under a constant number of different
parameter choices.

2.3.2.1 Threshold-difference pairs

While we would like an accuracy estimator that matches the difference in
true accuracy between any two alignments, in parameter advising we are only
concerned with choosing among alignments over the same sets of sequences.
With threshold-difference pairs, we include in P only pairs of alignments
(A, B) of the same benchmark. In particular, we include all such pairs where
F(A)— F(B) > e. Here € > 0 is a tunable threshold; if the difference in accu-
racy is smaller than this threshold, we exclude it from training, as its effect
on the parameter advisor is minimal, and it makes the linear or quadratic
problem much harder to solve. As e approaches 0, the better the estimator
will be at distinguishing small differences, but more constraints will be in-
cluded in the program increasing the running time of the solver. For example
pairs under this model, we set the weight wap to be %, where B gives
the corresponding bin for benchmarks aligned under the default parameter
settings, and C' is the alignment under the default parameter settings of the
benchmark sequences that A and B are aligning.
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2.3.2.2 Distributed-example pairs

An estimator that is designed for parameter advising should rank the high-
est accuracy alternate alignment for a benchmark above the other alternates
for that benchmark. Consequently, for each benchmark we select for P its
highest-accuracy alternate, paired with its other alternates for which their
difference in accuracy is at least €, where ¢ is a tunable threshold. (Notice
this picks O(n) pairs on the n examples.) For the estimator to generalize
beyond the training set, it helps to also properly rank alignments between
benchmarks. To include some pairs between benchmarks, we choose the min-
imum, maximum, and median accuracy alignments for each benchmark, and
form one list L of all these chosen alignments, ordered by increasing accu-
racy. Then for each alignment A in L, we scan L to the right to select the
first k pairs (A, B) for which F(B) > F(A) + 6 where i = 1,...,k, and for
which B is from a different benchmark than A. While the constants ¢ > 0,
6 > 0, and k > 1 control the specific pairs that this procedure selects for P,
it always selects O(n) pairs on the n examples.

2.3.2.3 Weighting distributed-example pairs

When fitting to accuracy differences, we again weight the error terms, which
are now associated with pairs, to correct for sampling bias within P. We want
the weighted pairs to treat the entire accuracy range equally, so the fitted
estimator performs well at all accuracies. As when fitting to accuracy values,
we partition the example alignments in & into bins By, ..., By according to
their true accuracy. To model equal weighting of accuracy bins by pairs, we
consider a pair (A, B) € P to have half its weight w4p on the bin contain-
ing A, and half on the bin containing B. (So-in this model, a pair (A4, B) with
both ends A, B in the same bin B, places all its weight w4p on B.) Then we
want to find weights wap > 0 that, for all bins B, satisfy

Z %’LUAB + Z %wAB = 1.

(A,B)eP:AcB (A,B)EP:B€B

In other words, the pairs should weight bins uniformly.

We say a collection of weights w4p are balanced if they satisfy the above
property on all bins B. While balanced weights do not always exist in general,
we can identify an easily-satisfied condition that guarantees they do exist, and
in this case find balanced weights by the following graph algorithm.

Construct an undirected graph G whose vertices are the bins B; and whose
edges (7,7) go between bins B;, B; that have an alignment pair (A4, B) in P
with A € B; and B € B;. (Notice G has self-loops when pairs have both
alignments in the same bin.) Our algorithm first computes weights w;; on the
edges (i,7) in G, and then assigns weights to pairs (A, B) in P by setting
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wap = 2wj;/ci;, where bins B;, B; contain alignments A, B, and ¢;; counts
the number of pairs in P between bins B; and B;. (The factor of 2 is due to
a pair only contributing weight %w Ap to a bin.) A consequence is that all
pairs (A, B) that go between the same bins get the same weight wap.

During the algorithm, an edge (i,7) in G is said to be labeled if its
weight w;; has been determined; otherwise it is unlabeled. We call the de-
gree of a vertex ¢ the total number of endpoints of edges in G that touch i,
where a self-loop contributes two endpoints to the degree. Initially all edges
of G are unlabeled. The algorithm sorts the vertices of G in order of non-
increasing degree, and then processes the vertices from highest degree on
down.

In the general step, the algorithm processes vertex i as follows. It ac-
cumulates w, the sum of the weights w;; of all labeled edges that touch 7;
counts u, the number of unlabeled edges touching ¢ that are not a self-loop;
and determines d, the degree of i. To the unlabeled edges (i, ) touching 7, the
algorithm assigns weight w;; := 1/d if the edge is not a self-loop, and weight
Wi = %(1 —w — 4) otherwise.

This algorithm assigns balanced weights if in graph G, every bin hasa
self-loop, as stated in the following theorem.

Theorem 2.1 (Finding Balanced Weights). Suppose every bin B has
some pair (A, B) in P with both alignments A, B in B. Then the above graph
algorithm finds balanced weights.

Proof. We will show that: (a) for every edge (i;7) in G, its assigned weight
satisfies w;; > 0; and (b) for every vertex 4, the weights assigned to its incident
edges (i, ) satisfy
Z wij + 2w;; = 1.
(1,9) : j#i
From properties (a) and (b) it follows that the resulting weights wap are
balanced.

The key observation is that when processing a vertex i of degree d,
the edges touching 7 that are already labeled will have been assigned a
weight w;; < 1/d, since the other endpoint j must have degree at least d
(as vertices are processed from highest degree on down). Unlabeled edges
touching ¢, other than a self-loop, get assigned weight w;; = 1/d > 0. When
assigning weight wj; for the unlabeled self-loop, the total weight w of incident
labeled edges satisfies w < (d—u—2)/d, by the key observation above and the
fact that vertex i'always has a self-loop which contributes 2 to its degree. This
inequality in turn implies w;; > 1/d > 0. Thus property (a) holds.

Furthermore, twice the weight w;; assigned to the self-loop takes up the
slack between 1 and the weights of all other incident edges, so property (b)
holds as well.
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Regarding the condition in Theorem 2.1, if there are bins without self-
loops, balanced weights do not necessarily exist. The smallest such instance
is when G is a path of length 2.

Notice that we can ensure the condition in Theorem 2.1 holds if every bin
has at least two example alignments: simply add a pair (A, B) to P where
both alignments are in the bin, if the procedure for selecting a sparse P did
not already. When the training set S of example alignments is sufficiently
large compared to the number of bins (which is within our control), every bin
is likely to have at least two examples. So Theorem 2.1 essentially guarantees
that in practice we can fit our estimator using balanced weights.

For k bins and m pairs, the pair-weighting algorithm can be implemented
to run in O(k + m) time, using radix sort to map pairs in P to edges in G,
and counting sort to order the vertices of G by degree.

Summary

In this chapter, we have developed an accuracy estimator that is a linear
combination of feature functions, and provided two approaches to learning the
coefficients of this estimator. Chapter 3 next describes the specific features
that along with this framework make up the Facet accuracy estimator.
Results on using the Facet estimator with the feature functions described
in the next chapter are presented in Chapter 6.






Chapter 3
The Facet Estimator

Overview

In Chapter 2, we described a general framework for creating an alignment
accuracy estimator that is a linear combination of feature functions, and for
learning the coefficients of such an estimator. In this chapter, we explore
the feature functions used in our accuracy estimator Facet. Some of the
features we use are standard metrics that are common for measuring mul-
tiple sequence alignment quality, such as amino acid percent identity and
gap extension density, but many of the most reliable features are novel. The
strongest feature functions tend to use predicted secondary structure. We
describe in detail the most accurate and novel features: secondary structure
blockiness and secondary structure consensus.

3.1 Introduction

In Section 1.3.1 we described two classes of accuracy estimators: scoring-
function-based and support-based. While our approach is within the general
scoring-function-based category, compared to prior such approaches, we:

(a) introduce several novel feature functions that measure non-local
properties of an alignment and have stronger correlation with ac-
curacy (such as Secondary Structure Blockiness, described here in
Section 3.2.1),

(b) consider larger classes of estimators beyond linear combinations of
features (such as quadratic polynomials, described in Chapter 2),
and

This chapter was adapted from portions of previous publications [34, 56].
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(¢) develop new regression formulations for learning an estimator from
examples (such as difference fitting, described in Chapter 2).

Our approach can readily incorporate new feature functions into the esti-
mator, and is easily tailored to a particular class of alignments by choosing
appropriate features and performing regression.

Compared to support-based approaches, our estimator does not degrade
on difficult alignment instances, where for parameter advising, good accuracy
estimation can have the greatest impact. As shown in our advising experi-
ments in Chapter 6, support-based approaches lose the ability to detect ac-
curate alignments of hard-to-align sequences, since for such sequences most
alternate alignments are poor and lend little support to the alignment that
is actually most accurate.

In this chapter, we begin by giving descriptions of the feature functions
used in the Facet estimator in Section 3.2. For each feature, we also consider
a few variants.In the next section we discus the most accurate feature func-
tion, called Secondary Structure Blockiness. Section 3.2.13 shows examples
of the feature values for a set of computed alignments. Section 3.3 details our
implementation of Facet in Java. Not only is Facet available as a stand
alone tool that can be incorporated into existing analysis pipelines that in-
clude multiple sequence alignment, it can also be used via an API within
other multiple sequence alignment tools.

3.2 Estimator features

The quality of the estimator that results from our approach ultimately rests
on the quality of the features that we consider. We consider twelve features of
an alignment; the majority of which are novel. All are efficiently computable,
so the resulting estimator is fast to evaluate. The strongest feature functions
make use of predicted secondary structure (which is not surprising, given that
protein sequence alignments are often surrogates for structural alignments).
Details about protein secondary structure and, how we predict it for new
proteins, can be found in Section 1.4.

Another aspect of some of the best alignment features is that they tend
to use non-local information. This is in contrast to standard ways of scor-
ing sequence alignments, such as with amino acid substitution scores or gap
open and extension penalties, which are often a function of a single align-
ment column or two adjacent columns (as is necessary for efficient dynamic
programming algorithms). While a good accuracy estimator would make an
ideal scoring function for constructing a sequence alignment, computing an
optimal alignment under such a nonlocal scoring function seems prohibitive
(especially since multiple alignment is already NP-complete for the current
highly-local scoring functions). Nevertheless, given that our estimator can be
efficiently evaluated on any constructed alignment, it is well suited for se-
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lecting a sequence alignment from among several alternate alignments, as we
discuss in Chapter 6 in the context of parameter advising (and later chap-
ters further consider the contexts of ensemble alignment and adaptive local
realignment).

Key properties of a good feature function are: (a) it should measure some
attribute that discriminates high accuracy alignments from others, (b) it
should be efficiently computable, and (c) its value should be bounded (as
discussed at the beginning of Chapter 2). Bounded functions are easily nor-
malized, and we scale all our feature functions to the range [0,1]. We also
intend our features to be increasing functions of, or positively correlated with,
alignment accuracy.

The following are the alignment feature functions we consider for our ac-
curacy estimator. We highlight the first function as it is the most novel, one
of the strongest, and is the most challenging to compute.

3.2.1 Secondary Structure Blockiness

The reference alignments in the most reliable suites of protein alignment
benchmarks are computed by structural alignment of the known three-
dimensional structures of the proteins. The so-called core blocks of these
reference alignments, which are the columns in the reference to which an
alternate alignment is compared when measuring its true accuracy, are typi-
cally defined as the regions of the structural alignment in which the residues
of the different proteins are all within a small distance threshold of each
other in the superimposed structures. These regions of structural agreement
are usually in the embedded core of the folded proteins, and the secondary
structure of the core usually consists of a-helices and S-strands. (Details of
secondary structure and its representation can be found in Section 1.4.) As
a consequence, in the reference sequence alignment, the sequences in a core
block often share the same secondary structure, and the type of this structure
is usually a-helix or S-strand.

We measure the degree to which a multiple alignment displays this pattern
of structure by a feature we call Secondary Structure Blockiness. Suppose
that for the protein sequences in a multiple alignment we have predicted
the secondary structure of each protein, using a standard prediction tool
such as PSIPRED [51]. Then in multiple sequence alignment A and for given
integers k, ¢ > 1, define a secondary structure block B to be:

(1) a contiguous interval of at least £ columns of A, together with

(ii) a subset of at least k sequences in A, such that on all columns in
this interval, in all sequences in this subset, all the entries in these
columns for these sequences have the same predicted secondary
structure type, and this shared type is all a-helix or all S-strand.
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We call B an a-block or a 8-block according to the common type of its entries.
Parameter ¢, which controls the minimum width of a block, relates to the
minimum length of a-helices and S-strands; we can extend the definition to
use different values ¢, and ¢g for a- and S-blocks.

A packing for alignment A is a set P = {By, ..., By} of secondary structure
blocks of A, such that the column intervals of the B; € P are all disjoint.
(In other words, in a packing, each column of A is in at most one block.
The sequence subsets for the blocks can differ arbitrarily.) The wvalue of a
block is the total number of residue pairs (or equivalently, substitutions) in
its columns; the value of a packing is the sum of the values of its blocks.

Finally, the blockiness of an alignment A is the maximum value of any
packing for A, divided by the total number of residue pairs in the columns
of A. In other words, Secondary Structure Blockiness measures the fraction
of substitutions in A that are in an optimal packing of a- or S-blocks.

At first glance measuring blockiness might seem hard (since optimal pack-
ing problems are often computationally intractable), yet surprisingly it can
actually be computed in linear time in the size of the alignment, as the fol-
lowing theorem states. The main idea is that evaluating blockiness can be
reduced to solving a longest path problem on a directed acyclic graph of
linear size.

Theorem 3.1 (Evaluating Blockiness). Given a multiple alignment A
of m protein sequences and n columns, where the sequences are annotated
with predicted secondary structure, the blockiness of A can be computed in
O(mn) time.

Proof. The key is to not enumerate subsets of sequences in A when consid-
ering blocks for packings, and instead enumerate intervals of columns of A.
Given a candidate column interval I for a block B, we can avoid considering
all possible subsets of sequences, since there are only two possibilities for the
secondary structure type's of B, and the sequences in B must have type s
across I. To maximize the value of B, we can collect all sequences in A that
have type « across I (if any), all sequences that have type 8 across I, and
keep whichever subset has more sequences.

Following this idea, given alignment A, we form an edge-weighted, directed
graph G that has a vertex for every column of A, plus an artificial sink vertex,
and an edge of weight 0 from each column to its immediate successor, plus
an edge of weight 0 from the last column of A to the sink. We call the
vertex for the first column of A the source vertex. We could then consider
all intervals I of at least ¢ columns, test whether the best sequence subset
for each I as described above has at least k sequences, and if so, add an
edge to G from the first column of I to the immediate successor of the last
column of I, weighted by the maximum value of a block with interval I. A
longest path in the resulting graph G from its source to its sink then gives an
optimal packing for A, and the blockiness of A is the length of this longest
path divided by the total number of substitutions in A. This graph G would
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have ©(n?) edges, however, and would not lead to an O(mn) time algorithm
for blockiness. Instead, we only add edges to G for such intervals I whose
number of columns, or width, is in the range [¢,2¢—1]. Any block B whose
interval has width at least ¢ is the concatenation of disjoint blocks whose
intervals have widths in the above range. Furthermore, the value of block B
is the sum of the values of the blocks in the concatenation. Only adding to G
edges in the above width range gives a sparse graph with O(n) vertices and
just O(¢n) edges, which is O(n) edges for constant £.

To implement this algorithm, first construct G in O(mn) time by (1) enu-
merating the O(n) edges of G in lexicographic order on the pair of column
indices defining the column interval for the edge, and then (2) determining
the weight of each successive edge e in this order in O(m) time by appending
a single column of A to form the column interval for e from the shorter in-
terval of its predecessor. Graph G is acyclic, and a longest source-sink path
in a directed acyclic graph can be computed in time linear in its number of
vertices and edges [20, pp. 655-657] so the optimal packing in A by blocks
can be obtained from G in O(n) time. This takes O(mn) time in total.

There are a few further details in how we use Secondary Structure Block-
iness in practice which are discussed below.

(a) Blocks are calculated first the on structure classes a-helix and S-
strand. We have an option to then also construct coil blocks on
the columns of an alignment that are not already covered by a-
helix and S-strand blocks. In practice, we found that including this
second coil pass increases the advising accuracy over only including
blocks for non-coil classes.

(b) We also specify a minimum number of rows k in the definition of
a block.“We fine that in practice, blockiness shows the best per-
formance when this minimum is set to k = 2 rows. While using a
minimum of & = 1 would not have affected the results if we only
used a— or B=blocks, using k >"1 increased the number of columns
that could be included in coil blocks.

(c) Permitting gap characters in blocks allows them to be extended to
regions that may have single insertions or deletions in one or more
sequences. When gaps are allowed in a block they do not contribute
to the value of the block (as the value is still defined as the number
of residue pairs in the columns and rows of the block), but they can
extend a block to include more rows. We find that including gaps
increases the accuracy advising with of blockiness in practice.

(d) In reality, a-helix and S-strand physically both have a minimum
number of amino acids to form their structures. We have two modes
to capture this: one that sets the minimum based on actual physical
sizes and one that sets the minimums to the same length. In the
unequal mode, the minimum sizes a-helix, ¢, = 4; S-strand, {g = 3;
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and coil, £, = 2. In equal mode, £, = {g = . = 2. We find that in
practice, the unequal mode gives better advising accuracy.

(e) The secondary structure prediction tool PSIPRED outputs confi-
dence values p; for each structure type t € {«a, 8, c}. These can be
used to choose a single structure prediction at each position in a pro-
tein, by assigning the prediction with the highest confidence value.
Alternately, we can choose a threshold 7, and say that a residue in
the protein has not just one structure type, but all structure types
with p; > 7. In this way, residues can be in multiple blocks of differ-
ent structure types if both types have high confidence; in the final
packing however, it will only be in one since the blocks of a packing
are column-disjoint. We found that in practice, using confidences
in this way to allow ambiguous structural types was detrimental to
advising accuracy on the benchmarks we considered.

The remaining feature functions in Facet are simpler to compute than Sec-
ondary Structure Blockiness.

3.2.2 Secondary Structure Agreement

The secondary structure prediction tool PSIPRED [51] outputs confidence
values at each residue that are intended to reflect the probability that the
residue has each of the three secondary structure types. Denote these three
confidences for a residue i, (the residue in the i-th sequence at the r-th
column), normalized so they add up to 1, by pa(i,7), pg(i,r), and p.(i,7).
Then we can estimate the probability that two sequences i, ;7 in column r
have the same secondary structure type that is not coil, by looking at the
support for that pair from all intermediate sequences k. We first define the
similarity of two residues (i,7) and (j,7) in column r as

S, k,r) = pal(i,r)palk,r) + pp(i,r)pa(k,r).

To measure how strongly the secondary structure locally agrees between se-
quences ¢ and j around column r, we compute a weighted average P of S in
a window of width 2/ + 1 centered around column 7,

P(i,jr) = Y wpS(kj,r+p)
—L<p<¥

where the weights w,, form a discrete distribution that peaks at p = 0 and
is symmetric.

We can define the support for the pair 4, j from intermediate sequence k
as the product of the similarities of each ¢ and j with k, P(i, k,r) P(k,j,7).
The support @ for pair 4, j from all intermediate sequences is then defined as
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Q(’i,j,?”) = Z P(i,k,?“) P(k‘,j,?“),
0<k<N
i£k
£k
The value of the Secondary Structure Agreement feature is then the average
of Q(i,j,r) over all sequence pairs %, j in all columns r.

This is the feature with the largest running time, but is also one of the
strongest features. Is running time is O(m3nf) for m sequences in an align-
ment of length n.

The value of £ and w must be set by the user. We tried various values for
both, and found that ¢ = 2 and w = (0.7,0.24,0.28,0.24,0.7) gave the best

advising results.

3.2.3 Gap Coil Density

A gap in a pairwise alignment is a maximal run of either insertions or dele-
tions. For every pair of sequences, there is a set of gap-residue pairs (residues
that are aligned with gap characters) which each has an associated secondary
structure prediction given by PSIPRED (the structure assigned to the residue
in the pair). The Gap Coil Density feature measures the fraction of all gap-
residue pairs with a secondary structure type of coil.

As described, computing Gap Coil Density may seem quadratic in the
number of sequences. By simply counting the number of gaps g;, coil-labeled
non-gap entries ;, and non-coil-labeled non-gap s; entries in column ¢, we
can compute this feature by

Z 9i Vi

columns ¢

S g (i + s

columns ¢

All this counting takes linear time total in the number of sequences, so the
running time for computing Gap Coil Density is O(mn).

Alternately, we can use PSIPRED confidences; the feature value is then
the average coil confidences over all gap-residue pairs in the alignment. We
find that in practice, using these confidences gives better advising accuracy.

3.2.4 Gap Extension Density

This feature counts the number of null characters in the alignment (the
dashes that denote gaps). This is related to affine gap penalties (Gotoh 1982),
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which are commonly used to score alignments. We normalize this count by
the total number of alignment entries, or an upper bound U on the number
of possible entries. The reason to use the upper bound is so that we can
compare the feature value across alignments of the same sequences that may
have different alignment lengths, while still yielding a feature value that lies
in the range [0, 1]. We calculate this upper bound as

N
U = ( ) (maxs + max|s'|),
2 ses s'es’

where S" := S — argmax,cg |s|, Is that the second max gives the length of
the second longest sequence in S. We find that normalizing by U gives better
advising accuracies.

As the quantity described above is generally decreasing in to alignment
accuracy (since more gaps generally indicates a lower quality alignment), for
the actual feature value we use 1 minus this ratio described above.

Gap Extension Density essentially counts the number of null characters
in an alignment, which can be done in linear time for-each sequence. Thus
Gap Extension Density can be computed in O(mn) time. The lengths of the
input sequences can be computed in linear, so U can‘be computed in this
same amount of time.

3.2.5 Gap Open Density

This feature counts the number of runs of null characters in the rows of
the alignment (which also relates to affine gap penalties). Again we provide
options to normalize by the total length of all such runs, or by upper-bound
U of alignment size (which tends to give better advising accuracy). Just as
with Gap Extension Density, Gap Open Density can be computed in O(mn)
time.

Similar to Gap Extension Density, the ratio described above is generally
decreasing in alignment accuracy, so for the feature value we use 1 minus the
ratio described above.

3.2.6 Gap Compatibility

As in cladistics, we encode the gapping pattern in the columns of an alignment
as a binary state: residue (1), or null character (0). For an alignment in
this encoding we then collapse together adjacent columns that have the same
gapping pattern. We evaluate this reduced set of columns for compatibility by
checking whether a perfect phylogeny exists on them, using the so-called “four
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gametes test” on pairs of columns. More specifically, a pair of columns passes
the four gametes test if at most three of the four possible patterns 00, 01,
10, 11 occur in the rows of these two columns. A so-called perfect phylogeny
exists, in which the binary gapping pattern in each column is explained by
a single insertion or deletion event on an edge of the tree, if and only if
all pairs of columns pass this test. (See 48 pages 462-463, or 41.) The Gap
Compatibility feature measures the fraction of pairs of columns in the reduced
binary data that pass this test, which is a rough measure of how tree-like the
gapping pattern is in the alignment. Rather than determining whether a
complete column pair passes the four-gametes test, we can instead measure
the fraction of a column pair that pass this test (the largest subset of rows
that pass the test divided by the total number of rows), averaged over all
pairs of columns. We find that this second version of the feature works better
in practice, most likely because it is a less strict measure of the evolutionary
compatibility of the gaps.

For each pair of columns, we can compute the encoding of each row in
constant time, so we can collect the counts for the four-gametes states in
linear time in the number of sequences for a given column pair. Since we
must examine all pairs of columns, the running time for Gap Compatibility
is quadratic in the number of columns. Evaluating this feature takes O(m?n)
time for an alignment with m sequences and n columuns.

3.2.7 Substitution Compatibility

Similar to Gap Compatibility, we encode the substitution pattern in the
columns of an alignment by a binary state: using a reduced amino acid al-
phabet of equivalency classes, residues in the most prevalent equivalency
class in the column are mapped to 1, and all others to 0. This feature mea-
sures the fraction of encoded column pairs that pass the four-gametes test,
which again is a rough measure of how tree-like the substitution pattern is
in the alignment. Again we tested have options for using both whole-column
and fractional-column measurements; we find that fractional-column mea-
surements give better accuracy. We also considered the standard reduced
amino-acid alphabets with 6, 10, 15, and 20 equivalency classes, and find the
15-class alphabet, gives the strongest correlation with accuracy.

Just like Gap Compatibility, evaluating Substitution Compatibility takes
O(m?n) time.
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3.2.8 Amino Acid Identity

This feature is usually called simply “percent identity.” In each induced pair-
wise alignment, we measure the fraction of substitutions in which the residues
have the same amino-acid equivalency class, where we use the reduced al-
phabet with 10 classes. The feature averages this fraction over all induced
pairwise alignments.

We can compute Amino Acid Identity for a whole alignment by determin-
ing the frequency of each amino-acid class in each column, and summing the
number of pairs of each alphabet element in a column. Computing amino-acid
identity in this way takes O(mn + n|X|) time for amino-acid equivalency X.
Assuming | ¥| is constant, this is O(mn) time.

3.2.9 Secondary Structure Identity

This feature is like Amino Acid Identity, except instead of the protein’s
amino-acid sequence, we use the secondary-structure sequence predicted for
the protein by PSIPRED [51], which is a string over the 3-letter secondary
structure alphabet. Similar to the approach described for Amino Acid Iden-
tity, we can compute Secondary Structure Identity in O(mn) time (where the
structural alphabet here is {«, 8,7}, so |X]| = 3).

We also consider a second version that uses the secondary structure confi-
dences, where instead of counting identities, we calculate the probability that
a pair ¢, j of residues has the same secondary structure, by

Pa(D)pald) + ps()ps(§) + py(D)py(5)-

In this version, we cannot use the prior running-time reduction trick, and
must examine all pairs of rows in a column, which takes total time O(m?n)
for and alignment with m rows and n columns.

3.2.10 Average Substitution Score

This computes the total score of all substitutions in the alignment, using a
BLSM62 substitution-scoring matrix [49] that has been shifted and scaled
so the amino acid similarity scores are in the range [0, 1]. We can normalize
this total score by the number of substitutions in the alignment, or by upper
bound U given earlier so the feature value is comparable between alignments
of the same sequences. We find that normalizing by U provides a feature
value that correlates better with true accuracy.
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Similar to the running-time reduction of Amino Acid Identity, we can
count the frequency of each amino acid in each column of an alignment, and
sum the BLSM62 score for each possible amino-acid substitution multiplied
by the product of the frequency for the two amino acids. This reduces the
running time to O(mn + n|X|?), which is faster than considering all pairs of
rows when |X| < n (otherwise we can use the naive O(m?n) approach).

3.2.11 Core Column Density

For this feature, we first predict core columns as those that only contain
residues (and not gap characters) and whose fraction of residues that have
the same amino acid equivalency class, for the 10-class alphabet, is above a
threshold. The feature then normalizes the count of predicted core columns
by the total number of columns in the alignment. We considered the standard
reduced alphabets with 6, 10, 15, and 20 equivalency classes, and use the 10-
class alphabet, as it gave the strongest correlation with true accuracy. We
also tested various thresholds and found that a value of 0.9 gave the best
trend.

Using the same trick described earlier for Amino Acid Identity, a “core”
label can be assigned to the column in linear time, therefore we can evaluate
this naive Core Column Density in O(mn) time. We will later develop a
more sophisticated method for predicting core columns in an alignment in
Chapter 9.

3.2.12 Information Content

This feature measures the average entropy of the alignment [50], by summing
over the columns the log of the ratio of the abundance of a specific amino
acid in the column over the background distribution for that amino acid,
normalized by the number of columns in the alignment.

Amino-acid frequencies can be calculated in linear time for each column,
and background frequencies for each amino acid can also be found in one
pass across the whole alignment. We then evaluate information content in
each column by making one pass over the frequencies for each element in the
alphabet. Computing Information Content for an input alignment in O(mn+
m|X|) time for alphabet Y. Once again, if we assume the alphabet size is
constant, this running time is O(mn).

We considered the standard reduced alphabets with 6, 10, 15, and 20
equivalence classes, and used the 10-class alphabet, which gave the strongest
correlation with true accuracy.
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3.2.13 Results

Figure 3.1 shows the correlation of each of these features described above with
true accuracy. We describe this set of benchmarks and testing procedures
in full detail in Chapter 6. Briefly, we collected a total of 861 benchmark
alignments from the BENCH suite of [40], which consists of 759 benchmarks,
supplemented by a selection of 102 benchmarks from the PALT suite of [9].
For each of these benchmarks we used the Opal aligner to produce a new
alignment of the sequences under its default parameter setting. For each of
these computed alignments, we know the underlying correct alignment, sowe
can evaluate the true accuracy of the computed alignment. We also calculated
each of the 12 feature values for each of these alignments. The figure shows the
correlation of each of the features with true accuracy, where each of the 861
circles in each plot is one benchmark with its true accuracy on the horizontal
axis and feature function value on the vertical. Notice that while all of the
features generally have a positive trend with true accuracy, the ranges of the
feature values differ substantially.

This comprises the set of features considered for constructing the Facet
accuracy estimator. The next section describes the software implementing
the Facet estimator.

3.3 Software

We implemented the Facet estimator using the Java programming lan-
guage. The software can be used in one of three ways:

(1) Command line — For a given set of sequences, the user must first
run PSIPRED to predict the secondary structure for each unaligned
sequence. The scripts provided put these predictions in a format
that is readable by Facet. Facet can then be invoked for each
alignment in FASTA or CLUSTAL format, and the result is returned
via standard out. Details of running Facet for alignments of the
same sequences is shown in Figure 3.3. The Facet coefficients can
also be changed via command line options (not shown in the figure),
which override the default feature coefficients.

(2) Application Programming Interface — Within another Java
application, a user can obtain the Facet score of an alignment by
first creating a FacetAlignment object, which encapsulates the
sequence alignment information as well as the secondary structure
predictions. The user can then invoke Facet through a method
call. An example of how to use Facet through the API is shown in
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Fig. 3.1 Correlation of features with true accuracy. The scatter plots show
values of all twelve feature functions considered for the Facet estimator, on the 861
benchmarks used for testing (described in Chapter 6), using the default parameter
setting for the Opal aligner. Each circle is one benchmark alignment plotted with its
true accuracy on the horizontal axis (since we know the reference, we can calculate
true accuracy) and its feature value on the vertical axis. The line shows is a weighted
least-squares line where the weight for a benchmark is calculated to remove the bias
towards benchmarks with high accuracy under the default parameter settings. The
precise form of the weighting us described in detail in Chapter 6.

Figure 3.2. The Facet coefficients can be changed in the API via
a second argument to the method call (not shown in the figure).

(3) Within Opal — When creating an alignment using the Opal
aligner, a user can pass the alignment structure via the ——facet_structure
command-line option. The structure format given to Facet em-
bedded within Opal is different from the format for stand-alone
Facet. When the structure is given to Opal, the Facet score is
printed to standard out, or can be included in the output filename.
Section 6.6.1 gives details on the changes made to Opal related to
Facet and parameter advising.
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FacetAlignment alignl = new FacetAlignment(alignedSegsl,strucPred,strucProb);
FacetAlignment align2 = new FacetAlignment(alignedSeqgs2,strucPred,strucProb);

if (Facet.estimator(alignl) > Facet.estimator(align2))
return alignedSegsl;

else
return alignedSegs2;

Fig. 3.2 Using the Facet tool API.

$./PSIPRED_wrapper.pl segs.fa > segs_struc 2> seqgs_prob |€—— Only predict
$./FACET.sh alignl.fa segs_struc seqs_prob structure once

alignl.fa 0.565

Facet values on $. {FACET. sh align2.fa seqs_struc segs_prob
‘standard out’ align2.fa 0.868

S $./FACET.sh align3.fa seqs_struc segs_prob

align3.fa 0.342

Fig. 3.3 Using the Facet tool on the command line.

All three implementations of Facet can be found on the Facet website at
http://facet.cs.arizona.edu/. Along with Facet, and links to the
Opal software, there are videos explaining our methodology, and supplemen-
tary data used in our experiments.

Summary

In this chapter, we have described several easily-computable feature functions
for estimating alignment accuracy. Using these features in the framework de-
scribed in Chapter 2 yields our new accuracy estimator Facet. We later give
the coefficients for the feature functions; when trained on example alignments
from benchmarks with known reference alignments, in Chapter 6.


http://facet.cs.arizona.edu/

Chapter 4
The Optimal Advisor Problem

Overview

In this chapter, we define the problem of constructing an optimal advisor:
finding both the estimator coefficients and advisor set that give the highest
average advising accuracy. We can also restrict this problem to just finding
optimal estimator coeflicients for a given advisor set and finding an optimal
advisor set for a given estimator. The optimal advisor problem is NP-complete
(as are the restrictied optimal estimator and optimal advisor set problems).

4.1 Introduction

A parameter advisor has two components: (i) the advisor estimator, which
ranks alternate alignments that the advisor will choose among; and (ii) the
advisor set, which should ‘be small but still provide for each input at least one
good alternate alignment that the advisor can choose. These two components
are very-much interdependent. A setting of estimator coefficients may work
well for one advisor set, but may not be able to distinguish accurate align-
ments for another. Similarly for a given advisor set, one setting of advisor
coefficients may work well while another may not.

An optimal advisor is both an advisor estimator and and advisor set that
together produce the highest average advising accuracy on a collection of
benchmarks. In this chapter, we consider the problem of constructing an
optimal advisor. We also discuss restrictions of this problem to finding an
optimal advisor set for a given estimator, or an optimal estimator for a given
advisor set. All three versions of the problem are NP-complete.

This chapter was adapted from portions of previous publications [26, 33].
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4.2 Learning an optimal advisor

We now define the computational problem of learning an optimal advisor. The
problem has several variations, depending on whether the advisor’s estimator
or set of parameter choices are fixed: (a) simultaneously finding both the best
set and estimator, (b) finding the best set of parameter choices to use with
a given estimator, and (c) finding the best estimator to use with a given set
of parameter choices. We assume throughout that the features used by the
advisor’s estimator are given and fixed.

From a machine learning perspective, the problem formulations find an
advisor that has optimal accuracy on a collection of training data. The un-
derlying training data is

e a suite of benchmarks, where each benchmark B; in the suite consists
of a set of sequences to align, together with a reference alignment R;
for these sequences that represents their “correct” alignment, and

e a collection of alternate alignments of these benchmarks, where each
alternate alignment A;; results from aligning the sequences in bench-
mark ¢ using a parameter choice j that is drawn from a given uni-
verse U of parameter choices.

Here a parameter choice is an assignment of values to all the parameters
of an aligner that may be varied when computing an alignment. Typically
an aligner has multiple parameters whose values can be specified, such as
the substitution scoring matrix and gap penalties for itsalignment scoring
function. We represent a parameter choice by a vector whose components
assign values to all these parameters. (So for protein sequence alignment, a
typical parameter choice is a 3-vector specifying the (i) substitution matrix,
(ii) gap-open penalty, and (iii) gap-extension penalty.) The universe U of
parameter choices specifies all the possible parameter choices that might be
used for advising. A particular advisor will use a subset P C U of parameter
choices that it considers when advising. In the special case |P| = 1, the single
parameter choice in set P that is available to the advisor is effectively a
default parameter choice for the aligner.

Note that since a reference alignment R; is known for each benchmark B;,
the true accuracy of each alternate alignment A;; for benchmark B; can be
measured by comparing alignment A;; to the reference R;. Thus for a set P C
U of parameter choices available to an advisor, the most accurate parameter
choice j € P to use on benchmark B; can be determined in principle by
comparing the resulting alternate alignments A;; to R; and picking the one
of highest true accuracy. When aligning sequences in practice, a reference
alignment is not known, so an advisor will instead use its estimator to pick the
parameter choice j € P whose resulting alignment A;; has highest estimated
accuracy.

In the problem formulations below, this underlying training data is sum-
marized by
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e the accuracies a;; of the alternate alignments A;;, where accuracy a;;
measures how well the computed alignment A;; agrees with the ref-
erence alignment R;, and

o the feature vectors Fj; of these alignments A;;, where each vector F};
lists the values for A;; of the estimator’s feature functions.

As we have defined in Chapter 2, for an estimator that uses ¢ feature functions,
each feature vector Fj; is a vector of ¢ feature values,

Fy; = (gijl gij2 - gijt)v

where each feature value g;;5, is a real number satisfying 0 < g;;5, < 1. Feature
vector Fj; is used by the advisor to evaluate its accuracy estimator £ on
alignment A;;. Let the coefficients of the estimator E be given by vector

c = (c1ea - ).

Then the value of accuracy estimator E on alignment A;; is given by the
inner product

E(.(AU) = C'Fij = Z Chgijh- (41)
1<h<t

Informally, the objective function that the problem formulations seek to
maximize is the average accuracy achieved by the advisor across the suite
of benchmarks in the training set. The benchmarks may be nonuniformly
weighted in this average to correct for bias in the training data, such as
the over-representation of easy benchmarks that typically occurs in standard
benchmark suites.

A subtle issue that the formulations must take into account is that when
an advisor is selecting a parameter choice via its estimator, there can be
ties in the estimator value, so there may not be a unique parameter choice
that maximizes the estimator. In this situation, we assume that the advisor
randomly selects a parameter choice among those of maximum estimator
value. Given this randomness, we measure the performance of an advisor on
an‘input by its expected accuracy on that input.

Furthermore, in practice any accuracy estimator inherently has error (oth-
erwise it would be equivalent to true accuracy), and a robust formulation for
learning an advisor should be tolerant of error in the estimator. Let ¢ > 0
be a given error tolerance, and P be the set of parameter choices used by an
advisor. We define the set O;(P) of parameter choices that the advisor could
potentially output for benchmark B; as

O;(P) = {jeP L Bo(Ay) > e — e}, (4.2)

where €} := max{E.(A;;) : j € P} is the maximum estimator value on
benchmark B;. The parameter choice output by an advisor on benchmark B;
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is selected uniformly at random among those in O;(P). Note that when € = 0,
set O;(P) is simply the set of parameter choices that are tied for maximizing
the estimator. A nonzero tolerance € > 0 can aid in learning an advisor that
has improved generalization to testing data.

The expected accuracy achieved by the advisor on benchmark B; using
set P is then

1
Ai(P) = Wje%ip)aij. (4.3)

In learning an advisor, we seek a set P that maximizes the advisor’s expected
accuracy A;(P) on the training benchmarks B;.

Formally, we want an advisor that maximizes the following objective func-
tion,

fe(P) = Z w; Ai(P), (4.4)

where i indexes the benchmarks, and w; is the weight placed on bench-
mark B;. (The benchmark weights are to correct for possible sampling bias
in the training data.) In words, objective f.(P) is the expected accuracy of
the parameter choices selected by the advisor averaged across the weighted
training benchmarks, using advisor set P and the estimator given by coeffi-
cients c. We write the objective function as f(P) without subscript ¢ when
the estimator coefficient vector cis fixed or understood from context.

We use the following argmin and argmaz notation. For a function f and
a subset S of its domain,

argmin{ f(z) : @ € S}

denotes the set of all elements of S that achieve the minimum value of f, or
in other words, the set of minimizers of f on S. Similarly, argmax is used to
denote the set of maximizers.

4.2.1 Optimal Advisor

We first define the problem of finding an optimal advisor: that is, simulta-
neously finding an advisor estimator and an advisor set that together yields
the highest average advising accuracy.

In the problem definition,

e 7 is the number of benchmarks, and
e tis the number of alignment features.

Set O denotes the set of rational numbers.

Definition 4.1¢(Optimal Advisor) The Optimal Advisor problem takes as
input
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e cardinality bound k > 1,

e universe U of parameter choices,

e weights w; € Q on the training benchmarks B;, where each w; > 0
and ), w; =1,

e accuracies a;; € Q of the alternate alignments A
aij <1,

e feature vectors Fj; € Q' for the alternate alignments A;;, where each
feature value g;;5 in vector Fj; satisfies 0 <g;;, <1, and

e error tolerance € € Q where € > 0.

ij» where each 0 <

The output is

e estimator coefficient vector ¢ € Qf, where each coefficient ¢; in vector ¢
satisfies ¢; > 0 and ), _,, ¢; = 1, and
e set P C U of parameter choices for the advisor, with |P| < k,

that maximizes objective f.(P) given by equation (4.4).

4.2.2 Advisor Set

We can restrict the optimal advisor problem to finding an optimal set of
parameter choices for advising with a given estimator.

Definition 4.2(Advisor Set) The Advisor Set problem takes as input

e weights w; on the benchmarks,

e accuracies a;; of the alternate alignments,

o feature vectors F;; for the alternate alignments,

o coefficients’'c = (c¢1---¢;) € Q! for the estimator, where each ¢; > 0
and ) 20, ¢ =1, and

e error tolerance e.

The output is
e advisor set P

that maximizes objective f.(P) given by equation (4.4).

4.2.8 Advisor Estimator
Similarly, we can define the problem of finding an optimal estimator where
the set of parameter choices for the advisor is now given.

Definition 4.3(Advisor Estimator) The Advisor Estimator problem takes
as input
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e weights w; on the benchmarks,

e accuracies a;; of the alternate alignments,

o feature vectors Fj; for the alternate alignments,
e advisor set P, and

e crror tolerance e.

The output is

o coefficients ¢ = (¢1-+-¢;) € Q! for the estimator, where each ¢; > 0
and Z1gi§t c =1,
that maximize objective f.(P) given by equation (4.4).

For Advisor Estimator, resolving ties to pick the worst among the pa-
rameter choices that maximize the estimator, as in the definition of A(%)
in equation (4.4), is crucial, as otherwise the problem formulation becomes
degenerate. If the advisor is free to pick any of the tied parameter choices,
it can pick the tied one with highest true accuracy; if this is allowed, the
optimal estimator c¢* that is found by the formulation would degenerate to
the flattest possible estimator that evaluates all parameter choices as equally
good (since the degenerate flat estimator would make the advisor appear to
match the performance of a perfect oracle on set P). Resolving ties in the
worst-case way eliminates this degeneracy.

4.3 Complexity of learning optimal advisors

We now prove that Advisor Set, the problem of learning an optimal parameter
set for an advisor (given by Definition 4.2 of Section 4.2) is NP-complete, and
hence is unlikely to be efficiently solvable in the worst-case. As is standard, we
prove NP-completeness for a decision wversion of this optimization problem,
which is a version whose output is a yes/no answer (as opposed to a solution
that optimizes an objective function).

The decision version of Advisor Set has an additional input £ € Q, which
will lower bound the objective function. The decision problem is to determine,
for the input instance k, U, w;, a5, Fij;, ¢, €, ¢, whether or not there exists a
set P C U with |P| <k for'which the objective function has value f.(P) > ¢.

Theorem 4.1 (NP-completeness of Advisor Set). The decision version
of Adwisor Set is NP-complete.

Proof. We use a reduction from the Dominating Set problem, which is NP-
complete [45, problem GT2|. The input to Dominating Set is an undirected
graph G = (V, E) and an integer k, and the problem is to decide whether or
not G contains a vertex subset S C V with |S| <k such that every vertex
in Visin S or is adjacent to a vertex in S. Such a set S is called a dominating
set for G.
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Given an instance G, k of Dominating Set, we construct an instance U, w;, a;5, Fi;, ¢, €, £
of the decision version of Advisor Set as follows. For the cardinality bound
use the same value k, for the number of benchmarks take n=|V|, and index
the universe of parameter choices by U = {1,...,n}; have only one feature
(d=1) with estimator coefficients ¢=1; use weights w; =1/n, error tolerance
€=0, and lower bound ¢=1. Let the vertices of G be indexed V = {1, ..., n}.
(So both the set of benchmarks and the universe of parameter choices in
essence correspond to the set of vertices V' of graph G.) Define the neigh-
borhood of vertex i in G to be N(i) := {j : (i,j) € E} U{i}, which is the
set of vertices adjacent to 4, including ¢ itself. For the alternate alignment
accuracies, take a;; =1 when j € N(4); otherwise, a;; = 0. For the feature
vectors, assign Fj; = a;;.

We claim G, k is a yes-instance of Dominating Set iff k, U, w;, a;5, Fy;, ¢, €,£
is a yes-instance of Advisor Set.

To show the forward implication, suppose G has a dominating set S C V
with |S] < k, and consider the advisor set P = S. ' With the above construc-
tion, for every benchmark, set O;(P) = N (i) NS, which is nonempty (since S
is a dominating set for G). So A;(P) = 1 for all benchmarks. Thus for this
advisor set P, the objective function has value fo(P) =1 > /.

For the reverse implication, suppose advisor set P achieves objective
value ¢ = 1. Since P achieves value 1, for every benchmark it must be that
A;(P) =1. By construction of the a;;, this implies that in G every vertex
1 €V isin P or is adjacent to a vertex in P. Thus set S'= P, which satis-
fies |S| < k, is a dominating set for G.

This reduction shows Advisor Set is NP-hard, as the instance of Advisor
Set can be constructed in polynomial time. Furthermore, it is in NP, as we
can nondeterministically guess an advisor set P, and then check whether its
cardinality is at-most k and its objective value is at least ¢ in polynomial
time. Thus Advisor Set is NP-complete.

Note that the proof of Theorem 4.1 shows Advisor Set is NP-complete for
the special case of a single feature, error tolerance zero, when all accuracies
and feature values are binary, and benchmarks are uniformly weighted.

In general, we would like to find an optimal parameter advisor, which re-
quires simultaneously finding both the best possible parameter set and the
best possible accuracy estimator. We define the general problem of construct-
ing an optimal parameter advisor as follows.

The decision version of Optimal Advisor, similar to the decision version
of Advisor Set; has an additional input ¢ that lower bounds the objective
function.

We next prove that Optimal Advisor is NP-complete. While its NP-
hardness follows from Advisor Set, the difficulty is in proving that this more
general problem is still in the class NP.
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Theorem 4.2 (NP-completeness of Optimal Advisor). The decision
version of Optimal Advisor is NP-complete.

Proof. The proof of Theorem 4.1 shows Advisor Set remains NP-hard for
the special case of a single feature. To prove the decision version of Optimal
Advisor is NP-hard, we use restriction: we simply reduce Advisor Set with
a single feature to Optimal Advisor (reusing the instance of Advisor Set for
Optimal Advisor). On this restricted input with d = 1, Optimal Advisor is
equivalent to Advisor Set, so Optimal Advisor is also NP-hard.

We now show the general Optimal Advisor problem is in class NP. To de-
cide whether its input is a yes-instance, after first nondeterministically guess-
ing parameter set P C U with |P| < k, we then make for each benchmark i a
nondeterministic guess for its sets O;(P) and M;(P) := argmax{c-F;; : j € P},
without yet knowing the coefficient vector c. Call O; the guess for set O;(P),
and ]\AJ/Z the guess for set M;(P), where ]\Z - 61 C P. To check whether
a coefficient vector ¢ exists that satisfies O;(P) =0; and M;(P) = M;, we
construct the following linear program with variables ¢ = (¢1---¢q) and &.
The objective function for the linear program is to maximize the value of
variable £. The constraints are: ¢, >0 and Zl<h<d cpn =1; 0<£<1; for all

benchmarks ¢ and all parameter choices j* € ]\Z and j ¢ J\Al/i,
c-Fye > c-Fyy + &;
for all benchmarks 7 and all parameter choices j,7 € ]\Z,
c-Fyj = c.Fy;
for all benchmarks and all parameter choices j* € ]\AjZ and j € 61-,
c-Fyj > c-Fy» — e.

This linear program can be solved in polynomial time. If it has a feasible
solution, then it has an optimal solution (as its objective function is bounded).
In‘an optimal solution ¢*,£* we check whether £* > 0. If this condition holds,
the guessed sets O;, M;, correspond to actual sets O;(P) and M;(P) for an
estimator. For each benchmark ¢, we then evaluate A;(P), and check whether
> wi A;j(P) > (. Note that after guessing the sets P, 61, and ]\Z, the rest
of the computation runs in polynomial time. Thus Optimal Advisor is in NP.

Theorem 4.3 (NP-completeness of Advisor Estimator). The decision
version of Advisor Estimator is NP-complete.

Proof. To:show Advisor Estimator is NP-hard, we use a similar reduction
from Dominating Set that we used in proving Theorem 4.1. Given an in-
stance G, k of Dominating Set, we construct an instance wj, a;j, Fij, P, €,£,0
of the decision version of Advisor Estimator, where we use the same cardinal-
ity bound k, number of benchmarks and parameter choices n=|V|, weights
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w; = 1/n, error tolerance € =0, accuracies a;; again defined as before, and
lower bound ¢ =1, as we did for Advisor Set. For the set P of parameter
choices for the advisor, we take P ={1,...,n}. The number of features is
now t=n. (So in essence the set of benchmarks, the advisor set, and the set
of features all coincide with the set of vertices V.) For the feature vectors
we take F;; = (0---0 a;; 0---0) which has value a;; at location j. This is
equivalent to a feature vector Fj; that is all zeroes, except for a 1 at loca-
tion j if j=1 or vertex j is adjacent to vertex i in GG. For the precision lower
bound we take §=1/k. Note that this instance of Advisor Estimator-can be
constructed in polynomial time.

We claim that G, k is a yes-instance of Dominating Set iff w;, asj, Fij, P, €, 4,0
is a yes-instance of Advisor Estimator. To show the reverse implication, first
notice that with the chosen ¢, coefficient vector ¢ can have at most k nonzero
coefficients (since if ¢ has more than k nonzero coefficients, > . ¢; > kd =1, a
contradiction). Let feature subset S C V be all indices ¢ at which ¢; > 0. We
call S the support of ¢, and by our prior observation |S| <'k. By construction
of the feature vectors, ¢ - F;; = ¢; if j € N(i); otherwise, ¢ - Fj; = 0. This
further implies that A;(P)=1 if S N N(4) is nonempty; otherwise, A;(P)=0.
So if there exists coefficient vector ¢ such that the objective function achieves
value 1, then the support S of ¢ gives a vertex subset S C V that is a domi-
nating set for G. For the forward implication, given a dominating set S C V
for G, take for the estimator coefficients ¢;=1/|5] if ¢ € S, and ¢; =0 other-
wise. The nonzero coefficients of this vector ¢ have value at least J, and by
the same reasoning as above, each A;(P) =1 as S is a dominating set, so
the estimator given by this vector ¢ yields an advisor that achieves objective
value 1, which proves the claim.

We can show Advisor Estimator is in class NP using the same construction
used for proving Optimal Advisor is in class NP. For each benchmark we can
make a nondeterministic choice for its set O;(P), and compute M,;. We can
then construct a linear program to determine if these guesses are actual sets
for the estimator. The guesses and solution of the linear program can be
performed in polynomial time. Thus Advisor Estimator is in NP.

Summary

In this chapter, we have formally defined the problem of finding an optimal
advisor and two related problems of finding an optimal advisor set and an
optimal advisor estimator. We then proved that all three problems (Opti-
mal Advisor, Advisor Set, and Advisor Estimator) are NP-complete. In the
next chapter, we describe practical approaches to the Advisor Set problem,
and how to model all three problems by mixed-integer linear programming
(MILP).






Chapter 5
Constructing Advisor

Overview

In this chapter, we consider the problem of learning an epimal set of parame-
ter choices for a parameter advisor. We consider two forms of the advisor sets
problem: (i) sets that are estimator-unaware (and are optimal for a prefect
estimator called an oracle), and (ii) sets that are optimal for a given accuracy
estimator. In this context the optimal advisor set is one that maximizes the
average true accuracy of the resulting parameter advisor, over a collection
of training benchmarks. Chapter 4, we proved in that learning an optimal
set for an advisor is NP-complete. Here we can model the problem of finding
optimal advisor sets as an integer linear program (ILP). We find this ILP
cannot be solved to optimality in practice, so we goon to develop an efficient
approximation algorithm for this problem that finds near-optimal sets, and
prove a tight bound on its approximation ratio.

5.1 Introduction

In Chapter 4, we introduced the advisor set problem and showed that it is
NP-complete. In this chapter, we show how to model the problem of finding
optimal advisor sets, and more generally finding optimal advisor, using inte-
ger linear programming. We have found that in practice these integer linear
programming models are not solvable to optimality even on very small inputs.
Consequently, Section 5.3 develops an efficient approzimation algorithm, that
is guaranteed to find near-optimal advisor sets for a given estimator.

In this chapter we consider how to learn sets of parameter choices for a real-
istic advisor, where these sets are tailored to the actual estimator used by the
advisor (as opposed to finding parameter sets for a perfect but unattainable

This chapter was adapted from portions of previous publications [26, 27].
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oracle advisor). While learning such sets that are oprimal is NP-complete,
there is an efficient greedy approximation algorithm for this learning prob-
lem, and we derive a tight bound on its worst-case approximation ratio. Ex-
periments show that the greedy parameter sets found by this approximation
algorithm, using Facet, TCS, MOS, PredSP, or GUIDANCE as the advisor’s
accuracy estimator, outperform optimal oracle sets at all cardinalities. Fur-
thermore, on the training data, for some estimators these suboptimal greedy
sets perform surprisingly close to optimal ezxact sets found by exhaustive
search. Moreover, these greedy sets actually generalize better than exact sets.
As a consequence, on testing data, for some estimators the greedy sets out-
put by the approximation algorithm can actually give superior performance
to exact sets for parameter advising.

5.2 Constructing optimal advisors by integer linear
programming

We now show how to construct optimal advisors by integer linear program-
ming. Recall that an integer linear program (ILP) is an optimization problem
with a collection of integer-valued variables, an objective function to optimize
that is linear in these variables, and constraints that are linear inequalities in
the variables. Our formulations of Advisor Coefficients and Optimal Advisor
are actually so-called mized-integer programs; where some of the variables
are real-valued, while Advisor Set has all integer variables.

The integer linear programming formulations we give below actually model
a more general version of the advising problems. The advising problems in
Section 4.2 define the advisor A so that it carefully resolves ties among the
parameter choices that achieve the optimum value of the estimator, by picking
from this tied set the parameter choice that has lowest true accuracy. (This
finds a solution that hasthe best possible average accuracy, even in the worst
case.) We extend the definition of advisor A to now pick from a larger set of
near-optimal parameter choices with respect to the estimator. To make this
precise, for benchmark i, set P of parameter choices, and a real-value § > 0,
let

Ms(i) = {] €eP : c Fy; > Iglea;({C~Fik} - 5}.

Set M;(i) is the near-optimal parameter choices that are within ¢ of maxi-
mizing the estimator for benchmark i. (So M;(i) 2 argmax;cp{c- Fi;}, with
equality when 6 = 0.) We then extend the definition of the advisor A in
equation (4.4) for § >0 to

A(i) € argmin{aij 1 j € Mg(’i)}. (5.1)
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At 6 =0, this coincides with the original problem definitions. The extension
to >0 is designed to boost the generalization of optimal solutions (in other
words, to find a solution that is not over fit to the training data) when we
do cross-validation experiments on independent training and test sets as in
Chapter 6. We give integer linear programming formulations for this extended
definition of our advising problems.

5.2.1 Modeling the Advisor Set Problem

The integer linear program (ILP) for Advisor Set has three classes of vari-
ables, which all take on binary values {0, 1}. Variables z;;, for all benchmarks ¢
and all parameter choices j from the universe, encode the advisor A: z;; =1
if the advisor uses choice j on benchmark i; otherwise, z;; =0. Variables y;,
for all parameter choices j from the universe, encode the set P that is found
by Advisor Set: y; =1 iff j € P. Variables z;;, for all benchmarks ¢ and pa-
rameter choices j, encode the parameter choice in P with highest estimator
value for benchmark i: if z;; =1 then j € argmax,cp ¢+ Fj. This argmax
set may contain several choices j, and in this situation the ILP given below
arbitrarily selects one such choice j for which z;; =1.

For convenience, the description of the ILP below also refers to the new
constants e;;, which are the estimator values of the alternate alignments A,;:
for the fixed estimator c for Advisor Set, e;; = c - Fj;.

The objective function for the ILP is to maximize

Z’LUZ‘ Za,;j «Iij- (52)
( J

In this function, the inner sum Zj a;; Ty will be equal to a; 4(;), as the
x;; will capture the (unique) parameter choice that advisor A makes for
benchmark ¢. This objective is linear in the variables z;;.

The constraints for the ILP fall into three classes. The first class ensures
that variables y; encode set P, and variables x;; encode an assignment to
benchmarks from P. The ILP has constraints

>y <k, (5.3)

J
!Eij S yj, (55)

where equation (5.4) occurs for all benchmarks 4, and inequality (5.5) occurs
for all benchmarks 7 and all parameter choices j.
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In the above, inequality (5.3) enforces |P| < k. Equations (5.4) force the
advisor to select one parameter choice for every benchmark. Inequalities (5.5)
enforce that the advisor’s selections must be parameter choices that are avail-
able in P.

The second class of constraints ensure that variables z;; encode a parame-
ter choice from P with highest estimator value. To enforce that the z;; encode
an assignment to benchmarks from P,

>z =1, (5.6)
J
Zij S yja (57)

where equation (5.6) occurs for all i, and inequality (5.7) occurs for all i
and j. (In general, the z; will differ from the z;;, as the advisor does not
necessarily select the parameter choice with highest estimator value.) For
all benchmarks 4, and all parameter choices 7 and k from the universe with
eix < €35, we have the inequality

zik + y; <L (5.8)

Inequalities (5.8) ensure that if a parameter choice k is identified as having
the highest estimator value for benchmark ¢ by z;; = 1, there must not be
any other parameter choice j in P that has higher estimator value on i. Note
that the constants e;; are known in advance, so inequalities (5.8) can be
enumerated by sorting all j by their estimator value e;;, and collecting the
ordered pairs (k,j) from this sorted list.

The third class of constraints ensure that the parameter choices z;; selected
by the advisor correspond to the definition in equation (5.1): namely, among
the parameter choices in P that are within § of the highest estimator value
from P for benchmark ¢, the parameter choice of lowest accuracy is selected.
For all benchmarks i, all' parameter choices j, and all parameters choices k
and h with both ek, e € [e;;—0, e} and a;, < a;x, we have the inequality

Tik + Yo + 25 < 2. (5.9)

Inequalities (5.9) ensure that for the parameter choices that are within § of the
highest estimator value for benchmark ¢, the advisor only selects parameter
choice k for i if k is within ¢ of the highest and there is no other parameter
choice available in P within § of the highest that has lower accuracy. Finally,
for all benchmarks ¢ and all parameter choices j and k with e;; < e;;—3, we
have the inequality

Inequalities (5.10) enforce that the advisor cannot select parameter choice k
for ¢ if the estimator value for k is below § of an available parameter choice
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in P. (Inequalities (5.9) capture the requirements on parameter choices that
are within § of the highest, while inequalities (5.10) capture the requirements
on parameter choices that are below § of the highest.)

A truly remarkable aspect of this formulation is that the ILP is able to
capture all the subtle conditions the advisor must satisfy through its static
set of inequalities (listed at “compile time”), without knowing when the ILP
is written what the optimal set P is, and hence without knowing what pa-
rameter choices in P have the highest estimator value for each benchmark.

To summarize, the ILP for Advisor Set has binary variables ;;, y;, and z;;,
and inequalities (5.3) through (5.10). For n benchmarks and a universe of
m parameter choices, this is O(mn) variables, and O(m?n + mm?n) con-
straints, where m is the maximum number of parameter choices that are
within § in estimator value of any given parameter choice: For small §, typ-
ically m < m, which leads to O(m?n) constraints in practice. In the worst-
case, though, the ILP has ©(m?3n) constraints.

We also have an alternate ILP formulation that adds O(n) real-valued vari-
ables to capture the highest estimator value from P for each benchmark 4, and
only has O(m?n) total constraints (so fewer constraints than the above ILP
in the worst case), but its objective function is more involved, and attempts
to solve the alternate ILP suffered from numerical issues.

5.2.2 Finding optimal Oracle Sets

While we would like to find advisor sets that are optimal for the actual
accuracy estimator used by an advisor, in practice finding such optimal set
seems very hard. 'We can, however, in practice find optimal advisor sets that
are estimator oblivious, in the sense that the set-finding algorithm is unaware
of the mistakes made by the advisor due to using an accuracy estimator rather
than knowing true accuracy. More precisely, we can find an optimal advisor
set for an advisor whose “estimator” is the true accuracy of an alignment.
As mentioned previously, we call such an advisor an oracle.

To find an optimal oracle set, we use the same objective function described
in equation 5.2, and equations 5.3-5.5 to make sure an alignment is only
selected if the parameter that is used to generate it is chosen. Solving the
ILP with only these constraints will yield an optimal advisor set for the
oracle advisor. Note that ties in accuracy do not need to be resolved, as any
alignment with a tied “estimator” value also has a tied accuracy value, and
thus would not effect the objective value.

With the reduced number of variables and constraints in this modified
ILPm we are able to find optimal oracle sets in practice even for large set
cardinalities.
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5.2.3 Modeling the Advisor Estimator Problem

We now describe how to modify the above ILP for Advisor Set to obtain
an ILP for Advisor Coefficients. The modifications must address two issues:
(a) the set P is now fixed; and (b) the estimator ¢ is no longer fixed, so the
enumeration of inequalities cannot exploit concrete estimator values. We can
easily handle that set P is now part of the input by approriately fixing the
variables y; with new equations: for all j € P add equation y; =1, and for
all j€ P add y;=0.

To find the optimal estimator ¢, we add ¢ new real-valued variables
c1,...,cp with the constraints Zh cp, = 1 and ¢, > 0. We also-add two new
classes of binary-valued integer variables: (a) variable s;;, for all benchmarks 4
and all parameter choices j, which has value 1 when the estimator value of
parameter choice j on benchmark %, namely c - Fj;, is within ¢ of the high-
est estimator value for 4; and (b) variable t;;;, for all benchmarks i and all
parameter choices j and k, which has value 1 when ¢ Fj; > ¢ Fj, — 6.

To set the values of the binary variables t;;., for all 4,7,k we add the
inequalities

tijk > ¢ Fij — ¢ Fy, + 6. (5.11)

This inequality is linear in the variables cy, ..., c,. Note that the value of the
estimator ¢ - F;; will always be in the range [0, 1], and we are assuming that
the constant 0 < 1. To set the values of the binary variables s;;, for all 4, j, k
we add the inequalities

Sij = tijk + ting + zie — 2. (5.12)

While the ILP.-only has to capture relationships between parameter choices
that are in set P, we do not constrain the variables s;; and ¢;;;, for parameter
choices outside P to be 0, but allow the ILP to set them to 1 if needed for a
feasible solution.

We now use the variables s;; and t;;; to express the relationships in the
former inequalities (5.8) through (5.10). We replace inequality (5.8) by the
following inequality over all i, j, k,

Zij +yp <2 — (C-Fik — C'Fl‘j). (513)

We replace inequality (5.9) by the following inequality over all i, 7, k with
Qi < Q45

Tij + Yk + Sij + Sik < 3. (514)
Finally, we replace inequality (5.10) by the following inequality over all i, j, k,

zij + yp <2 — (¢ Fip — c- Fyj = 9). (5.15)
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To summarize, the ILP for Advisor Coeflicients has binary variables x;;,
Yj, Zj, Sij, tijk, real variables cp,, constraints (5.6)—(5.7) and (5.11)—(5.15),
plus the elementary constraints on the y; and cj,. This is O(m?®n) variables
and O(m?n) constraints. While in general this is an enormous mixed-integer
linear program, we are able to solve it to optimality for small, fixed sets P.
Its difficulty increases with the size of P, and instances up to |P| <4 can be
solved in two days of computation.

5.2.4 Modeling the Optimal Advisor Problem

The ILP for Optimal Advisor is simply the above ILP for Advisor Coefficients
where set P coincides with the entire universe of parameter choices: P =
{1,...,m}. Solving this ILP is currently beyond reach.

While very large integer linear programs can be solved to optimality in
practice using modern solvers such as CPLEX [21] there is no known algorithm
for integer linear programming that is efficient in the worst-case. Thus our
reductions of the optimal advising problems to integer linear programming
do not yield algorithms for these problems that are guaranteed to be efficient.
On the other hand, Section 4.3 shows that our optimal advising problems are
all NP-complete, so it is unlikely that any worst-case efficient algorithm for
them exists.

5.3 Approximation algorithm for learning advisor sets

As Advisor Set is NP-complete, it is unlikely we can efficiently find advisor
sets that are optimal; we can, however, efficiently find advisor sets that are
guaranteed to be close to optimal, in the following sense. An a-approzimation
algorithm for a maximization problem, where a < 1, is a polynomial-time
algorithm that finds a feasible solution whose value under the objective func-
tion is at least factor a times the value of an optimal solution. Factor « is
called the approximation ratio. In this section we show that for any constant £
with ¢ < k, there is a simple approximation algorithm for Advisor Set that
achieves approximation ratio ¢/k.

For constant ¢, the optimal advisor set of cardinality at most ¢ can be found
in polynomial time by exhaustive search (since when ¢ is a constant there are
polynomially-many subsets of size at most £). The following natural approach
to Advisor Set builds on this idea, by starting with an optimal advisor set
of size at most ¢, and greedily augmenting it to one of size at most k. Since
augmenting an advisor set by adding a parameter choice can worsen its value
under the objective function, even if augmented in the best possible way, the
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procedure Greedy given below outputs the best advisor set found across all
cardinalities.

procedure Greedy(4, k) begin
Find an optimal subset P C U of size |P| < £ that maximizes f(P).
(P.0) = (P.|P))
for cardinalities £+ 1, ..., k do begin
Find parameter choice j* € U — P that maximizes f(lﬁ5 U {j*})
P := PU {j*}
if f(P) > f(P)then P := P
end
output P
end

We now show this natural greedy procedure is an approximation algorithm
for Advisor Set.

Theorem 5.1 (Approximation Ratio). Procedure Greedy is an (£/k)-
approximation algorithm for Advisor Set with cardinality bound k, and any
constant ¢ with ¢ < k.

Proof. The basic idea of the proof is to use averaging over all subsets of size ¢
from the optimal advisor set of size at most k, in order to relate the objective
function value of the set found by Greedy to the optimal solution.

To prove the approximation ratio, let

P* be the optimal advisor set of size at most k,
P be the optimal advisor set of size at most ¢,
P be the advisor set output by Greedy,

S be the set of all subsets of P* that have size £,
k be the size of P*, and

¢ be the size of P.

Note that if k < £, then the greedy advisor set P is actually optimal and
the approximation ratio holds. So assume k > ¢, in which case S is nonempty.
Then
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f(P) > f(P)
> max f(Q) (5.16)
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where inequality (5.16) holds because P is an optimal set of size at most ¢
and each @ is a set of size ¢, while equation (5.17) just changes the order of
summation on ¢ and j.

Note that for any subset Q C P* and any fixed parameter choice j € @,
the following relationship on sets of benchmarks holds:

{i : jeOi(P*)} - {z : je(’)i(Q)}, (5.18)

since if choice j is within tolerance ¢ of the highest estimator value for P*,
then j is within € of the highest value for Q.

Continuing from equation (5.17), applying relationship (5.18) to index ¢ of
the innermost sum and observing that the terms lost are nonnegative, yields
the following inequality (5.19):

|S‘ Q;S J;Q i: yezo:(cg) |0:(Q)]

QGSJGQ i:j €O (P*)

Now define, for each benchmark i, a parameter choice J(i) from P* of
highest estimator value,

J(i) € argmax{E(Aij)},
j€P*

where ties in the maximum estimator value are broken arbitrarily. Observe
that when'J (i) € @, the relationship O;(Q) C O;(P*) holds, since then both
@ and P* have the same highest estimator value (and @ C P*). Thus when
J(i) € Q,

|0:(Q)] < |0:(P)]. (5.20)



58 5 Constructing Advisor

Returning to inequality (5.19), and applying relationship (5.20) in inequal-
ity (5.21) below,
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> (/k) f(P*).

Thus Greedy achieves approximation ratio at least ¢/k.

Finally, to bound the running time of Greedy, consider an input instance
with d features, n benchmarks, and m parameter choices in universe U. There
are at most m’ subsets of U of size at most ¢, and evaluating objective
function f on such a subset takes O(dfn) time, so finding the optimal subset
of size at most ¢ in the first step of Greedy takes O(dfnm’) time. The
remaining for-loop considers at most k cardinalities, at most m parameter
choices for each cardinality, and evaluates the objective function for each
parameter choice on a subset of size at most k, which takes O(dk?mn) time.
Thus the total time for Greedy is O(dfnm’ + dk?>mn). For constant ¢, this
is polynomial time.

In practice, we can compute optimal advisor sets of size up to £ = 5 by ex-
haustive enumeration, as shown in Section 6.5.1. Finding an optimal advisor
set of size k = 10, however, is currently far out of reach. Nevertheless, Theo-
rem 5.1 shows we can still find reasonable approximations even for such large
advisor sets, since for £ = 5 and k = 10, Greedy is a (1/2)-approximation
algorithm.

We next show it is not possible to prove a greater approximation ratio
than in Theorem 5.1, as that ratio is in fact tight.
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Theorem 5.2 (Tightness of Approximation Ratio). The approzimation
ratio U/k for algorithm Greedy is tight.

Proof. Since the ratio is obviously tight for £ = k, assume ¢ < k. For any
arbitrary constant 0 < § < 1—(¢/k), and for any error tolerance 0 < € < 1,
consider the following infinite class of instances of Advisor Set with:

benchmarks 1,2,...,n,

benchmark weights w; = 1/n,

cardinality bound k = n, and

universe U = {0, 1,...,n} of n+1 parameter choices.

The estimator values for all benchmarks i are,

1, J=0;
0, otherwise;

which can be achieved by appropriate feature vectors F;;. The alternate align-
ment accuracies for all benchmarks ¢ are,

a;; = 1, 7 :j > 05
0, otherwise.

For such an instance of Advisor Set, an optimal set of size at most
k is P*={1,...,n}, which achieves f(P*)=1. Every optimal set P of
size at most ¢ < k satisfies P D {0}: it cannot include all of parame-
ter choices 1,2,...,n, so to avoid getting accuracy 0 on a benchmark it
must contain parameter choice j = 0. Moreover, every such set P D {0}
has average accuracy f(P) = (£/k) + d: parameter choice j = 0 has the
maximum estimator value 1 on every-benchmark, and no other parameter
choice j # 0 has estimator value within € of the maximum, so on every bench-
mark A; (P) = (£/k) + 4. Furthermore, every greedy augmentation P O P
also has this same average accuracy f(P) = f (]5) Thus on this instance the
advisor set P output by Greedy has approximation ratio exactly
P,
f(P*) k
Now suppose the approximation ratio from Theorem 5.1 is not tight, in
other words, that an even better approximation ratio o > £/k holds. Then
take § = (a—(¢/k))/2, and run Greedy on the above input instance. On this
instance, Greedy only achieves ratio

+6—1£+ <
AV @

EQI IO
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a contradiction. So the approximation ratio is tight.

Summary

In this chapter, we have described an ILP for finding optimal advisor sets,
and more general for finding an optimal advisor. As this ILP is not solv-
able in practice we further developed efficient approximation algorithm for
finding estimator-aware advisor sets. In practice, we can find optimal ora-
cle by solving a reduced ILP. Experiments with an implementation of the
approximation algorithm on biological benchmarks, using various accuracy
estimators from the literature, which are shown in Chapter 6, show it finds
advisor sets that are surprisingly close to optimal. Furthermore, the resulting
parameter advisors are significantly more accurate in practice than simply
aligning with a single default parameter choice.



Chapter 6
Parameter Advising for Opal

Overview

In Chapters 1-5, we have described several approaches to constructing a pa-
rameter advisor. In this chapter, we demonstrate the performance of the
trained advisor as learned on a set of benchmark alignments. We will also
show the advisors performance compared to both the default parameter
choice, as well as advisors learned on various accuracy estimators. We show
Facet gives the best advising accuracy of any estimator currently available,
and that by using estimator-aware advisor sets we can significantly increase
the accuracy of the advisor over using oracle sets.

6.1 Introduction

In characterizing six stages in constructing a multiple sequence alignment,
[106] gave as the first stage choosing the parameter values for the alignment
scoring function. While many alignment tools allow the user to specify scoring
function parameter values, such as affine gap penalties or substitution scoring
matrices, typically only the default parameter values that the aligner provides
are used. This default parameter choice is often tuned to optimize the average
accuracy of the aligner over a collection of alignment benchmarks. While the
default parameter values might be the single choice that works best on average
on the benchmarks, for specific input sequences there may be a different
choice on which the aligner outputs a much more accurate alignment.

This leads to the task of parameter advising: given particular sequences to
align, and a set of possible parameter choices, recommend a parameter choice
to the aligner that yields the most accurate alignment of those sequences.
Parameter advising has three components: the set S of input sequences, the

This chapter was adapted from portions of previous publications [26, 27, 34, 56].

61
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set P of parameter choices, and the aligner A. (Here a parameter choice p € P
is a vector p = (p1,...,px) that specifies values for all free parameters in the
alignment scoring function.) Given sequences S and parameter choice p € P,
we denote the alignment output by the aligner as .4,,(.5). [106] call a procedure
that takes the set of input sequences S and the set of parameter choices P, and
outputs a parameter recommendation p € P, an advisor. A perfect advisor,
that always recommends the choice p* € P that yields the highest accuracy
alignment Ap-(S), is called an oracle. In practice, constructing an oracle
is impossible, since for any real set S of sequences that we want to align,
a reference alignment for S is unknown (as otherwise we would not need to
align them), so the true accuracy of any alignment of .S cannot be determined.
The concept of an oracle is useful, however, for measuring how well an actual
advisor performs.

A natural approach for constructing a parameter advisor is to use an accu-
racy estimator E as a proxy for true accuracy, and recommend the parameter
choice

p = argmax E(A,(S)).
peP
In its simplest realization, such an advisor will run the aligner A repeatedly
on input S, once for each possible parameter choice p € P, to select the output
that has best estimated accuracy. Of course, to yield a quality advisor, this
requires two ingredients: a good estimator E, and a good set P.of parameter
choices.

In Chapters 2 and 3 we presented our framework for accuracy estimation
that lead to the new accuracy estimator Facet (short for “feature-based
accuracy estimator”). Which is a linear combination of easy-to-compute fea-
ture functions of an alignment. We then went on in Chapter 5 to present a
greedy approximation algorithm for finding advisor sets. Note that as dis-
cussed in Chapter 4, finding optimal advisor sets is NP-complete.

Given that we have the means to compute both accuracy estimators and
advisor sets, we now apply all of this methodology to the task of parameter
advising.

Plan of the chapter

In the next section, we describe the benchmarks that we use in all of our
experiments. Recall that in order to learn both estimators and advisor sets,
we must have examples for which we know the correct alignment and can cal-
culate true accuracy. Section 6.3 shows examples of the estimator coefficients
we learned, and compares our new Facet estimator to other estimators from
the literature. Section 6.4 describes the differences between various methods
for finding advisor sets. Section 6.5 assesses the increase in accuracy gained
from parameter advising using Facet as well as other estimators. In addi-
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tion, we show the increase in accuracy gained from using greedy advisor sets
versus optimal oracle sets. Finally, the last section describes the software im-
plementation of advising using Facet as a stand-alone tool, as an API, and
within the Opal aligner.

6.2 Experimental methods

We evaluate our approach for deriving an accuracy estimator, and the qual-
ity of the resulting parameter advisor, through experiments on a collection of
benchmark protein multiple sequence alignments. In these experiments, we
compare parameter advisors that use our estimator and five other estima-
tors from the literature: COFFEE [78], NorMD [99], MOS [67], HoT [64], and
PredsP [2]. (In terms of our earlier categorization of estimators, COFFEE,
NorMD and PredSP are scoring-function-based, while MOS and HoT are
support-based.) Other estimators from the literature that are not in this com-
parison group are: AL2CO [81], which is known to be deminated by NorMD
[see 67] GUIDANCE [85], which requires at least four sequences, and hence
is not applicable to a large portion of the most challenging benchmarks in
our study, as many hardest-to-align instances involve three very distant se-
quences; and PSAR [61], which at present is only implemented for DNA se-
quence alignments.

We refer to our estimator in the figures that follow by the acronym Facet,
which is short for “feature-based accuracy estimator.”

In our experiments, for the collection of alignment benchmarks we used
the BENCH suite of [40]; which consists of 759 benchmarks, supplemented by
a selection of 102 benchmarks from the PALT suite of [9]. (BENCH itself is a
selection of 759 benchmarks from [8], OxBench [87], and SABRE [102].) Both
BENCH and PALI consist of protein multiple sequence alignments mainly
induced by structural alignment of the known three-dimensional structures
of the proteins. The entire benchmark collection consists of 861 reference
alignments:.

For the experiments, we measure the difficulty of a benchmark S by the
true accuracy of the alignment computed by the multiple alignment tool
Opal [106, 107] on sequences S using its default parameter choice, where the
computed alignment is compared to the benchmark’s reference alignment on
its core columns. Using this measure, we binned the 861 benchmarks by diffi-
culty, where we divided up the full range [0, 1] of accuracies into 10 bins with
difficulties [(¢— 1)/10, ¢/10] for ¢ = 1,...,10. As is common in benchmark
suites, easy benchmarks are highly over-represented compared to hard bench-
marks. The number of benchmarks falling in bins [0.0,0.1] through [0.9,1.0]
are listed below.
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bin 0.10.20.30.40.50.60.70.8 0.9 1.0
benchmarks 12 12 20 34 26 50 61 74 137 434

To correct for this bias in oversampling of easy benchmarks, our approaches
for learning an estimator nonuniformly weight the training examples, as de-
scribed earlier.

Notice that with this uniform weighting of bins, the singleton advising
set P containing only the optimal default parameter choice will tend to
an average advising accuracy f(P) of 50% (illustrated later in Figures 6.2
and 6.3). This establishes, as a point of reference, average accuracy 50% as
the baseline against which to compare advising performance.

Note that if we instead measure advising accuracy by uniformly averaging
over benchmarks, then the predominance of easy benchmarks (for which little
improvement is possible over the default parameter choice) makes both good
and bad advisors tend to an average accuracy of nearly 100%. By uniformly
averaging over bins, we can discriminate among advisors, though the average
advising accuracies we report are now pulled down from 100% toward 50%.

For each reference alignment in our benchmark collection, we generated
alternate multiple alignments of the sequences in the reference using Opal
with varying parameter choices. Opal constructs multiple sequence align-
ments using as a building block the exact algorithm of [58] for optimally
aligning two multiple alignments under the sum-of-pairs scoring function [16]
with affine gap penalties [46]. Since Opal computes subalignments that are
optimal with respect to a well-defined scoring function, it is an ideal testbed
for evaluating parameter choices, and in particular parameter advising. Each
parameter choice for Opal is a five-tuple (¢, 7, vg, A1, Ag) of parameter val-
ues, where o specifies the amino acid substitution scoring matrix, pair vg, A\g
specifies the gap-open and gap-extension penalties for external gaps in the
alignment (also called terminal gaps), and 7, A\; specifies the gap penalties
for internal gaps (or non-terminal gaps).

The universe U of parameter choices we consider in our experiments con-
sists of over 2,000 such tuples (o,9r,9g, A1, Ag). Universe U was generated
as follows. For the substitution matrix o, we considered matrices from the
BLOSUM [49] and VTML [75] families. To accommodate a range of protein se-
quence divergences, we considered the following matrices from these families:
{BLSM45,BLSM62,BLSM80} and {VTML20, VIML40,VIML80, VIML120,VTML200}.
For each of these eight matrices, we took the real-valued version of the sim-
ilarity matrix and transformed it into a substitution cost matrix for Opal
by negating, shifting, and scaling it to the range [0, 100], and then rounding
its entries to the nearest integer. For the gap penalties, we started from the
default parameter setting for Opal [see 106], which is an optimal choice of
gap penalties for the BLSM62 matrix found by inverse parametric alignment
(See 57, 60.) Around these default values we enumerated a Cartesian product
of integer choices in the neighborhood of this central choice, generating over
2,100 four-tuples of gap penalties. The resulting set of roughly 16,900 pa-
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rameter choices (each substitution matrix combined with each gap penalty
assignment) was then reduced by examining the benchmarks in our collec-
tion as follows. In each hardness bin of benchmarks, we: (1) ran Opal with
all of these parameter choices on the benchmarks in the bin, (2) for a given
parameter choice measured the average accuracy of the alignments computed
by Opal using that parameter choice on the bin, (3) sorted the parameter
choices for a bin by their average accuracy, and (4) in each bin kept the top
25 choices with highest average accuracy. Unioning these top choices from
all 10 hardness bins, and removing duplicates, gave our final set U. This
universe U has 243 parameter choices.

To generate training and testing sets for our experiments onlearning ad-
visor sets, we used 12-fold cross validation. For each hardness bin; we evenly
and randomly partitioned the benchmarks in the bin into twelve groups; we
then formed twelve splits of the entire collection of benchmarks into a train-
ing class and a testing class, where each split placed one group in a bin into
the testing class and the other eleven groups in the bin into.the training class;
finally, for each split we generated a training set and a testing set of example
alignments as follows: for each benchmark B in a training or testing class,
we generated |U| example alignments in the respective training or testing set
by running Opal on B with each parameter choice from U. An estimator
learned on the examples from a training set was evaluated on examples from
the corresponding testing set. The results we report are averages over twelve
folds, where each fold is one of these pairs of associated training and testing
sets. (Note that across the twelve folds, every example is tested on exactly
once.) Each fold contains over 190,000 training examples.

When evaluating the GUIDANCE estimator, we used 4-fold cross validation
on the reduced benchmark collection described earlier, with folds generated
by the above procedure. Each of these folds has over 109,000 training exam-
ples.

6.3 Comparison of advisor estimators

To learn an estimator using the methods described in chapterch:estimator
we must be given a set of alternate alignments produced by an aligner and
their associated accuracy values. We use a set of alignment benchmarks that
is a combination of the BENCH benchmark suite of [40] supplemented with a
subset of the PALT benchmark suite [9]. In total the benchmark set consisted
of 861 benchmark alignments, for which we knew the correct alignment. We
then computed an alignment for each of them using the Opal aligner using
each of 16,896 parameter settings.
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6.3.1 Finding an estimator

We found coefficients for the estimator using the difference-fitting method
described in Section 2.3.2. We used only threshold-difference pairs with € =
5%, for all 16,896 realignments of each benchmark. Note that here we found
an estimator that is learned for pairs from all 861 benchmarks. When we
use an estimator for experiments involving parameter advising, we use cross-
validation to train new estimator coefficients for each fold, so as to not test
on benchmarks that were used for training the estimator or advisor sets .

Of the features listed in Section 3.2, not all are equally informative, and
some can weaken an estimator. When coefficients are found by solving the
linear programs described in Chapter 2 on a set of example alignments some
of the coefficients of the estimator will be zero. The best overall feature set
found by this process is a 6-feature subset consisting of the following feature
functions:

Secondary Structure Agreement, fsa,
Secondary Structure Blockiness, fzr,
Secondary Structure Identity, fst,
Gap Open Density, fco,

Amino Acid Identity, far, and

Core Column Percentage, fec.

The corresponding fitted estimator is

E(A) = 0.239 fea(A) + 0.141 far(A) + 0.040 fsz(A) +
0:465 fao(A) + 0.204 far(A) + 0.003 foc(A),

Figure 3.1 shows a scatter plot of the five strongest features from the
estimator. Notice that the feature with the highest coefficient value also has
the smallest range.

6.3.2 Comparing estimators to true accuracy

To examine the fit of an estimator to true accuracy, the scatter plots in Fig-
ure 6.1 show the value of an estimator versus true accuracy on all example
alignments in the 15-parameter test set. (This set has over 12,900 test exam-
ples. Note that these test examples are disjoint from the training examples
used to fit our estimator.) The scatter plots show our Facet estimator as
well as the PredSP, MOS, COFFEE, HoT, and NorMD estimators. We note
that the MOS estimator, in distinction to the other estimators, receives as
input all the alternate alignments of an example’s sequences generated by
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the 15 parameter choices, which is much more information than is provided
to the other estimators, which are only given the one example alignment.

An ideal estimator would be monotonic increasing in true accuracy. A real
estimator approaches this ideal according to its slope and spread. To discrim-
inate between low and high accuracy alignments for parameter advising, an
estimator needs large slope with small spread. Comparing the scatter plots by
spread, Facet and PredSP have the smallest spread; MOS and COFFEE have
intermediate spread; and HoT and NorMD have the largest spread. Compar-
ing by slope, PredSP and NorMD have the smallest slope; Facet and HoT
have intermediate slope; and MOS and COFFEE have the largest slope. While
PredSP has small spread, it also has small slope, which weakens its dis-
criminative power. While MOS and COFFEE have large slope; they also have
significant spread, weakening their discrimination. Finally HoT and NorMD
have too large a spread to discriminate. Of all these estimators, Facet seems
to achieve the best compromise of slope and spread, for a tighter monotonic
trend across all accuracies. This better compromise between slope and spread
may be what leads to improved performance for Facet on parameter advis-
ing, as demonstrated later in this section.

Our estimator combines six features to obtain its estimate. To give a sense
of how these features behave, Figure 3.1 shows scatter plots of all of the
feature functions’ correlation with true accuracy (mamy which all use sec-
ondary structure). As noted in Section 6.3.1 the feature functions that we
use for the Facet estimator are: Secondary Structure Agreement, Amino
Acid Identity, Secondary Structure Blockiness, Secondary Structure Identity,
and Core Column Percentage. Notice that the combined six-feature Facet
estimator, shown in Figure 6.1, has smaller spread than any one of its indi-
vidual features.

6.4 Comparison of advisor sets

Table 6.1 lists the parameter choices in the advisor sets found by the greedy
approximation algorithm (augmenting from the optimal set of cardinality £=
1) for the Opal aligner with the Facet estimator for cardinalities k& < 20, on
one fold of training data. (The greedy sets vary slightly across folds.) In the
table, the greedy set of cardinality k contains the parameter choices at rows 1
through k. (The entry at row 1 is the optimal default parameter choice.) Again
a parameter choice is five-tuple (0,75, Vg, A1, Ag), where v; and g are gap-
open penalties for non-terminal and terminal gaps respectively, and A; and
Mg are corresponding gap-extension penalties. The scores in the substitution
matrix o are dissimilarity values scaled to integers in the range [0, 100]. (The
associated gap penalty values in a parameter choice relate to this range.)
The accuracy column gives the average advising accuracy (in Opal using
Facet) of the greedy set of cardinality k on training data, uniformly averaged
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Fig. 6.1 Correlation of estimators with accuracy. Each scatter plot shows the
value of an estimator versus true accuracy for alignments of the 861 benchmarks used
for testing aligned with the default parameter settings for the Opal aligner.

over benchmark bins. Recall this averaging will tend to yield accuracies close
to 50%.

Interestingly, while BLOSUM62 [49] is the substitution scoring matrix most
commonly used by standard aligners, it does not appear in a greedy set until
cardinality k=11. The VIML family [75] appears more often than BLOSUM.
The plateau in advising accuracy seen in earlier plots is also indicated in
this training instance, though ever more gradual improvement remains as
cardinality k increases.
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Table 6.1 Greedy Advisor Sets for Opal Using Facet

Cardinality Parameter choice Average
k (o, v1, vE, A1, AE) advising accuracy
1 VTML200, 50,17, 41,40 51.2%
2 VTML200, 55, 30, 45, 42 53.4%
3 BLSUMSO0, 60, 26,43,43 54.5%
4 VIML200, 60, 15, 41, 40 55.2%
5 VTML200, 55, 30,41, 40 55.6%
6 BLSUM45, 65, 3, 44, 43) 56.1%
7 VTML120, 50, 12,42, 39 56.3%
8 BLSUM45,65,35,44,44§ 56.5%
9 VTML200, 45, 6,41, 40 56.6%
10 VIML120, 55, 8,40, 37; 56.7%
11 BLSUM62, 80, 51,43,43) 56.8%
12 VTML120, 50,2, 45, 44) 56.9%
13 VIML200,45,6,40,40) 57.0%
14 VTML40, 50, 2, 40, 40) 57.1%
15 VTML200, 50,12, 43,40 57.2%
16 VTML200,45, 11,42, 40; 57.3%
17 VTML120,60,9, 40, 39) 57.3%
18 VIMLA40, 50, 17, 40, 38) 57.4%
19 BLSUMS0, 70, 17,42, 41) 57.4%
20 BLSUMS0, 60, 3,42, 42) 57.6%

6.4.1 Shared structure across advisor sets

To assess the similarity of advisor sets found by the three approaches consid-
ered in our experiments— greedy sets via the approximation algorithm, exact
sets via exhaustive search, and oracle sets via integer linear programming —
we examine their overlap both within and between folds.

Table 6.2 shows the composition of.the greedy, exact, and oracle sets for
the training instance in one fold, at cardinality k = 2, 3,4 and tolerance e=0.
A non-blank entry in the table indicates that the parameter choice at its row
is contained in the advisor set at its column. (The column labeled “default”
indicates the optimal default parameter choice for the fold, or equivalently,
the exact set of cardinality k= 1.) The value in parentheses at an entry is
the number of folds (for twelve-fold cross-validation) where that parameter
choice appears in that advisor set. (For example, at cardinality k =4, the
second parameter choice (VIML200, 55, 30,45, 42) is in the greedy, exact, and
oracle sets for this particular fold, and overall is in exact sets for 9 of 12 folds,
including this fold.) Surprisingly, the default parameter choice (the best single
choice) never appears in the exact or oracle sets for this fold at any of the
cardinalities beyond k=1, and also is reused as the default in only one other
fold. In general there is relatively little overlap between these advisor sets:
often just one and at most two parameter choices are shared.
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Table 6.2 Composition of Advisor Sets at Different Cardinalities k

Parameter choice Advisor set
(O’, YI, YE, )\], )\E) Default Greedy Exact Oracle

k=2
VTIML200,50,17,41,40) (2) (2)
VIML200, 55, 30, 45, 42 2 3 @
BLSUMS0, 60, 9,43,42) (2)
BLSUM45, 65, 35, 44, 44) (3)

k=3
VTML200,50,17,41,40§ (2) (2)

VTML200, 55, 30, 45, 42 3 ) (@
BLSUMS0, 60, 26, 43, 43 2 (2
VTML200, 55, 30, 41, 40 (6)
VTML40, 45, 29, 40, 39)
BLSUM62, 65, 16, 44, 42

(7)
(8)

k=14

VTML200,50,17,41,40) (2) (2)

VTML200, 55, 30, 45, 42 3)  (9) (6)
BLSUMSO0, 60, 26,43, 43 (2)

VTML200, 60, 15,41, 40 (1)

VTML200, 45,6, 40, 40) 8) (1)
VTML200, 55, 30,41, 40 (8)
BLSUMS0, 55,19, 43,42 (1)
VTML40, 45, 29, 40, 39) (4)
BLSUM62, 65, 35, 44, 42) (3)

Table 6.3 Number of Folds Where Greedy and Exact Sets Share Parameters

Intersection Advisor set cardinality
cardinality k=2k=3k=4k=5

0 9 4 3 2
1 3 5 6 5
2 0 3 3 4
3 0 0 1
4 0 0
5 0

Table 6.3 examines whether this trend continues at other folds, by counting
how many training instances (out of the twelve folds) share a specified number
of parameter choices between their greedy and exact sets, for a given advisor
set cardinality k. (For example, at cardinality k = 4, six training instances
share exactly one parameter choice between their greedy and exact sets; in
fact, the fold shown in Table 6.2 is one such instance.) On the whole, the two
“estimator-aware” advisor sets — the greedy and exact sets — are relatively
dissimilar, and never share more than [k/2] parameter choices.
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6.5 Application to parameter advising

Given the accuracy estimator learned using difference fitting that we have
described in earlier sections, and the advisor sets described in the previous
section, we now evaluate the advising accuracy of our new parameter advisor.
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Fig. 6.2 Advising accuracy of Facet within benchmark bins. These bar charts
show the advising accuracy of various approaches to finding advisor sets, for car-
dinality k = 5,10. For each cardinality, the horizontal axis of the chart on the left
corresponds to benchmark bins, and the vertical bars show advising accuracy aver-
aged over the benchmarks in each bin. Black bars give the accuracy of the optimal
default parameter choice, and red bars give the accuracy of advising with Facet using
the greedy set. The dashed line shows the limiting performance of a perfect advisor:
an oracle with true accuracy as its estimator using an optimal oracle set. In the
top chart, the numbers in parentheses above the bars are the number of benchmarks
in each bin. The narrow bar charts on the right show advising accuracy uniformly
averaged over the bins.
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Fig. 6.3 Advising accuracy of Facet within benchmark bins. These bar charts
show the advising accuracy of various approaches to finding advisor sets, for cardinal-
ity k=15. For each cardinality, the horizontal axis of the chart on the left corresponds
to benchmark bins, and the vertical bars show advising accuracy averaged over the
benchmarks in each bin. Black bars give the accuracy of the optimal default param-
eter choice, and red bars give the accuracy of advising with Facet using the greedy
set. The dashed line shows the limiting performance of a perfect advisor: an oracle
with true accuracy as its estimator using an optimal oracle set. In the top chart, the
numbers in parentheses above the bars are the number of benchmarks in each bin.
The narrow bar charts on the right show advising accuracy uniformly averaged over
the bins.
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Fig. 6.4 Advising using exact, greedy, and oracle sets with Facet. The plots
show advising accuracy using the Facet estimator with parameter sets learned by
the optimal ezact algorithm and the greedy approximation algorithm for Advisor Set,
and with oracle sets. The horizontal axis is the cardinality of the advisor set, while
the vertical axis is the advising accuracy averaged over the benchmarks. Exact sets
are known only for cardinalities k < 5; greedy sets are augmented from the exact
set of cardinality £ = 1. The left and right plots show accuracy on the testing and
training data, respectively, where accuracies are averaged over all testing or training
folds.
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Fig. 6.5 Greedily augmenting exact advisor sets. The left and right plots show
advising accuracy using the Facet and TCS estimators respectively, with-advisor sets
learned by procedure Greedy, which augments an exact set of cardinality ¢ to form
a larger set of cardinality & > ¢. Each curve is greedily augmenting from a different
exact cardinality £. The horizontal axis is the cardinality k of the augmented set; the
vertical axis is advising accuracy on testing data, averaged over all benchmarks and
all folds.
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Fig. 6.6 Effect of error tolerance on advising accuracy using greedy sets. The
plots show advising accuracy on testing data using greedy sets learned for the two
best estimators, Facet and TCS, at various error tolerances € > 0. The plots on the
left and right are for Facet and TCS, respectively. For comparison, both plots also
include a curve showing performance using the estimator on oracle sets, drawn with
a dashed line. The solid curves with circles and diamonds highlight the best overall
error tolerance of € = 0.

6.5.1 Learning advisor sets by different approaches

We first study the advising accuracy of parameter sets learned for the Facet
estimator by different approaches. Our protocol began by constructing an
optimal oracle set for cardinalities 1 < k < 20 for each training instance.
A coefficient vector for the advisor’s estimator was then found for each of
these oracle sets by the difference-fitting method described in [56]. Using this
estimator learned for the training data, exhaustive search was done to find
optimal ezact advisor sets for cardinalities k£ < 5. The optimal exact set of
size ¢ = 1 (the best default parameter choice) was then used as the starting
point to find near-optimal greedy advisor sets by our approximation algo-
rithm for & < 20. Each of these advisors (an advising set combined with the
estimator) was then used for parameter advising in Opal, returning the com-
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puted alignment with highest estimator value. These set-finding approaches
are compared based on the accuracy of the alignment chosen by the advisor,
averaged across bins.

Figure 6.4 shows the performance of these advisor sets under twelve-fold
cross validation. The left plot shows advising accuracy on the testing data
averaged over the folds, while the right plot shows this on the training data.

Notice that while there is a drop in accuracy when an advising set learned
using the greedy and exact methods is applied to the testing data, the drop
in accuracy is greatest for the exact sets. The value of € shown in the plot
maximizes the accuracy of the resulting advisor on the testing data. Notice
also that for cardinality k& < 5 (for which exact sets could be computed), on
the testing data the greedy sets are often performing as well as the optimal
exact sets.

Figures 6.2 and 6.3 shows the performance within each benchmark bin
when advising with Facet using greedy sets of cardinality k=5, 10,15 (k=5
and 10 in Figure 6.2 top and bottom respectively, k=15 in Figure 6.3) Notice
that for many bins, the performance is close to the best-possible accuracy
attainable by any advisor, shown by the dashed line for a perfect oracle
advisor. The greatest boost over the default parameter choice is achieved on
the bottom bins that contain the hardest benchmarks:

6.5.2 Varying the exact set for the greedy algorithm

To find the appropriate cardinality ¢ of the initial exact solution that is aug-
mented within approximation algorithm Greedy, we examined the advising
accuracy of the greedy sets learned when using cardinalities 1 < ¢ < 5.
Figure 6.5 shows the accuracy of the resulting advisor using greedy sets of
cardinality 1 < k < 20, augmented from exact sets of cardinality 1 < ¢ < 5,
using for the estimator both Facet and TCS. (These are the two best esti-
mators, as discussed in Section 6.5.4 below). The points plotted with circles
show the accuracy of the optimal exact set that is used within procedure
Greedy for augmentation.

Notice that the initial exact set size ¢ has relatively little effect on the
accuracy of the resulting advisor; at most cardinalities, starting from the
single best parameter choice (¢ = 1) has highest advising accuracy. This is
likely due to the behavior observed earlier in Figure 6.4, namely that exact
sets do not generalize as well as greedy sets.
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Fig. 6.7 Comparing testing and training accuracies of various estimators. The
plots show the advising accuracies on testing and training data using TCS, MOS, and
PredSP with parameter sets learned for these estimators by the ezact and greedy
algorithms for Advisor Set, and with oracle sets. From top to bottom, the estimators
used are TCS, MOS, and PredSP, with testing data plotted on the left, and training
data on the right.

6.5.3 Varying the error tolerance for the greedy
algorithm

When showing experimental results, an error tolerance € has always been used
that yields the most accurate advisor on the testing data. Prior to conducting
these experiments, our expectation was that a nonzero error tolerance € > 0
would boost the generalization of advisor sets. Figure 6.6 shows the effect of
different values of € on the testing accuracy of an advisor using greedy sets
learned for the Facet and TCS estimators. (While the same values of € were
tried for both estimators, raw TCS scores are integers in the range [0, 100]
which were scaled to real values in the range [0, 1], so for TCS any €<0.1 is
equivalent to e=0.) No clear relationship between testing accuracy and error
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Fig. 6.8 Comparing testing and training accuracies of estimators on bench-
marks with at least four sequences. The plots show advising accuracies for testing
and training data on benchmarks with at least four sequences, using Facet, TCS,
and GUIDANCE with ezact, greedy, and oracle sets.
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Fig. 6.9 Comparing all estimators on greedy advisor sets. The plots show ad-
vising accuracy on greedy sets learned for the estimators Facet, TCS, MOS, PredSP,
and GUIDANCE. The vertical axis is advising accuracy on testing data, averaged over
all benchmarks and all folds. The horizontal axis is the cardinality k& of the greedy
advisor set. Greedy sets are augmented from the exact set of cardinality £=1. The
plot on the left uses the full benchmark suite; the plot on the right, which includes
GUIDANCE, uses a reduced suite of all benchmarks with at least four sequences.
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tolerance is evident, though for Facet and TCS alike, setting ¢ = 0 generally
gives the best overall advising accuracy.

6.5.4 Learning advisor sets for different estimators

In addition to learning advisor sets for Facet [56], we also learned sets for
the best accuracy estimators from the literature: namely, TCS [18], MOS [67],
PredsP [2], and GUIDANCE [85]. The scoring-function-based accuracy esti-
mators TCS, PredSP, and GUIDANCE do not have any dependence on the
advisor set cardinality or the training benchmarks used. The support-based
estimator MOS, however, requires a set of alternate alignments in order to
compute its estimator value on an alignment. In each experiment, an align-
ment’s MOS value was computed using alternate alignments generated by
aligning under the parameter choices in the oracle set; if the parameter choice
being tested on was in the oracle set, it was removed from this collection of
alternate alignments.

After computing the values of these estimators, exhaustive search was used
to find optimal exact sets of cardinality ¢ < 5 for each estimator, as well as
greedy sets of cardinality k& < 20 (augmenting from the exact set for £ = 1).

The tendency of exact advisor sets to not generalize well is even more
pronounced when accuracy estimators other than Facet are used. Figure 6.7
shows the performance on testing and training data of greedy, exact, and
oracle advisor sets learned for the best three other estimators: TCS, MOS, and
PredsSP. The results for greedy advisor sets for TCS at cardinalities larger
than 5 have similar trend to those seen for Facet (with now a roughly 1%
accuracy improvement over the oracle set), but surprisingly with TCS its
exact set always has lower testing accuracy than its greedy set. Interestingly,
for MOS its exact set rarely has better advising accuracy than the oracle set.
For PredsP, at most cardinalities (with the exception of k = 3) the exact
set has higher accuracy than the greedy set on testing data, though this is
offset by the low accuracy of the estimator.

We also tested GUIDANCE, Facet, and TCS on the reduced suite of all
benchmarks with at least four sequences (as required by GUIDANCE). Fig-
ure 6.8 shows the advising accuracy of set-finding methods using these esti-
mators on these benchmarks. Notice that on this reduced suite the results
generally stay the same, though for Facet there is more of a drop in perfor-
mance of the exact set from training to testing, and the set found by Greedy
generally has greater accuracy on the reduced suite than the full suite.

Finally, a complete comparison of the advising performance of all estima-
tors using greedy sets is shown in Figure 6.9. (The plot on the right shows
advising accuracy on testing data for GUIDANCE, Facet, and TCS on the re-
duced suite of benchmarks with at least four sequences.) Advising with each
of these estimators tends to eventually reach an accuracy plateau, though
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their performance is always boosted by using advisor sets larger than a sin-
gleton default choice. The plateau for Facet (the top curve in the plots)
generally occurs at the greatest cardinality and accuracy.

6.6 Software

Parameter advising in our software implementation can be performed in one
of two ways:

(1) Facet aligner wrapper — Similar to using Facet on the com-
mand line, you can use a set of provided Perl scripts that runs
PSIPRED to predict the protein secondary structure, uses a pro-
vided set of Opal parameter settings, computes alignments for
each of these settings, computes the Facet score, and identifies
the highest accuracy alignment. The script must be configured for
each user’s installation location of Opal and PSIPRED.

(2) Within Opal — The newest version of the Opal aligner can per-
form parameter advising internally. The advising set is given to
Opal using the ——advising_configuration_file command
line argument. The most accurate alignment will then be output
to the file identified by the ——out argument. More details of the
parameter advising modifications made to Opal are given in Sec-
tion 6.6.1.

The advising wrapper as well as oracle and greedy sets, can be found on
http://facet.cs.arizona.edu.

6.6.1 Opal version 3

We have updated the Opal aligner to include parameter advising inside the
aligner. Opal can now construct alignments under various configuration set-
tings in parallel to attempt to come close to producing a parameter-advised
alignment in no more wall-time than aligning under a single default param-
eter.

Because both Opal and Facet are implemented in Java, they can be
integrated easily. When an alignment is constructed, a Facet score is auto-
matically generated if secondary structure labeling is given. The secondary
structure can be generated using a wrapper for PSIPRED, which will run the
secondary-structure prediction and then format the output so it is readable
by Opal. For the structure to be able to be used for Facet, you must in-
put this file using the ——facet_structure command-line argument. This
score is output to standard out. In addition, the score can be printed into
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the file name by adding the string __FACETSCORE__ to the output file name
argument, when the file is created this string is replaced with the computed
Facet score.

The new version of Opal also includes the ability to use popular versions of
the PAM, BLOSUM and VTML matrices. These can be specified via the ——cost
command line argument. If the specified cost name is not built in, you can
specify a new matrix by giving the file name via the same command line
argument. The matrix file should fallow the same formatting convention as
BLAST matrices.

If an advisor set of parameter settings is specified using the ——advisor.configuration_file
command line argument then Opal will construct an alignment for each of
the configurations in the file. If in addition a secondary structure predic-
tion is specified, Opal will perform parameter advising. The input advisor
set contains a list of parameter settings in 5-tuple format mentioned earlier
(o197 A1 A7, where o is the replacement matrix, 4y and ~p specify the
internal and terminal gap extension penalties and A; and Ay specify the gap
open penalties). If advising is performed, the alignment with the highest esti-
mated accuracy is output to the file specified in the ——out _best command
line argument. In addition, Opal can output the results for each of the con-
figurations specified in the advisor set using ——out_config; the filename in
that case should contain the string __CONFIG__, which will then be replaced
with the parameter setting.

While an alignment must be generated for each parameter setting in the
advising set, the construction of these alignments is independent. Because
of this we enabled Opal to construct the alignments in the advising set in
parallel. Opal will automatically detect how many processors are available
and run that many threads to construct alignments, but this can be overrid-
den by specifying a maximum number of threads using the ——max_threads
command line argument. By doing this, if the number of processors available
is larger than the number of parameter choices in the advising set, then the
total wall-clock time is close to the time it would take to run the multiple
sequence alignment of the input using just a single default parameter choice.

Version 3.0 of the Opal aligner is available at http://opal.cs.arizona.
edu, and the development version of Opal is available on GiHub at http:
//git.io/Opal.

Summary

In this chapter, we described our experimental methodology for testing the
advising accuracy of the Facet estimator, as well as demonstrated the re-
sulting increase in advising accuracy over using a single default parameter
choice.


http://opal.cs.arizona.edu
http://opal.cs.arizona.edu
http://git.io/Opal
http://git.io/Opal




Chapter 7
Aligner Advising for Ensemble Alignment

Overview

The multiple sequence alignments computed by an aligner for different set-
tings of its parameters, as well as the alignments computed by different align-
ers using their default settings, can differ markedly in-accuracy. Parameter
advising is the task of choosing a parameter setting for an aligner to maxi-
mize the accuracy of the resulting alignment. We extend parameter advising
to aligner advising, which in contrast chooses among a set of aligners to maxi-
mize accuracy. In the context of aligner advising, default advising selects from
a set of aligners that are using their default settings, while general advising
selects both the aligner and its parameter setting.

In this chapter, we apply aligner advising for the first time, to create a
true ensemble aligner. Through cross-validation experiments on benchmark
protein sequence alignments, we show that parameter advising boosts an
aligner’s accuracy beyond its default setting for virtually all of the standard
aligners currently used in practice. Furthermore, aligner advising with a col-
lection of aligners further improves upon parameter advising with any single
aligner; though surprisingly the performance of default advising on testing
data is actually superior to general advising due to less overfitting to training
data.

The new ensemble aligner that results from aligner advising is significantly
more accurate than the best single default aligner, especially on hard-to-align
sequences. This successfully demonstrates how to construct out of a collection
of individual aligners, a more accurate ensemble aligner.

81



82 7 Aligner Advising for Ensemble Alignment

unaligned
sequences gMKFGLFFLEDTLAVyenhfsnngvvldgmsegrfafhkiindafttgychpnnd
MKFGNFLLFDTVWL1ehhftefgllldgmskgrfrfydlmkegfnegyiaadne
mt KANYGVFFLYDVVAFsehhidksyn
nnKWNYGVEFVYDVINIddhylvkkds

( B

Aligner Advisor
°

)

B g — acouracy
»| Aligner | Accuracy esimate |~y
v > alignment E E t t H -
\ stimator alignment
%o,
3
»| Aligner labelled
>
alternate alternate
\_ parameter choices alignments alignments )
" --gMKFGLFFLFDTLAVY fhkiindafttgychpnnd
aligned - --MKFGNFLLFDTVWL 1. fydlmkegfnegyiaadne | g

sequences mt KWNYGVFFLYDVVAF:
mnkWNYGVFFVYDVINIddhvlvk!

Fig. 7.1 Owverview of the ensemble alignment process. An advisor set is a collec-
tion of aligners and associated parameter choices. Default aligner advising sets only
contain aligners and their default parameter settings, while general aligner advising
sets can include non-default parameter settings. An accuracy estimator labels each
candidate alignment with an accuracy estimate. (Conceptually, an oracle gives the
true accuracy of an alignment.) The alignment with the highest estimated accuracy
is chosen by the advisor.

7.1 Introduction

While it has long been known that the multiple sequence alignment computed
by an aligner strongly depends on the settings for its tunable parameters,
and that different aligners using their default settings can output markedly
different alignments of the same input sequences, there has been relatively
little work on how to automatically choose the best parameter settings for an
aligner, or the best aligner to invoke, to obtain the most accurate alignment
of a given set of input sequences.

Automatically choosing the best parameter setting for an aligner on a
given input was termed by [106], parameter advising. In their framework, an
advisor takes a set of parameter settings, together with an estimator that
estimates the accuracy of a computed alignment, and invokes the aligner on
each setting, evaluates the accuracy estimator on each resulting alignment,
and chooses the setting that gives the alignment of highest estimated accu-
racy. Analogously, we call automatically choosing the best aligner for a given
input, aligner advising. Figure 7.1 shows an overview of aligner advising.
Notice that compared to the similar Figure 1.3 which describes the parame-
ter advising figure the aligner has been moved into the advisor set and the
advisor may use more than one aligner to produce alternate alignments

This chapter was adapted from portions of a previous publication [27].
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(a) Lower-accuracy alignment computed by MUMMALS
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(b) Higher-accuracy alignment computed by Opal

Fig. 7.2 Aligner choice affects the accuracy of computed alignments. (a) Part
of an alignment of benchmark sup.-125 from the SABRE [102] suite computed by
MUMMALS [82] using its default parameter choice; this alignment has accuracy value
28.9%, and Facet estimator value 0.540. (b) Alignment of the same benchmark by
Opal [106] using its default parameter choice, which has 49.9% accuracy, and higher
Facet value 0.578. In both alignments, the positions that correspond to core blocks
of the reference alignment, which should be aligned in a correct alignment, are high-
lighted in bold.

To make this concrete, Figure 7.2 shows an example of advising on a
benchmark set of protein sequences for which a correct reference alignment is
known, and hence for which the true accuracy of a computed alignment can
be determined. In this example, the Facet estimator is used to estimate the
accuracy of two alignments computed by the Opal [107] and MUMMALS [82]
aligners. For these two alignments, the one of higher Facet value has higher
true accuracy as well, so an advisor armed with the Facet estimator would
in fact output the more accurate alignment to a user.

For a collection of aligners, this kind of advising is akin to an ensemble
approach to alignment, which selects a solution from those output by differ-
ent methods to obtain in effect a new method that ideally is better than any
individual method. Ensemble methods have been studied in machine learn-
ing [115], which combine the results of different classifiers to produce a single
output classification. Typically such ensemble methods from machine learn-
ing select a result by voting. In contrast, an advisor combines the results of
aligners by selecting one via an estimator.

In this chapter, we extend the framework of parameter advising to aligner
advising, and obtain by this natural approach a true ensemble aligner. More-
over as our experimental results show, the resulting ensemble aligner is sig-
nificantly more accurate than any individual aligner.



84 7 Aligner Advising for Ensemble Alignment

7.1.1 Related work

[106] first introduced the notion of parameter advisors; [56] investigated the
construction of alignment accuracy estimators, resulting in the Facet esti-
mator [32, 34]; [26, 33] investigated how to best form the set of parameter
choices for an advisor, called an advisor set, developing an efficient approxi-
mation algorithm for finding a near-optimal advisor set for a given estimator.
This prior work applied parameter advising to boosting the accuracy of the
Opal aligner [107]. In contrast, this chapter applies parameter advising to all
commonly-used aligners, and aligner advising to combine them into a new,
more accurate, ensemble aligner.

To our knowledge, the only prior work on combining aligners is by [103]
on M-Coffee, and by [74] on AQUA. The AQUA tool chooses between an
alignment computed by Muscle [39] or MAFFT [54] based on their NorMD [99]
score; our results given in Chapter 6 show that for choosing the more accurate
alignment, the NorMD score used by AQUA is much weaker than the Facet
estimator used here for aligner advising. M-Coffee uses a standard progres-
sive alignment heuristic to compute an alignment under position-dependent
substitution scores whose values are determined by alignments from different
aligners. As Section 7.3.3 later shows, when run on the same set of aligners,
M-Coffee is strongly dominated by the ensemble approach of this chapter.

Contributions

Our prior work on parameter advising focused on boosting the accuracy of
the Opal aligner [106, 107] through an input-dependent choice of parame-
ter values. This chapter applies our advising technique for the first time to
aligners other than Opal; both by advising parameter choices for them, and
by advising how to combine them into an new ensemble aligner.

Plan of the chapter

An advisor selects aligners and parameter values from a small set of choices
that is drawn from a larger universe of all possible choices. Section 7.2 de-
scribes how we construct this universe of aligners and their parameter choices
for advisor learning. Section 7.3 then experimentally evaluates our approach
to ensemble alignment on real biological benchmarks. Finally, Section 7.4
gives conclusions, and offers directions for further research.
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7.2 Constructing the universe for aligner advising

We extend parameter advising with a single aligner to aligner advising with
a collection of aligners, by having the choices in the advisor set now specify
both a particular aligner and a parameter setting for that aligner. To specify
the universe that such an advisor set is drawn from during learning, we must
determine what aligners to consider, and what parameter settings to consider
for those aligners.

7.2.1 Determining the universe of aligners

For default aligner advising, where the advisor set consists of distinct
aligners, each using their default parameter setting, we learned advisor
sets over a universe containing as many of the commonly-used align-
ers from the literature as possible. Specifically, the universe for de-
fault advising consisted of the following 17 aligners: Clustal [98],
Clustal2 [65], Clustal Omega [93], DIALIGN [94], FSA [12], Kalign [66],
MAFFT [54], MUMMALS [82], Muscle [38], MSAProbs [70], Opal [106],
POA [68], PRANK [71], PROBALIGN [89], ProbCons [35], SATé [69], and
T-Coffee [77].

7.2.2 Determining the universe of parameter settings

For general aligner advising, we selected a subset of the above aligners on
which we enumerated values for their tunable parameters, to form a universe
of parameter settings. We selected this subset of aligners by the following
process. First, we computed an optimal oracle set of cardinality k=5 over
the universe of 17 aligners for default advising listed above. This set con-
sisted of Kalign, MUMMALS, Opal, PROBALIGN, and T-Coffee. We then
expanded this set further by adding four aligners that are used extensively
in the literature: Clustal Omega, MAFFT, Muscle, and ProbCons. In the
experiments described later in Section 7.3.2, we constructed greedy advisor
sets over the universe of 17 aligners for default aligner advising, and noticed
a large increase in advising accuracy at cardinality [6, 8] (which can be seen
in Figure 7.8). The greedy advisor sets at these cardinalities contained all of
the aligners already chosen so far, with the addition of the PRANK aligner.
Finally, we added PRANK to our set for this reason. The above 10 aligners
comprise the set we considered for general aligner advising.

Table 7.1 lists the universe of parameter settings for these aligners for gen-
eral advising. For each aligner, we enumerated parameter settings by forming
a cross product of values for each of its tunable parameters. We determined
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the values for each tunable parameter by one of two ways. For aligners with
web-server versions (namely Clustal Omega and ProbCons), we used all
values recommended for each parameter. For all other aligners, we chose ei-
ther one or two values above and below the default value for each parameter,
to attain a cross product with less than 200 parameter settings. If a range
was specified for a numeric parameter, values were chosen to cover this range
as evenly as possible. For non-numeric parameters, we used all available op-
tions. Table 7.1 summarizes the resulting universe for general advising of over
800 parameter settings.
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Fig. 7.3 Accuracy of parameter advising using Facet. The plot shows advising
accuracy for each aligner from Table 7.1, using parameter advising on greedy sets
with the Facet estimator learned by difference fitting. The horizontal axis is the
cardinality of the advisor set, and the vertical axis is the advising accuracy on testing
data averaged over all benchmarks and folds, under 12-fold cross-validation.

7.3 Evaluating ensemble alignment

We evaluate the performance of advising through experiments on a collection
of protein multiple sequence alignment benchmarks. A full description of the
benchmark collection is given in Chapter 6, and is briefly summarized below.
The experiments compare the accuracy of parameter and aligner advising to
the accuracy of individual aligners using their default parameter settings.

The benchmark suites used in our experiments consist of reference align-
ments that are largely induced by performing structural alignment of the
known three-dimensional structures of the proteins. Specifically, we use the
BENCH suite of [40], supplemented by a selection of benchmarks from the
PALI suite [9]. The entire benchmark collection consists of 861 reference
alignments.

As is common in benchmark suites, easy-to-align benchmarks are highly
over-represented in this collection, compared to hard-to-align benchmarks. To
correct for this bias when evaluating average advising accuracy, we binned
the 861 benchmarks in our collection by difficulty, where the difficulty of
a benchmark is its average accuracy under three commonly-used aligners,
namely Clustal Omega, MAFFT, and ProbCons, using their default param-
eter settings. We then divided the full range [0, 1] of accuracies into 10 bins
with difficulties [(j—1)/10,7/10] for j =1,...,10. The weight w; of bench-
mark B; falling in bin j that we used for training is w; = (1/10)(1/n;), where
n; is the number of benchmarks in bin j. These weights w; are such that each
difficulty bin contributes equally to the advising objective function f(P).
Note that with this weighting, an aligner that on every benchmark gets an
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Fig. 7.4 Aligner advising and parameter advising using Facet. The plot shows
default and general aligner advising accuracy, and parameter advising accuracy for
Opal, MUMMALS, and PROBALIGN, using the Facet estimator. The horizontal axis is
the cardinality of the advisor set, and the vertical axis is advising accuracy on testing
data averaged over all benchmarks and folds under 12-fold cress-validation.

accuracy equal to its difficulty, will achieve an average advising accuracy of
roughly 50%.

7.3.1 Parameter advising

We first examine the results of parameter advising for a single aligner using
the Facet estimator. We learned the coefficients for Facet by difference
fitting on computed alignments obtained using the oracle set of cardinality
k =17 found for the parameter universe for each aligner. (We trained the
estimator on an oracle set of this cardinality to match the size of the universe
for default aligner advising.) Given this estimator, we constructed greedy
advisor sets for each aligner.

Figure 7.3 shows the accuracy of parameter advising using greedy advisor
sets of cardinality k <15, for each of the 10 aligners in Table 7.1, under 12-
fold cross-validation. The plot shows advising accuracy on the testing data,
averaged over all benchmarks and folds.

Almost all aligners benefit from parameter advising, though their advising
accuracy eventually reaches a plateau. While our prior chapters showed that
parameter advising boosts the accuracy of the Opal aligner, Figure 7.3 shows
this result is not aligner dependent.
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Fig. 7.5 Aligner advising and parameter advising using TCS. The plot shows
default and general aligner advising accuracy, and parameter advising accuracy for
Opal, MUMMALS, PROBALIGN, and ProbCons, using the TCS estimator. The horizontal
axis is the cardinality of the advisor set, and the vertical axis is advising accuracy on
testing data averaged over all benchmarks and folds under 12-fold cross-validation.

7.3.2 Aligner advising

To evaluate aligner advising, we followed a similar approach, constructing
an oracle set of cardinality k = 17 over the union of the universe for de-
fault advising from Section 7.2.1 and the universe for general advising from
Section 7.2.2, learning coefficients for Facet using difference fitting, and
constructing greedy sets using Facet for default and general advising.

Figu