
D
RA
FT

Dan DeBlasio and John Kececioglu

Parameter Advising for Multiple
Sequence Alignment

– Monograph –

May 28, 2017

Springer

D
RA
FT

D
RA
FT

Preface

The problem of aligning multiple protein sequences is essential to many bi-
ological analyses, but most standard formulations of the problem are NP-
complete. Due to both the difficulty of the problem and its practical impor-
tance, there are many heuristic multiple sequence aligners that a researcher
has at their disposal. A basic issue that frequently arises is that each of these
alignment tools has a multitude of parameters that must be set, and which
greatly affect the quality of the alignment produced. Most users rely on the
default parameter setting that comes with the aligner, which is optimal on
average, but can produce a low-quality alignment for the given inputs.

This book develops an approach called parameter advising to find a pa-
rameter setting that produces a high-quality alignment for each given input.
A parameter advisor aligns the input sequences for each choice in a collection
of parameter settings, and then selects the best alignment from the resulting
alignments produced. A parameter advisor has two major components: (i)
an advisor set of parameter choices that are given to the aligner, and (ii) an
accuracy estimator that is used to rank alignments produced by the aligner.

Alignment accuracy is measured with respect to a known reference align-
ment, in practice a reference alignment is not available, and we can only
estimate accuracy. We develop a new accuracy estimator that we call called
Facet (short for “feature-based accuracy estimator”) that computes an ac-
curacy estimate as a linear combination of efficiently-computable feature
functions, whose coefficients are learned by solving a large scale linear pro-
gramming problem. We also develop an efficient approximation algorithm
for finding an advisor set of a given cardinality for a fixed estimator, whose
cardinality should ideally small, as the aligner is invoked for each parameter
choice in the set.

Using Facet for parameter advising boosts advising accuracy by almost
20% beyond using a single default parameter choice for the hardest-to-align
benchmarks.

This book further applies parameter advising in two ways: (i) to ensem-
ble alignment, which uses the advising process on a collection of aligners to

v

D
RA
FT

vi Preface

choose both the aligner and its parameter settings, and (ii) to adaptive local
realignment, which can align different regions of the input sequences with
distinct parameter choices to conform to mutation rates as they vary across
the lengths of the sequences.

D
RA
FT

Contents

1 Introduction and Background . 1
1.1 Introduction . 1
1.2 Parameter advising . 3
1.3 Survey of related work . 7

1.3.1 Accuracy estimation . 8
1.3.2 A priori advising . 11
1.3.3 Meta-alignment . 11
1.3.4 Column confidence scoring . 12

1.4 Review of protein secondary structure . 13
1.5 Plan of the book . 14

2 Accuracy Estimation . 15
2.1 Introduction . 15
2.2 The estimator . 16

2.2.1 Encoding higher-order polynomial estimators 16
2.3 Learning the estimator from examples . 17

2.3.1 Fitting to accuracy values . 17
2.3.2 Fitting to accuracy differences . 19

3 The Facet Estimator . 25
3.1 Introduction . 25
3.2 Estimator features . 26

3.2.1 Secondary Structure Blockiness . 27
3.2.2 Secondary Structure Agreement . 30
3.2.3 Gap Coil Density . 31
3.2.4 Gap Extension Density . 31
3.2.5 Gap Open Density . 32
3.2.6 Gap Compatibility . 32
3.2.7 Substitution Compatibility . 33
3.2.8 Amino Acid Identity . 34
3.2.9 Secondary Structure Identity . 34

vii

D
RA
FT

viii Contents

3.2.10 Average Substitution Score . 34
3.2.11 Core Column Density . 35
3.2.12 Information Content . 35
3.2.13 Results . 36

3.3 Software . 36

4 The Optimal Advisor Problem . 39
4.1 Introduction . 39
4.2 Learning an optimal advisor . 40

4.2.1 Optimal Advisor . 42
4.2.2 Advisor Set . 43
4.2.3 Advisor Estimator . 43

4.3 Complexity of learning optimal advisors 44

5 Constructing Advisor . 49
5.1 Introduction . 49
5.2 Constructing optimal advisors by integer linear programming 50

5.2.1 Modeling the Advisor Set Problem 51
5.2.2 Finding optimal Oracle Sets . 53
5.2.3 Modeling the Advisor Estimator Problem 54
5.2.4 Modeling the Optimal Advisor Problem 55

5.3 Approximation algorithm for learning advisor sets 55

6 Parameter Advising for Opal . 61
6.1 Introduction . 61
6.2 Experimental methods . 63
6.3 Comparison of advisor estimators . 65

6.3.1 Finding an estimator . 66
6.3.2 Comparing estimators to true accuracy 66

6.4 Comparison of advisor sets . 67
6.4.1 Shared structure across advisor sets 69

6.5 Application to parameter advising . 71
6.5.1 Learning advisor sets by different approaches 73
6.5.2 Varying the exact set for the greedy algorithm 74
6.5.3 Varying the error tolerance for the greedy algorithm . . 75
6.5.4 Learning advisor sets for different estimators 77

6.6 Software . 78
6.6.1 Opal version 3 . 78

7 Aligner Advising for Ensemble Alignment 81
7.1 Introduction . 82

7.1.1 Related work . 84
7.2 Constructing the universe for aligner advising 85

7.2.1 Determining the universe of aligners 85
7.2.2 Determining the universe of parameter settings 85

7.3 Evaluating ensemble alignment . 89

D
RA
FT

Contents ix

7.3.1 Parameter advising . 90
7.3.2 Aligner advising . 91
7.3.3 Comparing ensemble alignment to meta-alignment 93
7.3.4 Advising accuracy within difficulty bins 94
7.3.5 Generalization of aligner advising 94
7.3.6 Theoretical limit on advising accuracy 95
7.3.7 Composition of advisor sets . 96
7.3.8 Running time for advising . 96

7.4 Software . 97

8 Adaptive Local Realignment . 99
8.1 Introduction . 99
8.2 Adaptive local realignment . 102

8.2.1 Identifying local realignment regions 102
8.2.2 Local parameter advising on a region 104
8.2.3 Iterative local realignment . 104
8.2.4 Combining local with global advising 105

8.3 Assessing local realignment . 105
8.3.1 Effect of local realignment across difficulty bins 107
8.3.2 Varying advising set cardinality . 108
8.3.3 Comparing estimators for local advising 110
8.3.4 Effect of iterating local realignment 110
8.3.5 Summarizing the effect of adaptive local realignment . . 111
8.3.6 Running time . 113
8.3.7 Local and global advising in Opal 113

9 Predicting Core Columns . 115
9.1 Introduction . 115

9.1.1 Related work . 116
9.2 Learning a coreness estimator . 117

9.2.1 Representing alignment columns . 118
9.2.2 Classes of column windows . 118
9.2.3 The coreness regression function . 119
9.2.4 Learning the distance function by linear programming 122

9.3 Using coreness to improve accuracy estimation 126
9.3.1 Creating a new coreness feature . 127
9.3.2 Augmenting former features by coreness 128

9.4 Assessing the coreness prediction . 129
9.4.1 Constructing the coreness regressor 130
9.4.2 Improving parameter advising . 133

10 Conclusions . 139
10.1 Further research . 141
References . 145

D
RA
FT

D
RA
FT

List of Figures

1.1 Effect of aligner parameter choice on alignment accuracy 3
1.2 Calculating alignment accuracy . 4
1.3 Overview of the parameter advising process 5

3.1 Correlation of features with true accuracy 37
3.2 Using the Facet tool API . 38
3.3 Using the Facet tool on the command line 38

6.1 Correlation of estimators with accuracy . 68
6.2 Advising accuracy of Facet in benchmark bins for small

cardinalities . 71
6.3 Advising accuracy of Facet in benchmark bins for large

cardinality . 72
6.4 Advising using exact, greedy, and oracle sets with Facet 72
6.5 Greedily augmenting exact advisor sets . 73
6.6 Effect of error tolerance on advising accuracy using greedy sets 73
6.7 Comparing testing and training accuracies of various estimators 75
6.8 Comparing estimators on benchmarks with at least four

sequences . 76
6.9 Comparing all estimators on greedy advisor sets 76

7.1 Overview of the ensemble alignment process 82
7.2 Effect of aligner choice on alignment accuracy 83
7.3 Accuracy of parameter advising using Facet 89
7.4 Aligner advising and parameter advising using Facet 90
7.5 Aligner advising and parameter advising using TCS 91
7.6 Comparison of ensemble and meta-alignment 92
7.7 Accuracy of default aligner advising across difficulty bins 93
7.8 General and default aligner advising . 94
7.9 Aligner advising accuracy using a perfect estimator 95

xi

D
RA
FT

xii List of Figures

8.1 Impact of adaptive local realignment on alignment accuracy . . 100
8.2 Overview of the local advising process . 103
8.3 Effect of local advising across difficulty bins 108
8.4 Effect of local advising across set cardinalities 109
8.5 Effect of various estimators used for local advising 110

9.1 Fit of coreness regressor to average true coreness 132
9.2 Correlation of estimated and true count of core columns 132
9.3 Advising using oracle sets with modified estimators 135
9.4 Advising using greedy sets with modified estimators 135
9.5 Advising using Facet with predicted coreness 136

D
RA
FT

Chapter 1

Introduction and Background

Overview

While multiple sequence alignment is an essential step in many biological
analyses, all of the standard formulation of the problem are NP-Complete.
As a consequence, many heuristic aligners are used in practice to construct
multiple sequence alignments. Each of these aligners contains a large num-
ber of tunable parameters that greatly affect the accuracy of the alignment
produced. In this chapter, we introduce the concept of a parameter advi-
sor, which selects a setting of parameter values for a particular set of input
sequences.

1.1 Introduction

The problem of aligning a set of protein sequences is a critical step for
many biological analyses, including creating phylogenetic trees, predicting
secondary structure, homology modeling of tertiary structure, and many oth-
ers. One issue is that while we can find optimal alignments of two sequences
in polynomial time [76], all of the standard formulations of the multiple se-
quence alignment problem are NP-complete [58, 104]. Due to the importance
of multiple sequence alignment and its complexity, it is an active field of
research.

A multiple sequence alignment of set of sequences {S1, S2..., Sk} is a k
by ` matrix of characters, where row i in the matrix contains the char-
acters of sequence Si, in order, possibly with gap characters inserted. The
length of the alignment ` is at least the length of the longest sequence, so
` ≥ max1≤i≤k{|Si|}. Characters from two sequences are said to be aligned
when they appear in the same column of the alignment. When the two
aligned characters are the same, the pair is called an identity otherwise it

1

D
RA
FT

2 1 Introduction and Background

is a mismatch. In general, identities and mismatches are both called substi-
tutions. The unweighted edit distance between two sequences is defined as
the minimum number single-character edits to transform one sequence into
the other. The edit value of an alignment is its total number of inserted
gap characters and mismatches. For two sequences, you can find the opti-
mal alignment of minimum value using dynamic programming [76]. Finding
an optimal alignment of more than two sequences is NP-Complete [104]. For
multiple sequence, alignment many heuristic approaches have been developed
that typically use one of two common objectives. The sum-of-pairs score
(SPS) of a multiple sequence alignment is the sum of the values of induced
pairwise alignments Alternately, the tree-alignment objective, is the sum of
pairwise alignment values align all of the branches of an input phylogenetic
tree, minimized over all possible choices of ancestral sequence.

The number of alignment tools tools, or aligners, available for finding
multiple sequence alignments continues to grow because of the need for high
quality alignments. Many methods have been published that produce mul-
tiple sequence alignments using various heuristic strategies to deal with the
problem’s complexity. The most popular general method is progressive align-
ment which aligns sequences using a guide tree (a binary tree where the leaves
are the input sequences, [42]). Starting with two neighboring leaves a progres-
sive aligner will optimally align these two sequences and replace the subtree
that contained only these sequences by the alignment of the two sequences.
The progressive alignment method then repeats the process proceeds in a
bottom up manner aligning two of the remaining leaves (but some leaves
may now contain sub-alignments). In this way a progressive aligner is only
ever aligning two sequences, or alignments, to each other. This strategy has
been used successfully for general alignment methods such as Clustal [98],
MAFFT [55], Muscle [38, 39], Kalign [66], and Opal [106]. Additionally, pro-
gressive alignment strategies have also been successfully applied to specialized
alignment tools such as those for whole genome alignment like mauve [22]
those for RNA specific alignment like PMFastR [24, 25] and mLocARNA [110].
Other aligners use consistency information from a library of two-sequence
alignments, such as T-Coffee [77], or collect sequence information into an
HMM, as in PROMALS [83]. For most of the studies presented in this book,
we focus on the Opal aligner, but will later consider other aligners.

For the user, choosing an aligner is only a first step in producing a multi-
ple sequence alignment for analysis. Each tool has a set of parameters whose
values can greatly impact the quality of the computed alignment. The align-
ment parameters for protein sequences typically consist of the gap-open
and gap-extension penalties, as well as the choice of substitution penalties
for each pair of the 20 amino acids, but the available tunable parameters
can differ greatly between aligners. A parameter choice for an aligner is
an assignment of values to all of the alignment parameters. Work has been
done [60] to efficiently find the optimal parameter choices for an aligner that
yields the highest accuracy alignments on average across a set of training

D
RA
FT

1.2 Parameter advising 3

benchmarks. This particular parameter choice would be the optimal default
parameter choice. While such a default parameter works well in general, it
can produce very low accuracy alignments for some benchmarks. Figure 1.1
shows the effect of aligning the same set of five sequences under two different
alignment parameter choices, one of which is the optimal default choice.

Setting the 214 parameters for the standard protein alignment model is
made easier by the fact that amino acid substitution scores are well studied.
Generally one of three substitution matrix families is used for alignment:
PAM [23], BLOSUM [49], and VTML [75], but others also exist [63]. Recent work
has shown that the highest-accuracy alignments are generally produced using
BLOSUM and VTML matrices, so these are the only ones we consider [40].

(a) Higher Accuracy Alignment

(b) Lower Accuracy Alignment

Fig. 1.1 (a) Part of an alignment of benchmark sup 155 from the SABRE [102] suite
computed by Opal [106] using non-default parameter choice (VTML200, 45, 6, 40, 40);
this alignment has accuracy value 75.8%, and Facet [56] estimator value 0.423.
(b) Alignment of the same benchmark by Opal using the optimal default parame-
ter choice (BLSM62, 65, 9, 44, 43); this alignment has lower accuracy 57.3%, and lower
Facet value 0.402. In both alignments, the positions that correspond to core blocks
of the reference alignment, which should be aligned in a correct alignment, are high-
lighted in bold.

We attempt to select a parameter choice that is best for a given input set
of sequences (rather than on average) using an approach we call parameter
advising, which we describe in the next section.

1.2 Parameter advising

The true accuracy of a computed alignment is measured as the fraction of
substitutions that are also present in core columns of a reference alignment
for these sequences. (Reference alignments represent the “correct” alignment
of the sequences.) These reference alignments for protein sequences are typi-
cally constructed by aligning the three-dimensional structures of the proteins.
Core columns of this reference alignment, on which we measure accuracy,
are those sections where the aligned amino acids from all of the sequences are

D
RA
FT

4 1 Introduction and Background

all mutually close in three-dimensional space. Figure 1.2 shows an example
of computing true accuracy for a computed alignment.

What we have described and use throughout this book is the sum-of-
pairs definition of alignment accuracy. Another definition of multiple sequence
alignment accuracy is known as “total-column” accuracy. The total-column
accuracy is the fraction of core columns from the reference multiple sequence
alignment that are completely recovered in the computed alignment. For the
example in Figure 1.2 the sum-of-pairs accuracy is 66%, but the total-column
accuracy is only 50%. Even though there is only one out of place amino acid
in the alignment on the right that is from a core columns this means the
whole column is misaligned; therefore, only one of the two core columns is
recovered in the computed alignment. While arguments can be made for the
merits of both the total-column and sum-of-pairs accuracy measurements,
the total-column measure is more sensitive to small errors in the alignment.
This is why we use the more fine-grained sum-of-pairs measure in this book.

... aDEh ...

... dSR- ...

... aSHl ...

... aDEh- ...

... dSR-- ...

... aS-Hl ...

(i)

(ii)

(a) Reference alignment (b) Computed alignment

Fig. 1.2 A section of a reference and computed alignment. Accuracy of a computed
alignment (b) is measured with respect to a known reference alignment (a). We pri-
marily use the sum-of-pairs accuracy measure which is the fraction of aligned residues
from the computed alignment recovered in the computed alignment. In the example
above the aligned residue pair (i) is correctly recovered, while (ii) is not. This value
is calculated only on core columns of an alignment (shown in red). In the example
the accuracy is 66%, because 4 of the 6 aligned residue pairs in core columns of the
reference alignment are recovered in the computed alignment.

In the absence of a known reference alignment, we are left to estimate the
accuracy of a computed alignment. Estimating the accuracy of a computed
multiple sequence alignment (namely, how closely it agrees with the correct
alignment of its sequences), without actually knowing the correct alignment,
is an important problem. A good accuracy estimator has very broad util-
ity: for example, from building a meta-aligner that selects the most accurate
alignment output by a collection of aligners, to boosting the accuracy of a
single aligner by choosing values for the parameters of its alignment scoring
function to yield the best output from that aligner.

Given an accuracy estimator E, and a set P of parameter choices, a pa-
rameter advisor A tries each parameter choice p ∈ P , invokes an aligner

D
RA
FT

1.2 Parameter advising 5

to compute an alignment Ap using parameter choice p, and then “selects”
the parameter choice p∗ that has maximum estimated accuracy E(Ap∗). Fig-
ure 1.3 shows a diagram of the parameter advising process.

Parameter Advisor

--qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
---MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
mtkWNYGVFFLYDVVAFsehhidksyn------------------------------
mnkWNYGVFFVYDVINIddhylvkkds------------------------------

 alignment alignment

accuracy 
estimate

max
Accuracy 
Estimator

unaligned
sequences

 (γE,γI,λE,λI,σ)

parameter
choices

Aligner

aligned
sequences

{

alternate
alignments

labelled
alternate

alignments

qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
mtkWNYGVFFLYDVVAFsehhidksyn
mnkWNYGVFFVYDVINIddhylvkkds

Fig. 1.3 Overview of the parameter advising process. For the Opal aligner a
parameter choice consists of gap penalties γE , γI , λE , λI as well as the substitution
scoring matrix σ. A candidate alignment is generated for each parameter choice, so the
advisor set should be small. An accuracy estimator labels each candidate alignment
with an accuracy estimate. Finally, the alignment with the highest estimated accuracy
is chosen by the advisor.

An advisor has two crucial elements:

(1) the advisor estimator which estimates the accuracy of a com-
puted alignment, and which the advisor will use to choose between
alternate alignments, and

(2) the advisor set, which is the set of parameter choices that is tried
by to the aligner to produce the alternate alignments that the ad-
visor will choose among.

We say that an advisor’s accuracy on a set of input sequences is the true
accuracy of the alignment obtained using the parameter choice selected from
the advisor set with highest estimated accuracy.

We develop a new advisor estimator we call Facet (feature-based
accuracy estimator) in Chapters 2 and 3. Our accuracy estimator is a lin-
ear combination of efficiently-computable feature functions. We describe the
framework for the estimator and the methods for finding its coefficients in
Chapter 2. We find the estimator coefficients using mathematical optimiza-

D
RA
FT

6 1 Introduction and Background

tion, linear programming (LP), to identify coefficients that when used in
the estimator can distinguish high accuracy alignments from low. The fea-
ture functions are measures of some aspect of an alignment that is easily
computable and has a bounded value. iThe description of how to use lin-
ear programming to find an estimator as well the description of the feature
functions used in Facet are described in Chapter 3.

To create a parameter advisor we also need to be able to find advisor sets
that are of small cardinality (since the advisor will invoke the aligner for each
of the parameter choices in the set) and give the best advising accuracy. An
advisor set is a subset of the parameter universe, which is the enumeration
of all possible combinations of settings for all of the parameters. We find
advisor sets both for the oracle estimator (one that always returns the true
accuracy of an alignment) and for a fixed estimator in Chapter 5. While find-
ing optimal advisor sets is NP-complete, we can find optimal sets of constant
cardinality in polynomial time using exhaustive search. To find advising sets
of any cardinality we give a polynomial-time `

k -approximation algorithm
for finding an advisor set of cardinality k when provided an initial optimal
solution of constant size ` < k.

The problem of finding an optimal advisor is to simultaneously find the
advisor set and advisor estimator that together yield a parameter advisor
with the highest possible advising accuracy. This problem can be formulated
as an integer linear program (ILP), which can be restricted to find optimal
advisor sets for a fixed estimator, or an optimal advisor estimator for a fixed
set. Solving the ILP is intractable in practice, even for very small training
sets and using the restrictions described. Finding the optimal advisor is NP-
complete (see Chapter 4), as are the problems of finding an optimal advisor,
and an optimal estimator (the two restrictions to the ILP).

To learn an advisor, we collect a training set of example alignments whose
true accuracy is known, and find estimator coefficients, and advising sets for
the estimator, that give the best advising accuracy. We form the training set
by:

(1) collecting reference alignments from standard suites of benchmark
protein multiple alignments;

(2) for each such reference alignment, calling a multiple sequence
aligner on the reference alignment’s sequences with all parameter
choices in the universe, producing a collection of alternate align-
ments; and

(3) labeling each such alternate alignment by its true accuracy with
respect to the reference alignment for its sequences.

We use suites of benchmarks for which the reference alignments are obtained
by structural alignment of the proteins using their known three-dimensional
structures. The alternate alignments together with their labeled accuracies
form the examples in our training set. Chapter 6 describes these examples

D
RA
FT

1.3 Survey of related work 7

in detail and experimentally demonstrates the increase in accuracy resulting
from using our new advisor.

Chapters 7 and 8 show results on using the advising process for ensem-
ble alignment (choosing both an aligner and its parameters in Chapter 7),
and adaptive local realignment (realigning regions under different parameter
choices in Chapter 8).

Since true accuracy is only measured on the core columns of an alignment
identifying these columns could boost the accuracy of our estimator and
hence our advisor. Chapter 9 describes a method to predict how much of
a column in a computed alignment is from core columns of an unknown
reference alignment, using a variant of nearest neighbor classification.

Finally, Chapter 10 provides a summary of our work and future directions
for research.

1.3 Survey of related work

Parameter advising as described earlier can be called a posteriori advising :
that is, advising on a parameter choice after seeing the resulting computed
alignments. To our knowledge this is the first successful method for selecting
alignment parameter values for a given input by choosing among computed
alignments.

Work related to parameter advising can be divided into four major cate-
gories:

(i) accuracy estimation, which attempts to provide a score for an
alignment, similar to the score produced by Facet,

(ii) a priori advising which attempts to predict good parameter val-
ues for aligner from unaligned sequences as apposed to examining
alignment accuracy after an alignment is generated,

(iii) meta-alignment, which takes the output of multiple alignment
methods that are known to work well, and combines together seg-
ments of those alignments, and

(iv) column confidence scoring, which gives a confidence score to
each column in an alignment rather than the alignment as a whole,
and can be used to exclude low-confidence regions of the alignment
from further analysis.

Work from each of these categories is described below.

D
RA
FT

8 1 Introduction and Background

1.3.1 Accuracy estimation

Several approaches have been developed for assessing the quality of a com-
puted alignment without knowing a reference alignment for its sequences.
These approaches follow two general strategies for estimating the accuracy
with which a computed alignment recovers the unknown correct alignment.1

The first general strategy, which we call scoring-function-based, is to
develop a new scoring function on alignments that ideally is correlated with
accuracy [see 1, 2, 78, 81, 99]. These scoring functions combine local at-
tributes of an alignment into a score, and typically include a measure of the
conservation of amino acids in alignment columns [1, 81].

The second general strategy, which we call support-based, is to:

(a) examine a collection of alternate alignments of the same sequences,
where the collection can be generated by changing the method used
for computing the alignment, or by changing the input to a method;
and then

(b) measure the support for the original computed alignment among
the collection of alternate alignments

(See 61, 64, 67, 85.) In this strategy, the support for the computed alignment,
which essentially measures the stability of the alignment to changes in the
method or input, serves as a proxy for accuracy.

1.3.1.1 Scoring-function-based approaches

Approaches that assess alignment quality via a scoring function include
COFFEE [78], AL2CO [81], NorMD [99], PredSP [2], and StatSigMa [86].
Several recently developed methods also consider protein tertiary (3-dimensional)
structure; due to the limitations this imposes on our benchmark set we do not
compare our method with these but they include iRMSD [7], STRIKE [59],
and an LS-SVM approach [79]. We briefly describe each in turn.

COFFEE [78] evaluates a multiple alignment by realigning its sequences
pairwise; using the matches in all these pairwise alignments to determine
transformed substitution scores for pairs of residues2 in the columns of the
multiple alignment, where these position-dependent transformed scores are
in the range [0, 1]; accumulating the weighted sum of scores of all induced
pairwise alignments in the multiple alignment without penalizing gaps, where
substitutions are evaluated using the above transformed scores; and finally

1 Here correctness can be either in terms of the unknown structural alignment (as
in our present work on protein sequence alignment), or the unknown evolutionary
alignment (as in simulation studies).
2 A residue is a position in a protein sequence together with the amino acid at that
position.

D
RA
FT

1.3 Survey of related work 9

normalizing by the weighted sum of the lengths of all induced pairwise align-
ments. COFFEE is a component of the T-Coffee alignment package [77].
Updated versions of the COFFEE estimator have been published under a new
name TCS [18] that use an updated library of pairwise alignments but follow
the same basic principals to construct an estimation of alignment accuracy.

AL2CO [81] uses conservation measures on alignment columns that are
based on weighted frequencies of the amino acids in the column, and assesses
an alignment by averaging this measure over all its columns.

NorMD [99] develops an elaborate alignment scoring function that trans-
forms standard amino acid substitution scores on pairs of aligned residues into
a geometric substitution score defined on a 20-dimensional Euclidean space;
takes a weighted average of all these substitution scores in a column; trans-
forms this average substitution score through exponential decay; sums these
transformed scores across columns; then includes affine gap penalties [46],
and Wilbur-Lipman hash scores [108] for normalization. NorMD is used in
several systems, including RASCAL [101], LEON [100], and AQUA [74].
PredSP [2] fits a beta distribution from statistics to the true accuracies

associated with a sample of alignments, where the mean and variance of the
distribution are transforms of a linear combination of four alignment features.
The features they use are sequence percent identity, number of sequences,
alignment length, and a conservation measure that is the fraction of residues
in conserved columns as identified by a statistical model that takes into ac-
count amino acid background probabilities and substitution probabilities [1].
The accuracy that is predicted for the alignment is essentially the mean of
the fitted beta distribution; a predicted confidence interval on the accuracy
can also be quoted from the fitted distribution.

StatSigMa [86] scores an input alignment based on a phylogenetic tree,
where the tree can be given by the user or based on an alignment of a second
set of sequences with the same labels. A scoring function is generated based
on how well the alignment fits the tree. They then test the probability of
each branch in the tree given the test alignment using Karlin-Altschul [53]
alignment statistics (the same statistics used for BLAST [3] homology search).
The p-value assigned to the alignment is then the maximum p-value over all
branches of the tree.

iRMSD [7] uses known tertiary structure that has been assigned to all
sequences in the alignment. For each pair of sequences, and for each pair of
columns, they compare the distance of the pair of columns in each protein.
This difference in tertiary distances is summed and weighted to generate a
score for an alignment.

STRIKE [59] scoring uses a generated amino acid replacement matrix that
scores based on how often two amino acids are in contact in the tertiary
structure. The scoring algorithm infers the tertiary structure of a multiple
sequence alignment from the known structure of a single protein in that
alignment. They then examine the pairs of columns that are in contact (close

D
RA
FT

10 1 Introduction and Background

in 3-D space) in the tertiary structure, and sum the STRIKE matrix score for
each sequence’s amino acid pairs at the columns in the alignment.

The LS-SVM approach [79] uses a similar feature-based estimator strategy
to Facet. They have developed 14 feature functions for an alignment, these
function each output a single numerical value and are combined to get a final
accuracy estimation for an alignment. The functions used in the LS-SVM ap-
proach rely on tertiary structure, and additional information about the pro-
tein sequences obtained by querying PBD [10], PFam [43], Uniprot [6] and
the Gene Ontology [GO, 14] databases – which means these databases must
be available at all times. As this method makes use of tertiary structure
annotations of the proteins, it severely reduces the universe of analyzable
sequences. The calculated features are fed into a least-squares support vector
machine (LS-SVM) that has been trained to predict accuracy.

1.3.1.2 Support-based approaches

Approaches that assess alignment quality in terms of support from alternate
alignments include MOS [67]; HoT [64]; GUIDANCE [85]; and PSAR [61]. We
briefly summarize each below.

MOS [67] takes a computed alignment together with a collection of alternate
alignments of the same sequences, and over all residue pairs aligned by the
computed alignment, measures the average fraction of alternate alignments
that also align the residue pair. In other words, MOS measures the average
support for the substitutions in the computed alignment by other alignments
in the collection.

HoT [64] considers a single alternate alignment, obtained by running the
aligner that generated the computed alignment on the reverse of the se-
quences and reversing the resulting alignment, and reports the MOS value of
the original alignment with respect to this alternate alignment.

GUIDANCE [85] assumes the computed alignment was generated by a so-
called progressive aligner that uses a guide tree, and obtains alternate align-
ments by perturbing the guide tree and reinvoking the aligner. GUIDANCE
reports the MOS value of the original alignment with respect to these alternate
alignments.

PSAR [61] generates alternate alignments by probabilistically sampling
pairwise alignments of each input sequence versus the pair-HMM obtained by
collapsing the original alignment without the input sequence. PSAR reports
the MOS value of the original alignment with respect to these alternates.

Note that in contrast to other approaches, HoT and GUIDANCE require
access to the aligner that computed the alignment. They essentially measure
the stability of the aligner to sequence reversal or guide tree alteration.

Note also that scoring-function-based approaches can estimate the accu-
racy of a single alignment, while support-based approaches inherently require
a set of alignments.

D
RA
FT

1.3 Survey of related work 11

1.3.2 A priori advising

As apposed to examining alignment accuracy after an alignment is generated,
a priori advising attempts to make a prediction about an aligner’s out-
put from just the unaligned sequences. Such methods include AlexSys [4],
PAcAlCI [80], GLProbs [114], and FSM [63].
AlexSys [4] uses a decision tree to classify the input sequences and iden-

tify which aligner should be used. At each step it tests the sequence’s pair-
wise identity, sequence length differences, hydrophobicity characteristics, or
PFam information to find relationships between sequences in the input.

PAcAlCI [80] uses similar methods to Facet and the LS-SVM ap-
proach described earlier, removing the features that rely on the alignment
itself. Again features are combined using an LS-SVM. By querying multiple
databases and finding similarity in tertiary structure, PAcAlCI predicts the
alignment accuracy of several major alignment tools (under default parame-
ters).

GLProbs [114] uses average pairwise percent-identity to determine which
Hidden Markov Model (HMM) to use for alignment. While the actual diffi-
culty assessment is simple, it then allows the HMM parameters to be specific
to similarity of the particular sequences being aligned.

FSM [63] uses BLAST to find which family of SABmark benchmark se-
quences is most similar to the input sequences. It then recommends a sub-
stitution matrix that is specially tailored to these families. While BLAST is
relatively fast, the applicability of this method is restricted to a narrow range
of input sequences.

1.3.3 Meta-alignment

Meta-alignment uses alignments output from several aligners to construct a
new alignment. Here the final alignment has aspects of the input alignments,
but in contrast to other advising methods, it is not necessarily the output of
any single aligner. Such methods include ComAlign [13], M-Coffee [103],
Crumble and Prune[90], MergeAlign [19], and AQUA [74].
ComAlign [13] identifies paths through the standard m-dimensional dy-

namic programming table (which in principle would yield the optimal multi-
ple sequence alignment of the m input sequences) that corresponds to each
of the candidate input multiple sequence alignments. They then find points
where these paths intersect, and construct a consensus alignment by combin-
ing the highest-scoring regions of these paths.

M-Coffee [103] uses several alignment programs to generate pairwise
alignment libraries. They then use this library (rather than simply the op-
timal pairwise alignments) to run their T-Coffee algorithm. T-Coffee
produces multiple alignments by aligning pairs of alignments to maximize

D
RA
FT

12 1 Introduction and Background

the support from the library of all matching pairs of characters in each col-
umn. In this way they attempt to find the alignment with the most support
from the other aligners.

Crumble and Prune [90] computes large-scale alignments by splitting
the input sequences both vertically (by aligning subsets of sequences) and
horizontally (by aligning substrings). The Crumble procedure finds similar
substrings and uses any available alignment method to align these regions;
then for the overlapping regions between these blocks, it realigns these in-
tersections to generate a full alignment. The Prune procedure splits an in-
put phylogenetic tree into subproblems with a smalls number of sequences;
these subproblems are then replaced by their consensus sequence when par-
ent problems are aligned, allowing large numbers of sequences to be aligned.
This method aims to reduce the computational resources needed to align
large inputs, as opposed to increasing multiple sequence alignment accuracy.

MergeAlign [19] generates a weighted directed acyclic graph (DAG),
where each vertex represents a column in one of the input alignments, and
an edge represents a transition from one column to its neighbor (the column
directly to the right) in the same alignment. The weight of each edge is the
number of alignments that have that transition. The consensus alignment
is constructed as the maximum-weight single-source/single-sink path in the
DAG.

AQUA [74] chooses between an alignment computed by Muscle [39] or
MAFFT [54], based on their NorMD [99] score. Chapter 6 shows that for the
task of choosing the more accurate alignment, the NorMD score used by AQUA
is much weaker than the Facet estimator used here. AQUA can also be used as
a meta-aligner because it chooses between the outputs of multiple aligners,
rather than two parameter choices for a singe aligner. Chapter 7 gives results
on using Facet in the context of meta-alignment.

1.3.4 Column confidence scoring

In addition to scoring whole alignments, work has been done to identify
poorly-aligned regions of alignments. This can help biologists to find unreli-
able homology in an alignment to ignore for further analysis, as in programs
like GBLOCKS [17] and ALISCORE [72]. Many of the accuracy estimators
discussed earlier also provide column level scoring, such as TCS.

GBLOCKS [17] identifies columns that are conserved and surrounded by
other conserved regions, using only column percent-identity. Columns that
contain gaps are eliminated, as well as runs of conservation that do not meet
length cutoffs.

ALISCORE [72] uses a sliding window across all pairwise alignments, and
determines if the window is statistically different from two random sequences.

D
RA
FT

1.4 Review of protein secondary structure 13

This score is evaluated on a column by counting the number of windows
containing it that are significantly non-random.

Recently, [88] developed a new method to classify columns with an SVM.
This method uses 5 features of an alignment that are passed into the SVM to
classify whether or not the column should be used for further analysis. Their
study focuses mainly on using alignments for phylogenetic reconstruction.

1.4 Review of protein secondary structure

Multiple sequence alignment benchmarks of protein sequences are normally
constructed by aligning the three-dimensional structure (sometimes referred
to as tertiary structure) of the folded proteins. Amino acids that are close
in 3-D space are considered aligned, and those that are simultaneously very
close in all sequences are labeled as core columns of the alignment. The
amino acid sequence of a protein is referred to as the primary structure.
The secondary structure of a protein is an intermediate between primary and
tertiary structure. Secondary structure labels each amino acid as being in one
of three structure classes: α-helix, β-sheet, or coil (other, or no structure).
These structural classes tend to be conserved when the function of related
proteins is conserved.

This book is focused on protein multiple sequence alignment, and we ex-
ploit the fact that proteins fold into structures to perform functions within
the cell when computing alignments of proteins sequences.

The tertiary structure of the proteins in a set of input sequences is not
normally known, as it usually requires examining the crystalline structure
of the protein, which is slow and costly. Instead we use secondary struc-
ture in our accuracy estimator, and to predict the secondary structure, we
use PSIPRED [51].The output of PSIPRED is not only a label from the 3
secondary structure classes for each amino acid in the sequence, but also a
confidence that the position in each sequence is in each structure state. We
normalize the confidences so that for any amino acid the sum of the confi-
dences for all three structure types sums to 1.

PSIPRED can make predictions using either the amino acid sequence alone,
or by searching through a database of protein domains to find similar se-
quences using BLAST [3]. The accuracy of PSIPRED is increased substan-
tially when using a BLAST search, so all of our results shown later are
with the version of PSIPRED that searches through the UniRef90 [96]
database of protein domains (which is a non-redundant set of domains from
the UniProt database [see 97]) filtered using the pfilt program provided
with PSIPRED.

D
RA
FT

14 1 Introduction and Background

1.5 Plan of the book

Chapter 2 next describes our approach to estimating alignment accuracy as
a linear combination of feature functions. It also describes how to find the
coefficients for such an estimator.

Chapter 3 describes our estimator Facet (short for “feature-based accuracy
estimator”). In particular, the chapter describes the efficiently computable
feature functions we used in Facet.

Chapter 4 defines the problem of finding an optimal advisor (finding both
the advisor set and the advisor estimator coefficients simultaneously). We
also consider restrictions to finding just an optimal advisor set, or optimal
advisor coefficients. We show that all of these problems are NP-complete.

Chapter 5 details the method we use to find advisor sets for a fixed estima-
tor. While finding an optimal advisor set is NP-Complete, we have present an
efficient approximation algorithm for finding near-optimal sets that perform
well in practice. The chapter also describes an integer linear program for find
an optimal advisor (which cannot at present be solved in practice).

Chapter 6 provides experimental results for parameter advising, and dis-
cusses the approach we use to assess the effectiveness of advising.

Chapter 7 expands the universe of parameter choices in advising to include
not only the settings of the alignment parameters, but also the choice of the
aligner itself which we call aligner advising. This yields the first true ensem-
ble aligner. We also compare the accuracy of the alignments produced by
the ensemble aligner to those obtained using a parameter advisor with a fixed
aligner.

Chapter 8 presents an approach called adaptive local realignment that
computes alignments that can use different parameter choices in different
regions of the alignment. Since regions of a protein have distinct mutation
rates, using different parameter choices across an alignment can be necessary.

Chapter 9 describes an approach to predicting how much of a column in
a computed alignment comes from core columns of an unknown reference
alignment using a variant of nearest-neighbor classification. Since true accu-
racy is only measured on core columns, inferring such columns can boost the
accuracy of our advisor.

Finally, Chapter 10 summarizes our results and gives future directions for
research.

D
RA
FT

Chapter 2

Accuracy Estimation

Overview

The accuracy of a multiple sequence alignment is commonly measured as the
fraction of aligned residues from the core columns of a known reference align-
ment that are also aligned in the computed alignment. Usually this reference
alignment is unavailable, in which case we can only estimate the accuracy.
We present a reference-free approach that estimates accuracy that is a linear
combination of bounded feature functions of an alignment. In this chapter,
we describe this framework for accuracy estimation and show that all higher-
order polynomial estimators can be reduced to a linear estimator. We also
give several approaches for learning the coefficients of the estimator function
through mathematical optimization.

2.1 Introduction

Without knowing a reference alignment that establishes the ground truth
against which the true accuracy of an alignment is measured, we are left
with only being able to estimate the accuracy of an alignment. Our approach
to obtaining an estimator for alignment accuracy is to (a) identify multi-
ple features of an alignment that tend to be correlated with accuracy, and
(b) combine these features into a single accuracy estimate. Each feature, as
well as the final accuracy estimator, is a real-valued function of an alignment.

The simplest estimator is a linear combination of feature functions, where
features are weighted by coefficients. These coefficients can be learned by
training the estimator on example alignments whose true accuracy is known.
This training process will result in a fixed coefficient or weight for each fea-
ture. Alignment accuracy is usually represented by a value in the range [0, 1],

This chapter was adapted from portions of previous publications [34, 56].

15

D
RA
FT

16 2 Accuracy Estimation

with 1 corresponding to perfect accuracy. Consequently, the value of the
estimator on an alignment should be bounded, no matter how long the align-
ment or how many sequences it aligns. For boundedness to hold when using
fixed feature weights, the feature functions themselves must also be bounded.
Hence, we assume that the feature functions also have the range [0, 1]. (The
particular features we use are presented in Chapter 3.) We can then guaran-
tee that the estimator has range [0, 1] by ensuring that the coefficients found
by the training process yield a convex combination of features. In practice,
we have found that not all the features naturally span the entire range [0, 1],
so we relax the convex combination condition, and instead only require that
the estimator value is in the range [0, 1] on all training examples.

2.2 The estimator

In general, we consider estimators that are polynomial functions of alignment
features. More precisely, suppose the features that we consider for align-
ments A are measured by the k feature functions fi(A) for 1 ≤ i ≤ k. Then
our accuracy estimator E(A) is a polynomial in the k variables fi(A). For
example, for a degree-2 polynomial,

E(A) := a0 +
∑

1≤i≤k

ai fi(A) +
∑

1≤i,j≤k

aij fi(A) fj(A).

For a polynomial of degree d, our accuracy estimator E(A) has the general
form,

E(A) :=
∑

p1,...,pk ∈Z+

p1+···+pk ≤ d

ap1,...,pk
∏

1≤i≤k

(
fi(A)

)pi
,

where Z+ denotes the nonnegative integers, and the coefficients on the terms
of the polynomial are given by the ap1,...,pk . In this summation, there are
k index variables pi, and each possible assignment of nonnegative integers
to the pi that satisfies

∑
i pi ≤ d specifies one term of the summation, and

hence the powers for one term of the polynomial.

2.2.1 Encoding higher-order polynomial estimators

Learning an estimator from example alignments, as discussed in Section 2.3,
corresponds to determining the coefficients for its terms. We can efficiently
learn optimal values for the coefficients, that minimize the error between the
estimate E(A) and the actual accuracy of alignment A on a set of training

D
RA
FT

2.3 Learning the estimator from examples 17

examples, even for estimators that are polynomials of arbitrary degree d.
This can be done for arbitrary degree essentially because such an estimator
can always be reduced to the linear case by a change of feature functions, as
follows. For each term in the degree-d estimator, where the term is specified
by the powers pi of the fi, define a new feature function

gj(A) :=
∏

1≤i≤k

(
fi(A)

)pi
,

that has an associated coefficient cj := ap1,...,pk . Then in terms of the new
feature functions gj , the original degree-d estimator is equivalent to the linear
estimator

E(A) = c0 +
∑

1≤j<t

cj gj(A),

where t is the number of terms in the original polynomial. For a degree-d
estimator with k original feature functions, the number of coefficients t in the
linearized estimator is at least P(d, k), the number of integer partitions of d
with k parts. This number of coefficients grows very fast with d, so overfitting
can become an issue when learning a high-degree estimator. (Even a cubic
estimator on 10 features already has 286 coefficients.) In our experiments, we
focus on linear estimators.

The coefficients of the estimator polynomial are found by mathematical
optimization which we will describe next.

2.3 Learning the estimator from examples

In Section 1.2 we described the set of examples: benchmark sequences that
have been aligned under various parameter choices by the aligner, and whose
alignment are labeled with their true accuracy. In addition, we record the fea-
ture function values for each of these examples. We then use these examples,
with their associated accuracy and feature values, to find coefficients that fit
the accuracy estimator to true accuracy by two techniques that we describe
below.

2.3.1 Fitting to accuracy values

A natural criterion for fitting the estimator is to minimize the error on the
example alignments between the estimator and the true accuracy value. For
alignment A in our training set S, let Ec(A) be its estimated accuracy where
vector c = (c0, . . . , ct−1) specifies the values for the coefficients of the estima-
tor polynomial, and let F (A) be the true accuracy of example A.

D
RA
FT

18 2 Accuracy Estimation

Formally, minimizing the weighted error between estimated accuracy and
true accuracy yields estimator E∗ := Ec∗ with coefficient vector

c∗ := argmin
c∈Rt

∑
A∈S

wA
∣∣Ec(A)− F (A)

∣∣p,
where power p controls the degree to which large accuracy errors are penal-
ized. Weights wA correct for sampling bias among the examples, as explained
below.

When p = 2, this corresponds to minimizing the L2 norm between the
estimator and the true accuracies. The absolute value in the objective func-
tion may be removed, and the formulation becomes a quadratic programming
problem in variables c, which can be efficiently solved. (Note that Ec is linear
in c.) When p = 1, the formulation corresponds to minimizing the L1 norm.
This is less sensitive to outliers than the L2 norm, which can be advanta-
geous when the underlying features are noisy. Minimizing the L1 norm can
be reduced to a linear programming problem as follows. In addition to vari-
ables c, we have a second vector of variables e with an entry eA for each
example A ∈ S to capture the absolute value in the L1 norm, along with the
inequalities,

eA ≥ Ec(A) − F (A),

eA ≥ F (A) − Ec(A),

which are linear in variables c and e. We then minimize the linear objective
function ∑

A∈S
wA eA.

For n examples, the linear program has n+ t variables and O(n) inequalities,
which is solvable even for very large numbers of examples.

If the feature functions all have range [0, 1], we can ensure that the resulting
estimator E∗ also has range [0, 1] by adding to the the linear inequalities,

ci ≥ 0,∑
0≤i<t

ci ≤ 1.

But as mentioned earlier, it may be useful to not restrict the coefficients to
be a convex combination because while the features are bounded, they may
not have values across the whole range. Instead we can also add the following
inequalities for each training example A that ensure E∗ has range [0, 1].

Ec(A) ≥ 0,

Ec(A) ≤ 1.

D
RA
FT

2.3 Learning the estimator from examples 19

The weights wA on examples aid in finding an estimator that is good
across all accuracies. In the suites of protein alignment benchmarks that are
commonly available, a predominance of the benchmarks consist of sequences
that are easily alignable, meaning that standard aligners find high-accuracy
alignments for these benchmarks.1 In this situation, when training set S
is generated as described earlier, most examples have high accuracy, with
relatively few at moderate to low accuracies. Without weights on examples,
the resulting estimator E∗ is strongly biased towards optimizing the fit for
high accuracy alignments, at the expense of a poor fit at lower accuracies. To
prevent this, we bin the examples in S by their true accuracy, where B(A) ⊆ S
is the set of alignments falling in the bin for example A, and then weight the
error term for A by wA := 1/

∣∣B(A)
∣∣. (In our experiments, we form 10 bins

equally spaced at 10% increments in accuracy.) In the objective function
this weights bins uniformly (rather than weighting examples uniformly) and
weights the error equally across the full range of accuracies.

2.3.2 Fitting to accuracy differences

Many applications of an accuracy estimator E will use it to choose from
a set of alignments the one that is estimated to be most accurate. (This
occurs, for instance, in parameter advising as discussed in Chapter 6.) In such
applications, the estimator is effectively ranking alignments, and all that is
needed is for the estimator to be monotonic in true accuracy. Accordingly,
rather than trying to fit the estimator to match accuracy values, we can
instead fit it so that differences in accuracy are reflected by at least as large
differences in the estimator. This fitting to differences is less constraining
than fitting to values, and hence might be better achieved.

More precisely, suppose we have selected a set P ⊆ S2 of ordered pairs
of example alignments, where every pair (A,B) ∈ P satsifies F (A) < F (B).
Set P holds pairs of examples on which accuracy F increases for which we
desire similar behavior from our estimator E. (Later we discuss how we select
a small set P of important pairs.) If estimator E increases at least as much
as accuracy F on a pair in P, this is a success, and if it increases less than F ,
we consider the amount it falls short an error, which we try to minimize.
Notice this tries to match large accuracy increases, and penalizes less for not
matching small increases.

We formulate fitting to differences as finding the optimal estimator E∗ := Ec∗

given by coefficients

1 This is mainly a consequence of the fact that proteins for which reliable structural
reference alignments are available tend to be closely related, and hence easier to align.
It does not mean that typical biological inputs are easy.

D
RA
FT

20 2 Accuracy Estimation

c∗ := argmin
c∈Rt

∑
(A,B)∈P

wAB

(
max

{(
F (B)−F (A)

)
−
(
Ec(B)−Ec(A)

)
, 0
})p

,

where wAB weights the error term for a pair. When power p is 1 or 2, we
can reduce this optimization problem to a linear or quadratic program as
follows. We introduce a vector of variables e with an entry eAB for each
pair (A,B) ∈ P, along with the inequalities,

eAB ≥ 0,

eAB ≥
(
F (B)−F (A)

)
−
(
Ec(B)−Ec(A)

)
,

which are linear in variables c and e. We then minimize the objective function,∑
(A,B)∈P

wAB (eAB)p,

which is linear or quadratic in the variables for p = 1 or 2.
For a set P of m pairs, these programs have m + t variables and m in-

equalities, where m = O(n2) in terms of the number of examples n. For the
programs to be manageable for large n, set P must be quite sparse.

We can select a sparse set P of important pairs using one of two methods:
threshold-minimum accuracy difference pairs, or distributed-example pairs.
Recall that the training set S of examples consists of alternate alignments of
the sequences in benchmark reference alignments, where the alternates are
generated by aligning the benchmark under a constant number of different
parameter choices.

2.3.2.1 Threshold-difference pairs

While we would like an accuracy estimator that matches the difference in
true accuracy between any two alignments, in parameter advising we are only
concerned with choosing among alignments over the same sets of sequences.
With threshold-difference pairs, we include in P only pairs of alignments
(A,B) of the same benchmark. In particular, we include all such pairs where
F (A)−F (B) ≥ ε. Here ε > 0 is a tunable threshold; if the difference in accu-
racy is smaller than this threshold, we exclude it from training, as its effect
on the parameter advisor is minimal, and it makes the linear or quadratic
problem much harder to solve. As ε approaches 0, the better the estimator
will be at distinguishing small differences, but more constraints will be in-
cluded in the program increasing the running time of the solver. For example
pairs under this model, we set the weight wAB to be 1

|B(C)| , where B gives

the corresponding bin for benchmarks aligned under the default parameter
settings, and C is the alignment under the default parameter settings of the
benchmark sequences that A and B are aligning.

D
RA
FT

2.3 Learning the estimator from examples 21

2.3.2.2 Distributed-example pairs

An estimator that is designed for parameter advising should rank the high-
est accuracy alternate alignment for a benchmark above the other alternates
for that benchmark. Consequently, for each benchmark we select for P its
highest-accuracy alternate, paired with its other alternates for which their
difference in accuracy is at least ε, where ε is a tunable threshold. (Notice
this picks O(n) pairs on the n examples.) For the estimator to generalize
beyond the training set, it helps to also properly rank alignments between
benchmarks. To include some pairs between benchmarks, we choose the min-
imum, maximum, and median accuracy alignments for each benchmark, and
form one list L of all these chosen alignments, ordered by increasing accu-
racy. Then for each alignment A in L, we scan L to the right to select the
first k pairs (A,B) for which F (B) ≥ F (A) + i δ where i = 1, . . . , k, and for
which B is from a different benchmark than A. While the constants ε ≥ 0,
δ ≥ 0, and k ≥ 1 control the specific pairs that this procedure selects for P,
it always selects O(n) pairs on the n examples.

2.3.2.3 Weighting distributed-example pairs

When fitting to accuracy differences, we again weight the error terms, which
are now associated with pairs, to correct for sampling bias within P. We want
the weighted pairs to treat the entire accuracy range equally, so the fitted
estimator performs well at all accuracies. As when fitting to accuracy values,
we partition the example alignments in S into bins B1, . . . ,Bk according to
their true accuracy. To model equal weighting of accuracy bins by pairs, we
consider a pair (A,B) ∈ P to have half its weight wAB on the bin contain-
ing A, and half on the bin containing B. (So in this model, a pair (A,B) with
both ends A,B in the same bin B, places all its weight wAB on B.) Then we
want to find weights wAB > 0 that, for all bins B, satisfy∑

(A,B)∈P : A∈B

1
2 wAB +

∑
(A,B)∈P : B ∈B

1
2 wAB = 1.

In other words, the pairs should weight bins uniformly.
We say a collection of weights wAB are balanced if they satisfy the above

property on all bins B. While balanced weights do not always exist in general,
we can identify an easily-satisfied condition that guarantees they do exist, and
in this case find balanced weights by the following graph algorithm.

Construct an undirected graph G whose vertices are the bins Bi and whose
edges (i, j) go between bins Bi,Bj that have an alignment pair (A,B) in P
with A ∈ Bi and B ∈ Bj . (Notice G has self-loops when pairs have both
alignments in the same bin.) Our algorithm first computes weights ωij on the
edges (i, j) in G, and then assigns weights to pairs (A,B) in P by setting

D
RA
FT

22 2 Accuracy Estimation

wAB := 2ωij/cij , where bins Bi,Bj contain alignments A,B, and cij counts
the number of pairs in P between bins Bi and Bj . (The factor of 2 is due to
a pair only contributing weight 1

2wAB to a bin.) A consequence is that all
pairs (A,B) that go between the same bins get the same weight wAB .

During the algorithm, an edge (i, j) in G is said to be labeled if its
weight ωij has been determined; otherwise it is unlabeled. We call the de-
gree of a vertex i the total number of endpoints of edges in G that touch i,
where a self-loop contributes two endpoints to the degree. Initially all edges
of G are unlabeled. The algorithm sorts the vertices of G in order of non-
increasing degree, and then processes the vertices from highest degree on
down.

In the general step, the algorithm processes vertex i as follows. It ac-
cumulates w, the sum of the weights ωij of all labeled edges that touch i;
counts u, the number of unlabeled edges touching i that are not a self-loop;
and determines d, the degree of i. To the unlabeled edges (i, j) touching i, the
algorithm assigns weight ωij := 1/d if the edge is not a self-loop, and weight
ωii := 1

2 (1− w − u
d) otherwise.

This algorithm assigns balanced weights if in graph G, every bin has a
self-loop, as stated in the following theorem.

Theorem 2.1 (Finding Balanced Weights). Suppose every bin B has
some pair (A,B) in P with both alignments A,B in B. Then the above graph
algorithm finds balanced weights.

Proof. We will show that: (a) for every edge (i, j) in G, its assigned weight
satisfies ωij > 0; and (b) for every vertex i, the weights assigned to its incident
edges (i, j) satisfy ∑

(i,j) : j 6=i

ωij + 2ωii = 1.

From properties (a) and (b) it follows that the resulting weights wAB are
balanced.

The key observation is that when processing a vertex i of degree d,
the edges touching i that are already labeled will have been assigned a
weight ωij ≤ 1/d, since the other endpoint j must have degree at least d
(as vertices are processed from highest degree on down). Unlabeled edges
touching i, other than a self-loop, get assigned weight ωij = 1/d > 0. When
assigning weight ωii for the unlabeled self-loop, the total weight w of incident
labeled edges satisfies w ≤ (d−u−2)/d, by the key observation above and the
fact that vertex i always has a self-loop which contributes 2 to its degree. This
inequality in turn implies ωii ≥ 1/d > 0. Thus property (a) holds.

Furthermore, twice the weight ωii assigned to the self-loop takes up the
slack between 1 and the weights of all other incident edges, so property (b)
holds as well.

D
RA
FT

2.3 Learning the estimator from examples 23

Regarding the condition in Theorem 2.1, if there are bins without self-
loops, balanced weights do not necessarily exist. The smallest such instance
is when G is a path of length 2.

Notice that we can ensure the condition in Theorem 2.1 holds if every bin
has at least two example alignments: simply add a pair (A,B) to P where
both alignments are in the bin, if the procedure for selecting a sparse P did
not already. When the training set S of example alignments is sufficiently
large compared to the number of bins (which is within our control), every bin
is likely to have at least two examples. So Theorem 2.1 essentially guarantees
that in practice we can fit our estimator using balanced weights.

For k bins and m pairs, the pair-weighting algorithm can be implemented
to run in O(k + m) time, using radix sort to map pairs in P to edges in G,
and counting sort to order the vertices of G by degree.

Summary

In this chapter, we have developed an accuracy estimator that is a linear
combination of feature functions, and provided two approaches to learning the
coefficients of this estimator. Chapter 3 next describes the specific features
that along with this framework make up the Facet accuracy estimator.
Results on using the Facet estimator with the feature functions described
in the next chapter are presented in Chapter 6.

D
RA
FT

D
RA
FT

Chapter 3

The Facet Estimator

Overview

In Chapter 2, we described a general framework for creating an alignment
accuracy estimator that is a linear combination of feature functions, and for
learning the coefficients of such an estimator. In this chapter, we explore
the feature functions used in our accuracy estimator Facet. Some of the
features we use are standard metrics that are common for measuring mul-
tiple sequence alignment quality, such as amino acid percent identity and
gap extension density, but many of the most reliable features are novel. The
strongest feature functions tend to use predicted secondary structure. We
describe in detail the most accurate and novel features: secondary structure
blockiness and secondary structure consensus.

3.1 Introduction

In Section 1.3.1 we described two classes of accuracy estimators: scoring-
function-based and support-based. While our approach is within the general
scoring-function-based category, compared to prior such approaches, we:

(a) introduce several novel feature functions that measure non-local
properties of an alignment and have stronger correlation with ac-
curacy (such as Secondary Structure Blockiness, described here in
Section 3.2.1),

(b) consider larger classes of estimators beyond linear combinations of
features (such as quadratic polynomials, described in Chapter 2),
and

This chapter was adapted from portions of previous publications [34, 56].

25

D
RA
FT

26 3 The Facet Estimator

(c) develop new regression formulations for learning an estimator from
examples (such as difference fitting, described in Chapter 2).

Our approach can readily incorporate new feature functions into the esti-
mator, and is easily tailored to a particular class of alignments by choosing
appropriate features and performing regression.

Compared to support-based approaches, our estimator does not degrade
on difficult alignment instances, where for parameter advising, good accuracy
estimation can have the greatest impact. As shown in our advising experi-
ments in Chapter 6, support-based approaches lose the ability to detect ac-
curate alignments of hard-to-align sequences, since for such sequences most
alternate alignments are poor and lend little support to the alignment that
is actually most accurate.

In this chapter, we begin by giving descriptions of the feature functions
used in the Facet estimator in Section 3.2. For each feature, we also consider
a few variants.In the next section we discus the most accurate feature func-
tion, called Secondary Structure Blockiness. Section 3.2.13 shows examples
of the feature values for a set of computed alignments. Section 3.3 details our
implementation of Facet in Java. Not only is Facet available as a stand
alone tool that can be incorporated into existing analysis pipelines that in-
clude multiple sequence alignment, it can also be used via an API within
other multiple sequence alignment tools.

3.2 Estimator features

The quality of the estimator that results from our approach ultimately rests
on the quality of the features that we consider. We consider twelve features of
an alignment, the majority of which are novel. All are efficiently computable,
so the resulting estimator is fast to evaluate. The strongest feature functions
make use of predicted secondary structure (which is not surprising, given that
protein sequence alignments are often surrogates for structural alignments).
Details about protein secondary structure and, how we predict it for new
proteins, can be found in Section 1.4.

Another aspect of some of the best alignment features is that they tend
to use non-local information. This is in contrast to standard ways of scor-
ing sequence alignments, such as with amino acid substitution scores or gap
open and extension penalties, which are often a function of a single align-
ment column or two adjacent columns (as is necessary for efficient dynamic
programming algorithms). While a good accuracy estimator would make an
ideal scoring function for constructing a sequence alignment, computing an
optimal alignment under such a nonlocal scoring function seems prohibitive
(especially since multiple alignment is already NP-complete for the current
highly-local scoring functions). Nevertheless, given that our estimator can be
efficiently evaluated on any constructed alignment, it is well suited for se-

D
RA
FT

3.2 Estimator features 27

lecting a sequence alignment from among several alternate alignments, as we
discuss in Chapter 6 in the context of parameter advising (and later chap-
ters further consider the contexts of ensemble alignment and adaptive local
realignment).

Key properties of a good feature function are: (a) it should measure some
attribute that discriminates high accuracy alignments from others, (b) it
should be efficiently computable, and (c) its value should be bounded (as
discussed at the beginning of Chapter 2). Bounded functions are easily nor-
malized, and we scale all our feature functions to the range [0, 1]. We also
intend our features to be increasing functions of, or positively correlated with,
alignment accuracy.

The following are the alignment feature functions we consider for our ac-
curacy estimator. We highlight the first function as it is the most novel, one
of the strongest, and is the most challenging to compute.

3.2.1 Secondary Structure Blockiness

The reference alignments in the most reliable suites of protein alignment
benchmarks are computed by structural alignment of the known three-
dimensional structures of the proteins. The so-called core blocks of these
reference alignments, which are the columns in the reference to which an
alternate alignment is compared when measuring its true accuracy, are typi-
cally defined as the regions of the structural alignment in which the residues
of the different proteins are all within a small distance threshold of each
other in the superimposed structures. These regions of structural agreement
are usually in the embedded core of the folded proteins, and the secondary
structure of the core usually consists of α-helices and β-strands. (Details of
secondary structure and its representation can be found in Section 1.4.) As
a consequence, in the reference sequence alignment, the sequences in a core
block often share the same secondary structure, and the type of this structure
is usually α-helix or β-strand.

We measure the degree to which a multiple alignment displays this pattern
of structure by a feature we call Secondary Structure Blockiness. Suppose
that for the protein sequences in a multiple alignment we have predicted
the secondary structure of each protein, using a standard prediction tool
such as PSIPRED [51]. Then in multiple sequence alignment A and for given
integers k, ` > 1, define a secondary structure block B to be:

(i) a contiguous interval of at least ` columns of A, together with

(ii) a subset of at least k sequences in A, such that on all columns in
this interval, in all sequences in this subset, all the entries in these
columns for these sequences have the same predicted secondary
structure type, and this shared type is all α-helix or all β-strand.

D
RA
FT

28 3 The Facet Estimator

We call B an α-block or a β-block according to the common type of its entries.
Parameter `, which controls the minimum width of a block, relates to the
minimum length of α-helices and β-strands; we can extend the definition to
use different values `α and `β for α- and β-blocks.

A packing for alignment A is a set P = {B1, . . . ,Bb} of secondary structure
blocks of A, such that the column intervals of the Bi ∈ P are all disjoint.
(In other words, in a packing, each column of A is in at most one block.
The sequence subsets for the blocks can differ arbitrarily.) The value of a
block is the total number of residue pairs (or equivalently, substitutions) in
its columns; the value of a packing is the sum of the values of its blocks.

Finally, the blockiness of an alignment A is the maximum value of any
packing for A, divided by the total number of residue pairs in the columns
of A. In other words, Secondary Structure Blockiness measures the fraction
of substitutions in A that are in an optimal packing of α- or β-blocks.

At first glance measuring blockiness might seem hard (since optimal pack-
ing problems are often computationally intractable), yet surprisingly it can
actually be computed in linear time in the size of the alignment, as the fol-
lowing theorem states. The main idea is that evaluating blockiness can be
reduced to solving a longest path problem on a directed acyclic graph of
linear size.

Theorem 3.1 (Evaluating Blockiness). Given a multiple alignment A
of m protein sequences and n columns, where the sequences are annotated
with predicted secondary structure, the blockiness of A can be computed in
O(mn) time.

Proof. The key is to not enumerate subsets of sequences in A when consid-
ering blocks for packings, and instead enumerate intervals of columns of A.
Given a candidate column interval I for a block B, we can avoid considering
all possible subsets of sequences, since there are only two possibilities for the
secondary structure type s of B, and the sequences in B must have type s
across I. To maximize the value of B, we can collect all sequences in A that
have type α across I (if any), all sequences that have type β across I, and
keep whichever subset has more sequences.

Following this idea, given alignment A, we form an edge-weighted, directed
graph G that has a vertex for every column of A, plus an artificial sink vertex,
and an edge of weight 0 from each column to its immediate successor, plus
an edge of weight 0 from the last column of A to the sink. We call the
vertex for the first column of A the source vertex. We could then consider
all intervals I of at least ` columns, test whether the best sequence subset
for each I as described above has at least k sequences, and if so, add an
edge to G from the first column of I to the immediate successor of the last
column of I, weighted by the maximum value of a block with interval I. A
longest path in the resulting graph G from its source to its sink then gives an
optimal packing for A, and the blockiness of A is the length of this longest
path divided by the total number of substitutions in A. This graph G would

D
RA
FT

3.2 Estimator features 29

have Θ(n2) edges, however, and would not lead to an O(mn) time algorithm
for blockiness. Instead, we only add edges to G for such intervals I whose
number of columns, or width, is in the range [`, 2`−1]. Any block B whose
interval has width at least ` is the concatenation of disjoint blocks whose
intervals have widths in the above range. Furthermore, the value of block B
is the sum of the values of the blocks in the concatenation. Only adding to G
edges in the above width range gives a sparse graph with O(n) vertices and
just O(`n) edges, which is O(n) edges for constant `.

To implement this algorithm, first construct G in O(mn) time by (1) enu-
merating the O(n) edges of G in lexicographic order on the pair of column
indices defining the column interval for the edge, and then (2) determining
the weight of each successive edge e in this order in O(m) time by appending
a single column of A to form the column interval for e from the shorter in-
terval of its predecessor. Graph G is acyclic, and a longest source-sink path
in a directed acyclic graph can be computed in time linear in its number of
vertices and edges [20, pp. 655–657] so the optimal packing in A by blocks
can be obtained from G in O(n) time. This takes O(mn) time in total.

There are a few further details in how we use Secondary Structure Block-
iness in practice which are discussed below.

(a) Blocks are calculated first the on structure classes α-helix and β-
strand. We have an option to then also construct coil blocks on
the columns of an alignment that are not already covered by α-
helix and β-strand blocks. In practice, we found that including this
second coil pass increases the advising accuracy over only including
blocks for non-coil classes.

(b) We also specify a minimum number of rows k in the definition of
a block. We fine that in practice, blockiness shows the best per-
formance when this minimum is set to k = 2 rows. While using a
minimum of k = 1 would not have affected the results if we only
used α− or β−blocks, using k > 1 increased the number of columns
that could be included in coil blocks.

(c) Permitting gap characters in blocks allows them to be extended to
regions that may have single insertions or deletions in one or more
sequences. When gaps are allowed in a block they do not contribute
to the value of the block (as the value is still defined as the number
of residue pairs in the columns and rows of the block), but they can
extend a block to include more rows. We find that including gaps
increases the accuracy advising with of blockiness in practice.

(d) In reality, α-helix and β-strand physically both have a minimum
number of amino acids to form their structures. We have two modes
to capture this: one that sets the minimum based on actual physical
sizes and one that sets the minimums to the same length. In the
unequal mode, the minimum sizes α-helix, `α = 4; β-strand, `β = 3;

D
RA
FT

30 3 The Facet Estimator

and coil, `c = 2. In equal mode, `α = `β = `c = 2. We find that in
practice, the unequal mode gives better advising accuracy.

(e) The secondary structure prediction tool PSIPRED outputs confi-
dence values pt for each structure type t ∈ {α, β, c}. These can be
used to choose a single structure prediction at each position in a pro-
tein, by assigning the prediction with the highest confidence value.
Alternately, we can choose a threshold τ , and say that a residue in
the protein has not just one structure type, but all structure types
with pt > τ . In this way, residues can be in multiple blocks of differ-
ent structure types if both types have high confidence; in the final
packing however, it will only be in one since the blocks of a packing
are column-disjoint. We found that in practice, using confidences
in this way to allow ambiguous structural types was detrimental to
advising accuracy on the benchmarks we considered.

The remaining feature functions in Facet are simpler to compute than Sec-
ondary Structure Blockiness.

3.2.2 Secondary Structure Agreement

The secondary structure prediction tool PSIPRED [51] outputs confidence
values at each residue that are intended to reflect the probability that the
residue has each of the three secondary structure types. Denote these three
confidences for a residue i, r (the residue in the i-th sequence at the r-th
column), normalized so they add up to 1, by pα(i, r), pβ(i, r), and pγ(i, r).
Then we can estimate the probability that two sequences i, j in column r
have the same secondary structure type that is not coil, by looking at the
support for that pair from all intermediate sequences k. We first define the
similarity of two residues (i, r) and (j, r) in column r as

S(i, k, r) := pα(i, r) pα(k, r) + pβ(i, r) pβ(k, r).

To measure how strongly the secondary structure locally agrees between se-
quences i and j around column r, we compute a weighted average P of S in
a window of width 2`+ 1 centered around column r,

P (i, j, r) :=
∑
−`≤p≤`

wp S(k, j, r + p)

where the weights wp form a discrete distribution that peaks at p = 0 and
is symmetric.

We can define the support for the pair i, j from intermediate sequence k
as the product of the similarities of each i and j with k, P (i, k, r)P (k, j, r).
The support Q for pair i, j from all intermediate sequences is then defined as

D
RA
FT

3.2 Estimator features 31

Q(i, j, r) :=
∑

0≤k≤N
i 6=k
j 6=k

P (i, k, r) P (k, j, r),

The value of the Secondary Structure Agreement feature is then the average
of Q(i, j, r) over all sequence pairs i, j in all columns r.

This is the feature with the largest running time, but is also one of the
strongest features. Is running time is O(m3n`) for m sequences in an align-
ment of length n.

The value of ` and w must be set by the user. We tried various values for
both, and found that ` = 2 and w = (0.7, 0.24, 0.28, 0.24, 0.7) gave the best
advising results.

3.2.3 Gap Coil Density

A gap in a pairwise alignment is a maximal run of either insertions or dele-
tions. For every pair of sequences, there is a set of gap-residue pairs (residues
that are aligned with gap characters) which each has an associated secondary
structure prediction given by PSIPRED (the structure assigned to the residue
in the pair). The Gap Coil Density feature measures the fraction of all gap-
residue pairs with a secondary structure type of coil.

As described, computing Gap Coil Density may seem quadratic in the
number of sequences. By simply counting the number of gaps gi, coil-labeled
non-gap entries γi, and non-coil-labeled non-gap si entries in column i, we
can compute this feature by ∑

columns i

gi γi∑
columns i

gi (γi + si)
.

All this counting takes linear time total in the number of sequences, so the
running time for computing Gap Coil Density is O(mn).

Alternately, we can use PSIPRED confidences; the feature value is then
the average coil confidences over all gap-residue pairs in the alignment. We
find that in practice, using these confidences gives better advising accuracy.

3.2.4 Gap Extension Density

This feature counts the number of null characters in the alignment (the
dashes that denote gaps). This is related to affine gap penalties (Gotoh 1982),

D
RA
FT

32 3 The Facet Estimator

which are commonly used to score alignments. We normalize this count by
the total number of alignment entries, or an upper bound U on the number
of possible entries. The reason to use the upper bound is so that we can
compare the feature value across alignments of the same sequences that may
have different alignment lengths, while still yielding a feature value that lies
in the range [0, 1]. We calculate this upper bound as

U :=

(
N

2

)(
max
s∈S
|s| + max

s′∈S′
|s′|
)
,

where S′ := S − argmaxs∈S |s|, ls that the second max gives the length of
the second longest sequence in S. We find that normalizing by U gives better
advising accuracies.

As the quantity described above is generally decreasing in to alignment
accuracy (since more gaps generally indicates a lower quality alignment), for
the actual feature value we use 1 minus this ratio described above.

Gap Extension Density essentially counts the number of null characters
in an alignment, which can be done in linear time for each sequence. Thus
Gap Extension Density can be computed in O(mn) time. The lengths of the
input sequences can be computed in linear, so U can be computed in this
same amount of time.

3.2.5 Gap Open Density

This feature counts the number of runs of null characters in the rows of
the alignment (which also relates to affine gap penalties). Again we provide
options to normalize by the total length of all such runs, or by upper-bound
U of alignment size (which tends to give better advising accuracy). Just as
with Gap Extension Density, Gap Open Density can be computed in O(mn)
time.

Similar to Gap Extension Density, the ratio described above is generally
decreasing in alignment accuracy, so for the feature value we use 1 minus the
ratio described above.

3.2.6 Gap Compatibility

As in cladistics, we encode the gapping pattern in the columns of an alignment
as a binary state: residue (1), or null character (0). For an alignment in
this encoding we then collapse together adjacent columns that have the same
gapping pattern. We evaluate this reduced set of columns for compatibility by
checking whether a perfect phylogeny exists on them, using the so-called “four

D
RA
FT

3.2 Estimator features 33

gametes test” on pairs of columns. More specifically, a pair of columns passes
the four gametes test if at most three of the four possible patterns 00, 01,
10, 11 occur in the rows of these two columns. A so-called perfect phylogeny
exists, in which the binary gapping pattern in each column is explained by
a single insertion or deletion event on an edge of the tree, if and only if
all pairs of columns pass this test. (See 48 pages 462-463, or 41.) The Gap
Compatibility feature measures the fraction of pairs of columns in the reduced
binary data that pass this test, which is a rough measure of how tree-like the
gapping pattern is in the alignment. Rather than determining whether a
complete column pair passes the four-gametes test, we can instead measure
the fraction of a column pair that pass this test (the largest subset of rows
that pass the test divided by the total number of rows), averaged over all
pairs of columns. We find that this second version of the feature works better
in practice, most likely because it is a less strict measure of the evolutionary
compatibility of the gaps.

For each pair of columns, we can compute the encoding of each row in
constant time, so we can collect the counts for the four-gametes states in
linear time in the number of sequences for a given column pair. Since we
must examine all pairs of columns, the running time for Gap Compatibility
is quadratic in the number of columns. Evaluating this feature takes O(m2n)
time for an alignment with m sequences and n columns.

3.2.7 Substitution Compatibility

Similar to Gap Compatibility, we encode the substitution pattern in the
columns of an alignment by a binary state: using a reduced amino acid al-
phabet of equivalency classes, residues in the most prevalent equivalency
class in the column are mapped to 1, and all others to 0. This feature mea-
sures the fraction of encoded column pairs that pass the four-gametes test,
which again is a rough measure of how tree-like the substitution pattern is
in the alignment. Again we tested have options for using both whole-column
and fractional-column measurements; we find that fractional-column mea-
surements give better accuracy. We also considered the standard reduced
amino-acid alphabets with 6, 10, 15, and 20 equivalency classes, and find the
15-class alphabet, gives the strongest correlation with accuracy.

Just like Gap Compatibility, evaluating Substitution Compatibility takes
O(m2n) time.

D
RA
FT

34 3 The Facet Estimator

3.2.8 Amino Acid Identity

This feature is usually called simply “percent identity.” In each induced pair-
wise alignment, we measure the fraction of substitutions in which the residues
have the same amino-acid equivalency class, where we use the reduced al-
phabet with 10 classes. The feature averages this fraction over all induced
pairwise alignments.

We can compute Amino Acid Identity for a whole alignment by determin-
ing the frequency of each amino-acid class in each column, and summing the
number of pairs of each alphabet element in a column. Computing amino-acid
identity in this way takes O(mn+ n|Σ|) time for amino-acid equivalency Σ.
Assuming |Σ| is constant, this is O(mn) time.

3.2.9 Secondary Structure Identity

This feature is like Amino Acid Identity, except instead of the protein’s
amino-acid sequence, we use the secondary-structure sequence predicted for
the protein by PSIPRED [51], which is a string over the 3-letter secondary
structure alphabet. Similar to the approach described for Amino Acid Iden-
tity, we can compute Secondary Structure Identity in O(mn) time (where the
structural alphabet here is {α, β, γ}, so |Σ| = 3).

We also consider a second version that uses the secondary structure confi-
dences, where instead of counting identities, we calculate the probability that
a pair i, j of residues has the same secondary structure, by

pα(i)pα(j) + pβ(i)pβ(j) + pγ(i)pγ(j).

In this version, we cannot use the prior running-time reduction trick, and
must examine all pairs of rows in a column, which takes total time O(m2n)
for and alignment with m rows and n columns.

3.2.10 Average Substitution Score

This computes the total score of all substitutions in the alignment, using a
BLSM62 substitution-scoring matrix [49] that has been shifted and scaled
so the amino acid similarity scores are in the range [0, 1]. We can normalize
this total score by the number of substitutions in the alignment, or by upper
bound U given earlier so the feature value is comparable between alignments
of the same sequences. We find that normalizing by U provides a feature
value that correlates better with true accuracy.

D
RA
FT

3.2 Estimator features 35

Similar to the running-time reduction of Amino Acid Identity, we can
count the frequency of each amino acid in each column of an alignment, and
sum the BLSM62 score for each possible amino-acid substitution multiplied
by the product of the frequency for the two amino acids. This reduces the
running time to O(mn+ n|Σ|2), which is faster than considering all pairs of
rows when |Σ| < n (otherwise we can use the näıve O(m2n) approach).

3.2.11 Core Column Density

For this feature, we first predict core columns as those that only contain
residues (and not gap characters) and whose fraction of residues that have
the same amino acid equivalency class, for the 10-class alphabet, is above a
threshold. The feature then normalizes the count of predicted core columns
by the total number of columns in the alignment. We considered the standard
reduced alphabets with 6, 10, 15, and 20 equivalency classes, and use the 10-
class alphabet, as it gave the strongest correlation with true accuracy. We
also tested various thresholds and found that a value of 0.9 gave the best
trend.

Using the same trick described earlier for Amino Acid Identity, a “core”
label can be assigned to the column in linear time, therefore we can evaluate
this näıve Core Column Density in O(mn) time. We will later develop a
more sophisticated method for predicting core columns in an alignment in
Chapter 9.

3.2.12 Information Content

This feature measures the average entropy of the alignment [50], by summing
over the columns the log of the ratio of the abundance of a specific amino
acid in the column over the background distribution for that amino acid,
normalized by the number of columns in the alignment.

Amino-acid frequencies can be calculated in linear time for each column,
and background frequencies for each amino acid can also be found in one
pass across the whole alignment. We then evaluate information content in
each column by making one pass over the frequencies for each element in the
alphabet. Computing Information Content for an input alignment in O(mn+
m|Σ|) time for alphabet Σ. Once again, if we assume the alphabet size is
constant, this running time is O(mn).

We considered the standard reduced alphabets with 6, 10, 15, and 20
equivalence classes, and used the 10-class alphabet, which gave the strongest
correlation with true accuracy.

D
RA
FT

36 3 The Facet Estimator

3.2.13 Results

Figure 3.1 shows the correlation of each of these features described above with
true accuracy. We describe this set of benchmarks and testing procedures
in full detail in Chapter 6. Briefly, we collected a total of 861 benchmark
alignments from the BENCH suite of [40], which consists of 759 benchmarks,
supplemented by a selection of 102 benchmarks from the PALI suite of [9].
For each of these benchmarks we used the Opal aligner to produce a new
alignment of the sequences under its default parameter setting. For each of
these computed alignments, we know the underlying correct alignment, so we
can evaluate the true accuracy of the computed alignment. We also calculated
each of the 12 feature values for each of these alignments. The figure shows the
correlation of each of the features with true accuracy, where each of the 861
circles in each plot is one benchmark with its true accuracy on the horizontal
axis and feature function value on the vertical. Notice that while all of the
features generally have a positive trend with true accuracy, the ranges of the
feature values differ substantially.

This comprises the set of features considered for constructing the Facet
accuracy estimator. The next section describes the software implementing
the Facet estimator.

3.3 Software

We implemented the Facet estimator using the Java programming lan-
guage. The software can be used in one of three ways:

(1) Command line – For a given set of sequences, the user must first
run PSIPRED to predict the secondary structure for each unaligned
sequence. The scripts provided put these predictions in a format
that is readable by Facet. Facet can then be invoked for each
alignment in FASTA or CLUSTAL format, and the result is returned
via standard out. Details of running Facet for alignments of the
same sequences is shown in Figure 3.3. The Facet coefficients can
also be changed via command line options (not shown in the figure),
which override the default feature coefficients.

(2) Application Programming Interface – Within another Java
application, a user can obtain the Facet score of an alignment by
first creating a FacetAlignment object, which encapsulates the
sequence alignment information as well as the secondary structure
predictions. The user can then invoke Facet through a method
call. An example of how to use Facet through the API is shown in

D
RA
FT

3.3 Software 37

True Accuracy
0 0.2 0.4 0.6 0.8 1

B
lo

c
k
in

e
s
s

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

S
tr

u
c
tu

re
 A

g
re

e
m

e
n

t

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

G
a
p

 C
o

il
 D

e
n

s
it

y

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

G
a
p

 E
x
te

n
s
io

n

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

G
a
p

 O
p

e
n

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

G
a
p

 C
o

m
p

a
ti

b
il
it

y

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

S
u

b
s
ti

tu
ti

o
n

 C
o

m
p

.

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

A
m

in
o

 A
c
id

 I
d

e
n

ti
ty

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

S
tr

u
c
tu

re
 I
d

e
n

ti
ty

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 1

S
u

b
s
ti

tu
ti

o
n

 S
c
o

re

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

C
o

re
 C

o
lu

m
n

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

In
fo

rm
a
ti

o
n

 C
o

n
te

n
t

0.5

1

1.5

2

2.5

3

Fig. 3.1 Correlation of features with true accuracy. The scatter plots show
values of all twelve feature functions considered for the Facet estimator, on the 861
benchmarks used for testing (described in Chapter 6), using the default parameter
setting for the Opal aligner. Each circle is one benchmark alignment plotted with its
true accuracy on the horizontal axis (since we know the reference, we can calculate
true accuracy) and its feature value on the vertical axis. The line shows is a weighted
least-squares line where the weight for a benchmark is calculated to remove the bias
towards benchmarks with high accuracy under the default parameter settings. The
precise form of the weighting us described in detail in Chapter 6.

Figure 3.2. The Facet coefficients can be changed in the API via
a second argument to the method call (not shown in the figure).

(3) Within Opal – When creating an alignment using the Opal
aligner, a user can pass the alignment structure via the --facet structure
command-line option. The structure format given to Facet em-
bedded within Opal is different from the format for stand-alone
Facet. When the structure is given to Opal, the Facet score is
printed to standard out, or can be included in the output filename.
Section 6.6.1 gives details on the changes made to Opal related to
Facet and parameter advising.

D
RA
FT

38 3 The Facet Estimator

Fig. 3.2 Using the Facet tool API.

$./PSIPRED_wrapper.pl seqs.fa > seqs_struc 2> seqs_prob
$./FACET.sh align1.fa seqs_struc seqs_prob
align1.fa! ! 0.565
$./FACET.sh align2.fa seqs_struc seqs_prob
align2.fa! ! 0.868
$./FACET.sh align3.fa seqs_struc seqs_prob
align3.fa !0.342

Facet values on
‘standard out’

Only predict
structure once

Fig. 3.3 Using the Facet tool on the command line.

All three implementations of Facet can be found on the Facet website at
http://facet.cs.arizona.edu/. Along with Facet, and links to the
Opal software, there are videos explaining our methodology, and supplemen-
tary data used in our experiments.

Summary

In this chapter, we have described several easily-computable feature functions
for estimating alignment accuracy. Using these features in the framework de-
scribed in Chapter 2 yields our new accuracy estimator Facet. We later give
the coefficients for the feature functions, when trained on example alignments
from benchmarks with known reference alignments, in Chapter 6.

http://facet.cs.arizona.edu/

D
RA
FT

Chapter 4

The Optimal Advisor Problem

Overview

In this chapter, we define the problem of constructing an optimal advisor:
finding both the estimator coefficients and advisor set that give the highest
average advising accuracy. We can also restrict this problem to just finding
optimal estimator coefficients for a given advisor set and finding an optimal
advisor set for a given estimator. The optimal advisor problem is NP-complete
(as are the restrictied optimal estimator and optimal advisor set problems).

4.1 Introduction

A parameter advisor has two components: (i) the advisor estimator, which
ranks alternate alignments that the advisor will choose among; and (ii) the
advisor set, which should be small but still provide for each input at least one
good alternate alignment that the advisor can choose. These two components
are very much interdependent. A setting of estimator coefficients may work
well for one advisor set, but may not be able to distinguish accurate align-
ments for another. Similarly for a given advisor set, one setting of advisor
coefficients may work well while another may not.

An optimal advisor is both an advisor estimator and and advisor set that
together produce the highest average advising accuracy on a collection of
benchmarks. In this chapter, we consider the problem of constructing an
optimal advisor. We also discuss restrictions of this problem to finding an
optimal advisor set for a given estimator, or an optimal estimator for a given
advisor set. All three versions of the problem are NP-complete.

This chapter was adapted from portions of previous publications [26, 33].

39

D
RA
FT

40 4 The Optimal Advisor Problem

4.2 Learning an optimal advisor

We now define the computational problem of learning an optimal advisor. The
problem has several variations, depending on whether the advisor’s estimator
or set of parameter choices are fixed: (a) simultaneously finding both the best
set and estimator, (b) finding the best set of parameter choices to use with
a given estimator, and (c) finding the best estimator to use with a given set
of parameter choices. We assume throughout that the features used by the
advisor’s estimator are given and fixed.

From a machine learning perspective, the problem formulations find an
advisor that has optimal accuracy on a collection of training data. The un-
derlying training data is

• a suite of benchmarks, where each benchmark Bi in the suite consists
of a set of sequences to align, together with a reference alignment Ri
for these sequences that represents their “correct” alignment, and

• a collection of alternate alignments of these benchmarks, where each
alternate alignment Aij results from aligning the sequences in bench-
mark i using a parameter choice j that is drawn from a given uni-
verse U of parameter choices.

Here a parameter choice is an assignment of values to all the parameters
of an aligner that may be varied when computing an alignment. Typically
an aligner has multiple parameters whose values can be specified, such as
the substitution scoring matrix and gap penalties for its alignment scoring
function. We represent a parameter choice by a vector whose components
assign values to all these parameters. (So for protein sequence alignment, a
typical parameter choice is a 3-vector specifying the (i) substitution matrix,
(ii) gap-open penalty, and (iii) gap-extension penalty.) The universe U of
parameter choices specifies all the possible parameter choices that might be
used for advising. A particular advisor will use a subset P ⊆ U of parameter
choices that it considers when advising. In the special case |P | = 1, the single
parameter choice in set P that is available to the advisor is effectively a
default parameter choice for the aligner.

Note that since a reference alignment Ri is known for each benchmark Bi,
the true accuracy of each alternate alignment Aij for benchmark Bi can be
measured by comparing alignment Aij to the reference Ri. Thus for a set P ⊆
U of parameter choices available to an advisor, the most accurate parameter
choice j ∈ P to use on benchmark Bi can be determined in principle by
comparing the resulting alternate alignments Aij to Ri and picking the one
of highest true accuracy. When aligning sequences in practice, a reference
alignment is not known, so an advisor will instead use its estimator to pick the
parameter choice j ∈ P whose resulting alignment Aij has highest estimated
accuracy.

In the problem formulations below, this underlying training data is sum-
marized by

D
RA
FT

4.2 Learning an optimal advisor 41

• the accuracies aij of the alternate alignments Aij , where accuracy aij
measures how well the computed alignment Aij agrees with the ref-
erence alignment Ri, and
• the feature vectors Fij of these alignments Aij , where each vector Fij

lists the values for Aij of the estimator’s feature functions.

As we have defined in Chapter 2, for an estimator that uses t feature functions,
each feature vector Fij is a vector of t feature values,

Fij = (gij1 gij2 · · · gijt),

where each feature value gijh is a real number satisfying 0 ≤ gijh ≤ 1. Feature
vector Fij is used by the advisor to evaluate its accuracy estimator E on
alignment Aij . Let the coefficients of the estimator E be given by vector

c = (c1 c2 · · · ct).

Then the value of accuracy estimator E on alignment Aij is given by the
inner product

Ec(Aij) = c · Fij =
∑

1≤h≤t

ch gijh. (4.1)

Informally, the objective function that the problem formulations seek to
maximize is the average accuracy achieved by the advisor across the suite
of benchmarks in the training set. The benchmarks may be nonuniformly
weighted in this average to correct for bias in the training data, such as
the over-representation of easy benchmarks that typically occurs in standard
benchmark suites.

A subtle issue that the formulations must take into account is that when
an advisor is selecting a parameter choice via its estimator, there can be
ties in the estimator value, so there may not be a unique parameter choice
that maximizes the estimator. In this situation, we assume that the advisor
randomly selects a parameter choice among those of maximum estimator
value. Given this randomness, we measure the performance of an advisor on
an input by its expected accuracy on that input.

Furthermore, in practice any accuracy estimator inherently has error (oth-
erwise it would be equivalent to true accuracy), and a robust formulation for
learning an advisor should be tolerant of error in the estimator. Let ε ≥ 0
be a given error tolerance, and P be the set of parameter choices used by an
advisor. We define the set Oi(P) of parameter choices that the advisor could
potentially output for benchmark Bi as

Oi(P) =
{
j ∈ P : Ec(Aij) ≥ e∗i − ε

}
, (4.2)

where e∗i := max
{
Ec(Aĩ) : ̃ ∈ P

}
is the maximum estimator value on

benchmark Bi. The parameter choice output by an advisor on benchmark Bi

D
RA
FT

42 4 The Optimal Advisor Problem

is selected uniformly at random among those in Oi(P). Note that when ε = 0,
set Oi(P) is simply the set of parameter choices that are tied for maximizing
the estimator. A nonzero tolerance ε > 0 can aid in learning an advisor that
has improved generalization to testing data.

The expected accuracy achieved by the advisor on benchmark Bi using
set P is then

Ai(P) =
1

|Oi(P)|
∑

j ∈Oi(P)

aij . (4.3)

In learning an advisor, we seek a set P that maximizes the advisor’s expected
accuracy Ai(P) on the training benchmarks Bi.

Formally, we want an advisor that maximizes the following objective func-
tion,

fc(P) =
∑
i

wi Ai(P) , (4.4)

where i indexes the benchmarks, and wi is the weight placed on bench-
mark Bi. (The benchmark weights are to correct for possible sampling bias
in the training data.) In words, objective fc(P) is the expected accuracy of
the parameter choices selected by the advisor averaged across the weighted
training benchmarks, using advisor set P and the estimator given by coeffi-
cients c. We write the objective function as f(P) without subscript c when
the estimator coefficient vector c is fixed or understood from context.

We use the following argmin and argmax notation. For a function f and
a subset S of its domain,

argmin
{
f(x) : x ∈ S

}
denotes the set of all elements of S that achieve the minimum value of f , or
in other words, the set of minimizers of f on S. Similarly, argmax is used to
denote the set of maximizers.

4.2.1 Optimal Advisor

We first define the problem of finding an optimal advisor : that is, simulta-
neously finding an advisor estimator and an advisor set that together yields
the highest average advising accuracy.

In the problem definition,

• n is the number of benchmarks, and
• t is the number of alignment features.

Set Q denotes the set of rational numbers.

Definition 4.1.(Optimal Advisor) The Optimal Advisor problem takes as
input

D
RA
FT

4.2 Learning an optimal advisor 43

• cardinality bound k ≥ 1,
• universe U of parameter choices,
• weights wi ∈ Q on the training benchmarks Bi, where each wi ≥ 0

and
∑
i wi = 1,

• accuracies aij ∈ Q of the alternate alignments Aij , where each 0 ≤
aij≤1,
• feature vectors Fij ∈ Qt for the alternate alignments Aij , where each

feature value gijh in vector Fij satisfies 0≤gijh≤1, and
• error tolerance ε ∈ Q where ε ≥ 0.

The output is

• estimator coefficient vector c ∈ Qt, where each coefficient ci in vector c
satisfies ci ≥ 0 and

∑
1≤i≤t ci = 1, and

• set P ⊆ U of parameter choices for the advisor, with |P | ≤ k,

that maximizes objective fc(P) given by equation (4.4).

4.2.2 Advisor Set

We can restrict the optimal advisor problem to finding an optimal set of
parameter choices for advising with a given estimator.

Definition 4.2.(Advisor Set) The Advisor Set problem takes as input

• weights wi on the benchmarks,
• accuracies aij of the alternate alignments,
• feature vectors Fij for the alternate alignments,
• coefficients c = (c1 · · · ct) ∈ Qt for the estimator, where each ci ≥ 0

and
∑

1≤i≤t ci = 1, and
• error tolerance ε.

The output is

• advisor set P

that maximizes objective fc(P) given by equation (4.4).

4.2.3 Advisor Estimator

Similarly, we can define the problem of finding an optimal estimator where
the set of parameter choices for the advisor is now given.

Definition 4.3.(Advisor Estimator) The Advisor Estimator problem takes
as input

D
RA
FT

44 4 The Optimal Advisor Problem

• weights wi on the benchmarks,
• accuracies aij of the alternate alignments,
• feature vectors Fij for the alternate alignments,
• advisor set P , and
• error tolerance ε.

The output is

• coefficients c = (c1 · · · ct) ∈ Qt for the estimator, where each ci ≥ 0
and

∑
1≤i≤t ci = 1,

that maximize objective fc(P) given by equation (4.4).

For Advisor Estimator, resolving ties to pick the worst among the pa-
rameter choices that maximize the estimator, as in the definition of A(i)
in equation (4.4), is crucial, as otherwise the problem formulation becomes
degenerate. If the advisor is free to pick any of the tied parameter choices,
it can pick the tied one with highest true accuracy; if this is allowed, the
optimal estimator c∗ that is found by the formulation would degenerate to
the flattest possible estimator that evaluates all parameter choices as equally
good (since the degenerate flat estimator would make the advisor appear to
match the performance of a perfect oracle on set P). Resolving ties in the
worst-case way eliminates this degeneracy.

4.3 Complexity of learning optimal advisors

We now prove that Advisor Set, the problem of learning an optimal parameter
set for an advisor (given by Definition 4.2 of Section 4.2) is NP-complete, and
hence is unlikely to be efficiently solvable in the worst-case. As is standard, we
prove NP-completeness for a decision version of this optimization problem,
which is a version whose output is a yes/no answer (as opposed to a solution
that optimizes an objective function).

The decision version of Advisor Set has an additional input ` ∈ Q, which
will lower bound the objective function. The decision problem is to determine,
for the input instance k, U,wi, aij , Fij , c, ε, `, whether or not there exists a
set P ⊆ U with |P |≤k for which the objective function has value fc(P) ≥ `.

Theorem 4.1 (NP-completeness of Advisor Set). The decision version
of Advisor Set is NP-complete.

Proof. We use a reduction from the Dominating Set problem, which is NP-
complete [45, problem GT2]. The input to Dominating Set is an undirected
graph G = (V,E) and an integer k, and the problem is to decide whether or
not G contains a vertex subset S ⊆ V with |S| ≤ k such that every vertex
in V is in S or is adjacent to a vertex in S. Such a set S is called a dominating
set for G.

D
RA
FT

4.3 Complexity of learning optimal advisors 45

Given an instanceG, k of Dominating Set, we construct an instance U,wi, aij , Fij , c, ε, `
of the decision version of Advisor Set as follows. For the cardinality bound
use the same value k, for the number of benchmarks take n= |V |, and index
the universe of parameter choices by U = {1, . . . , n}; have only one feature
(d=1) with estimator coefficients c=1; use weights wi=1/n, error tolerance
ε=0, and lower bound `=1. Let the vertices of G be indexed V = {1, . . . , n}.
(So both the set of benchmarks and the universe of parameter choices in
essence correspond to the set of vertices V of graph G.) Define the neigh-
borhood of vertex i in G to be N(i) :=

{
j : (i,j) ∈ E

}
∪ {i}, which is the

set of vertices adjacent to i, including i itself. For the alternate alignment
accuracies, take aij = 1 when j ∈ N(i); otherwise, aij = 0. For the feature
vectors, assign Fij = aij .

We claim G, k is a yes-instance of Dominating Set iff k, U,wi, aij , Fij , c, ε, `
is a yes-instance of Advisor Set.

To show the forward implication, suppose G has a dominating set S ⊆ V
with |S| ≤ k, and consider the advisor set P = S. With the above construc-
tion, for every benchmark, set Oi(P) = N(i) ∩ S, which is nonempty (since S
is a dominating set for G). So Ai(P) = 1 for all benchmarks. Thus for this
advisor set P , the objective function has value fc(P) = 1 ≥ `.

For the reverse implication, suppose advisor set P achieves objective
value ` = 1. Since P achieves value 1, for every benchmark it must be that
Ai(P) = 1. By construction of the aij , this implies that in G every vertex
i ∈ V is in P or is adjacent to a vertex in P . Thus set S = P , which satis-
fies |S| ≤ k, is a dominating set for G.

This reduction shows Advisor Set is NP-hard, as the instance of Advisor
Set can be constructed in polynomial time. Furthermore, it is in NP, as we
can nondeterministically guess an advisor set P , and then check whether its
cardinality is at most k and its objective value is at least ` in polynomial
time. Thus Advisor Set is NP-complete.

Note that the proof of Theorem 4.1 shows Advisor Set is NP-complete for
the special case of a single feature, error tolerance zero, when all accuracies
and feature values are binary, and benchmarks are uniformly weighted.

In general, we would like to find an optimal parameter advisor, which re-
quires simultaneously finding both the best possible parameter set and the
best possible accuracy estimator. We define the general problem of construct-
ing an optimal parameter advisor as follows.

The decision version of Optimal Advisor, similar to the decision version
of Advisor Set, has an additional input ` that lower bounds the objective
function.

We next prove that Optimal Advisor is NP-complete. While its NP-
hardness follows from Advisor Set, the difficulty is in proving that this more
general problem is still in the class NP.

D
RA
FT

46 4 The Optimal Advisor Problem

Theorem 4.2 (NP-completeness of Optimal Advisor). The decision
version of Optimal Advisor is NP-complete.

Proof. The proof of Theorem 4.1 shows Advisor Set remains NP-hard for
the special case of a single feature. To prove the decision version of Optimal
Advisor is NP-hard, we use restriction: we simply reduce Advisor Set with
a single feature to Optimal Advisor (reusing the instance of Advisor Set for
Optimal Advisor). On this restricted input with d = 1, Optimal Advisor is
equivalent to Advisor Set, so Optimal Advisor is also NP-hard.

We now show the general Optimal Advisor problem is in class NP. To de-
cide whether its input is a yes-instance, after first nondeterministically guess-
ing parameter set P ⊆ U with |P | ≤ k, we then make for each benchmark i a
nondeterministic guess for its setsOi(P) andMi(P) := argmax

{
c · Fij : j ∈ P

}
,

without yet knowing the coefficient vector c. Call Õi the guess for set Oi(P),

and M̃i the guess for set Mi(P), where M̃i ⊆ Õi ⊆ P . To check whether

a coefficient vector c exists that satisfies Oi(P) = Õi and Mi(P) = M̃i, we
construct the following linear program with variables c = (c1 · · · cd) and ξ.
The objective function for the linear program is to maximize the value of
variable ξ. The constraints are: ch≥ 0 and

∑
1≤h≤d ch = 1; 0≤ ξ≤ 1; for all

benchmarks i and all parameter choices j∗ ∈ M̃i and j 6∈ M̃i,

c · Fij∗ ≥ c · Fij + ξ ;

for all benchmarks i and all parameter choices j, ̃ ∈ M̃i,

c · Fij = c · Fĩ ;

for all benchmarks and all parameter choices j∗ ∈ M̃i and j ∈ Õi,

c · Fij ≥ c · Fij∗ − ε .

This linear program can be solved in polynomial time. If it has a feasible
solution, then it has an optimal solution (as its objective function is bounded).
In an optimal solution c∗, ξ∗ we check whether ξ∗>0. If this condition holds,
the guessed sets Õi, M̃i, correspond to actual sets Oi(P) and Mi(P) for an
estimator. For each benchmark i, we then evaluate Ai(P), and check whether∑
i wiAi(P) ≥ `. Note that after guessing the sets P , Õi, and M̃i, the rest

of the computation runs in polynomial time. Thus Optimal Advisor is in NP.

Theorem 4.3 (NP-completeness of Advisor Estimator). The decision
version of Advisor Estimator is NP-complete.

Proof. To show Advisor Estimator is NP-hard, we use a similar reduction
from Dominating Set that we used in proving Theorem 4.1. Given an in-
stance G, k of Dominating Set, we construct an instance wi, aij , Fij , P, ε, `, δ
of the decision version of Advisor Estimator, where we use the same cardinal-
ity bound k, number of benchmarks and parameter choices n= |V |, weights

D
RA
FT

4.3 Complexity of learning optimal advisors 47

wi = 1/n, error tolerance ε = 0, accuracies aij again defined as before, and
lower bound ` = 1, as we did for Advisor Set. For the set P of parameter
choices for the advisor, we take P = {1, . . . , n}. The number of features is
now t=n. (So in essence the set of benchmarks, the advisor set, and the set
of features all coincide with the set of vertices V .) For the feature vectors
we take Fij = (0 · · · 0 aij 0 · · · 0) which has value aij at location j. This is
equivalent to a feature vector Fij that is all zeroes, except for a 1 at loca-
tion j if j= i or vertex j is adjacent to vertex i in G. For the precision lower
bound we take δ=1/k. Note that this instance of Advisor Estimator can be
constructed in polynomial time.

We claim thatG, k is a yes-instance of Dominating Set iff wi, aij , Fij , P, ε, `, δ
is a yes-instance of Advisor Estimator. To show the reverse implication, first
notice that with the chosen δ, coefficient vector c can have at most k nonzero
coefficients (since if c has more than k nonzero coefficients,

∑
i ci > k δ = 1, a

contradiction). Let feature subset S ⊆ V be all indices i at which ci > 0. We
call S the support of c, and by our prior observation |S| ≤ k. By construction
of the feature vectors, c · Fij = cj if j ∈ N(i); otherwise, c · Fij = 0. This
further implies that Ai(P)=1 if S ∩N(i) is nonempty; otherwise, Ai(P)=0.
So if there exists coefficient vector c such that the objective function achieves
value 1, then the support S of c gives a vertex subset S ⊆ V that is a domi-
nating set for G. For the forward implication, given a dominating set S ⊆ V
for G, take for the estimator coefficients ci=1/|S| if i ∈ S, and ci=0 other-
wise. The nonzero coefficients of this vector c have value at least δ, and by
the same reasoning as above, each Ai(P) = 1 as S is a dominating set, so
the estimator given by this vector c yields an advisor that achieves objective
value 1, which proves the claim.

We can show Advisor Estimator is in class NP using the same construction
used for proving Optimal Advisor is in class NP. For each benchmark we can
make a nondeterministic choice for its set Õi(P), and compute M̃i. We can
then construct a linear program to determine if these guesses are actual sets
for the estimator. The guesses and solution of the linear program can be
performed in polynomial time. Thus Advisor Estimator is in NP.

Summary

In this chapter, we have formally defined the problem of finding an optimal
advisor and two related problems of finding an optimal advisor set and an
optimal advisor estimator. We then proved that all three problems (Opti-
mal Advisor, Advisor Set, and Advisor Estimator) are NP-complete. In the
next chapter, we describe practical approaches to the Advisor Set problem,
and how to model all three problems by mixed-integer linear programming
(MILP).

D
RA
FT

D
RA
FT

Chapter 5

Constructing Advisor

Overview

In this chapter, we consider the problem of learning an opimal set of parame-
ter choices for a parameter advisor. We consider two forms of the advisor sets
problem: (i) sets that are estimator-unaware (and are optimal for a prefect
estimator called an oracle), and (ii) sets that are optimal for a given accuracy
estimator. In this context the optimal advisor set is one that maximizes the
average true accuracy of the resulting parameter advisor, over a collection
of training benchmarks. Chapter 4, we proved in that learning an optimal
set for an advisor is NP-complete. Here we can model the problem of finding
optimal advisor sets as an integer linear program (ILP). We find this ILP
cannot be solved to optimality in practice, so we go on to develop an efficient
approximation algorithm for this problem that finds near-optimal sets, and
prove a tight bound on its approximation ratio.

5.1 Introduction

In Chapter 4, we introduced the advisor set problem and showed that it is
NP-complete. In this chapter, we show how to model the problem of finding
optimal advisor sets, and more generally finding optimal advisor, using inte-
ger linear programming. We have found that in practice these integer linear
programming models are not solvable to optimality even on very small inputs.
Consequently, Section 5.3 develops an efficient approximation algorithm, that
is guaranteed to find near-optimal advisor sets for a given estimator.

In this chapter we consider how to learn sets of parameter choices for a real-
istic advisor, where these sets are tailored to the actual estimator used by the
advisor (as opposed to finding parameter sets for a perfect but unattainable

This chapter was adapted from portions of previous publications [26, 27].

49

D
RA
FT

50 5 Constructing Advisor

oracle advisor). While learning such sets that are oprimal is NP-complete,
there is an efficient greedy approximation algorithm for this learning prob-
lem, and we derive a tight bound on its worst-case approximation ratio. Ex-
periments show that the greedy parameter sets found by this approximation
algorithm, using Facet, TCS, MOS, PredSP, or GUIDANCE as the advisor’s
accuracy estimator, outperform optimal oracle sets at all cardinalities. Fur-
thermore, on the training data, for some estimators these suboptimal greedy
sets perform surprisingly close to optimal exact sets found by exhaustive
search. Moreover, these greedy sets actually generalize better than exact sets.
As a consequence, on testing data, for some estimators the greedy sets out-
put by the approximation algorithm can actually give superior performance
to exact sets for parameter advising.

5.2 Constructing optimal advisors by integer linear
programming

We now show how to construct optimal advisors by integer linear program-
ming. Recall that an integer linear program (ILP) is an optimization problem
with a collection of integer-valued variables, an objective function to optimize
that is linear in these variables, and constraints that are linear inequalities in
the variables. Our formulations of Advisor Coefficients and Optimal Advisor
are actually so-called mixed-integer programs, where some of the variables
are real-valued, while Advisor Set has all integer variables.

The integer linear programming formulations we give below actually model
a more general version of the advising problems. The advising problems in
Section 4.2 define the advisor A so that it carefully resolves ties among the
parameter choices that achieve the optimum value of the estimator, by picking
from this tied set the parameter choice that has lowest true accuracy. (This
finds a solution that has the best possible average accuracy, even in the worst
case.) We extend the definition of advisor A to now pick from a larger set of
near-optimal parameter choices with respect to the estimator. To make this
precise, for benchmark i, set P of parameter choices, and a real-value δ ≥ 0,
let

Mδ(i) :=
{
j ∈ P : c · Fij ≥ max

k∈P

{
c · Fik

}
− δ

}
.

Set Mδ(i) is the near-optimal parameter choices that are within δ of maxi-
mizing the estimator for benchmark i. (So Mδ(i) ⊇ argmaxj∈P {c · Fij}, with
equality when δ = 0.) We then extend the definition of the advisor A in
equation (4.4) for δ≥0 to

A(i) ∈ argmin
{
aij : j ∈ Mδ(i)

}
. (5.1)

D
RA
FT

5.2 Constructing optimal advisors by integer linear programming 51

At δ= 0, this coincides with the original problem definitions. The extension
to δ>0 is designed to boost the generalization of optimal solutions (in other
words, to find a solution that is not over fit to the training data) when we
do cross-validation experiments on independent training and test sets as in
Chapter 6. We give integer linear programming formulations for this extended
definition of our advising problems.

5.2.1 Modeling the Advisor Set Problem

The integer linear program (ILP) for Advisor Set has three classes of vari-
ables, which all take on binary values {0, 1}. Variables xij , for all benchmarks i
and all parameter choices j from the universe, encode the advisor A: xij =1
if the advisor uses choice j on benchmark i; otherwise, xij =0. Variables yj ,
for all parameter choices j from the universe, encode the set P that is found
by Advisor Set: yj = 1 iff j ∈P . Variables zij , for all benchmarks i and pa-
rameter choices j, encode the parameter choice in P with highest estimator
value for benchmark i: if zij = 1 then j ∈ argmaxk∈P c · Fik. This argmax
set may contain several choices j, and in this situation the ILP given below
arbitrarily selects one such choice j for which zij=1.

For convenience, the description of the ILP below also refers to the new
constants eij , which are the estimator values of the alternate alignments Aij :
for the fixed estimator c for Advisor Set, eij = c · Fij .

The objective function for the ILP is to maximize∑
i

wi
∑
j

aij xij . (5.2)

In this function, the inner sum
∑
j aij xij will be equal to ai,A(i), as the

xij will capture the (unique) parameter choice that advisor A makes for
benchmark i. This objective is linear in the variables xij .

The constraints for the ILP fall into three classes. The first class ensures
that variables yj encode set P , and variables xij encode an assignment to
benchmarks from P . The ILP has constraints∑

j

yj ≤ k, (5.3)

∑
j

xij = 1, (5.4)

xij ≤ yj , (5.5)

where equation (5.4) occurs for all benchmarks i, and inequality (5.5) occurs
for all benchmarks i and all parameter choices j.

D
RA
FT

52 5 Constructing Advisor

In the above, inequality (5.3) enforces |P | ≤ k. Equations (5.4) force the
advisor to select one parameter choice for every benchmark. Inequalities (5.5)
enforce that the advisor’s selections must be parameter choices that are avail-
able in P .

The second class of constraints ensure that variables zij encode a parame-
ter choice from P with highest estimator value. To enforce that the zij encode
an assignment to benchmarks from P ,∑

j

zij = 1, (5.6)

zij ≤ yj , (5.7)

where equation (5.6) occurs for all i, and inequality (5.7) occurs for all i
and j. (In general, the zij will differ from the xij , as the advisor does not
necessarily select the parameter choice with highest estimator value.) For
all benchmarks i, and all parameter choices j and k from the universe with
eik < eij , we have the inequality

zik + yj ≤ 1. (5.8)

Inequalities (5.8) ensure that if a parameter choice k is identified as having
the highest estimator value for benchmark i by zik = 1, there must not be
any other parameter choice j in P that has higher estimator value on i. Note
that the constants eij are known in advance, so inequalities (5.8) can be
enumerated by sorting all j by their estimator value eij , and collecting the
ordered pairs (k, j) from this sorted list.

The third class of constraints ensure that the parameter choices xij selected
by the advisor correspond to the definition in equation (5.1): namely, among
the parameter choices in P that are within δ of the highest estimator value
from P for benchmark i, the parameter choice of lowest accuracy is selected.
For all benchmarks i, all parameter choices j, and all parameters choices k
and h with both eik, eih ∈ [eij−δ, eij] and aih < aik, we have the inequality

xik + yh + zij ≤ 2. (5.9)

Inequalities (5.9) ensure that for the parameter choices that are within δ of the
highest estimator value for benchmark i, the advisor only selects parameter
choice k for i if k is within δ of the highest and there is no other parameter
choice available in P within δ of the highest that has lower accuracy. Finally,
for all benchmarks i and all parameter choices j and k with eik < eij−δ, we
have the inequality

xik + yj ≤ 1. (5.10)

Inequalities (5.10) enforce that the advisor cannot select parameter choice k
for i if the estimator value for k is below δ of an available parameter choice

D
RA
FT

5.2 Constructing optimal advisors by integer linear programming 53

in P . (Inequalities (5.9) capture the requirements on parameter choices that
are within δ of the highest, while inequalities (5.10) capture the requirements
on parameter choices that are below δ of the highest.)

A truly remarkable aspect of this formulation is that the ILP is able to
capture all the subtle conditions the advisor must satisfy through its static
set of inequalities (listed at “compile time”), without knowing when the ILP
is written what the optimal set P is, and hence without knowing what pa-
rameter choices in P have the highest estimator value for each benchmark.

To summarize, the ILP for Advisor Set has binary variables xij , yj , and zij ,
and inequalities (5.3) through (5.10). For n benchmarks and a universe of
m parameter choices, this is O(mn) variables, and O(m2n + mm̃2n) con-
straints, where m̃ is the maximum number of parameter choices that are
within δ in estimator value of any given parameter choice. For small δ, typ-
ically m̃ � m, which leads to O(m2n) constraints in practice. In the worst-
case, though, the ILP has Θ(m3n) constraints.

We also have an alternate ILP formulation that adds O(n) real-valued vari-
ables to capture the highest estimator value from P for each benchmark i, and
only has O(m2n) total constraints (so fewer constraints than the above ILP
in the worst case), but its objective function is more involved, and attempts
to solve the alternate ILP suffered from numerical issues.

5.2.2 Finding optimal Oracle Sets

While we would like to find advisor sets that are optimal for the actual
accuracy estimator used by an advisor, in practice finding such optimal set
seems very hard. We can, however, in practice find optimal advisor sets that
are estimator oblivious, in the sense that the set-finding algorithm is unaware
of the mistakes made by the advisor due to using an accuracy estimator rather
than knowing true accuracy. More precisely, we can find an optimal advisor
set for an advisor whose “estimator” is the true accuracy of an alignment.
As mentioned previously, we call such an advisor an oracle.

To find an optimal oracle set, we use the same objective function described
in equation 5.2, and equations 5.3-5.5 to make sure an alignment is only
selected if the parameter that is used to generate it is chosen. Solving the
ILP with only these constraints will yield an optimal advisor set for the
oracle advisor. Note that ties in accuracy do not need to be resolved, as any
alignment with a tied “estimator” value also has a tied accuracy value, and
thus would not effect the objective value.

With the reduced number of variables and constraints in this modified
ILPm we are able to find optimal oracle sets in practice even for large set
cardinalities.

D
RA
FT

54 5 Constructing Advisor

5.2.3 Modeling the Advisor Estimator Problem

We now describe how to modify the above ILP for Advisor Set to obtain
an ILP for Advisor Coefficients. The modifications must address two issues:
(a) the set P is now fixed; and (b) the estimator c is no longer fixed, so the
enumeration of inequalities cannot exploit concrete estimator values. We can
easily handle that set P is now part of the input by approriately fixing the
variables yj with new equations: for all j ∈ P add equation yj = 1, and for
all j 6∈P add yj=0.

To find the optimal estimator c, we add ` new real-valued variables
c1, . . . , c` with the constraints

∑
h ch = 1 and ch ≥ 0. We also add two new

classes of binary-valued integer variables: (a) variable sij , for all benchmarks i
and all parameter choices j, which has value 1 when the estimator value of
parameter choice j on benchmark i, namely c · Fij , is within δ of the high-
est estimator value for i; and (b) variable tijk, for all benchmarks i and all
parameter choices j and k, which has value 1 when c · Fij > c · Fik − δ.

To set the values of the binary variables tijk, for all i, j, k we add the
inequalities

tijk ≥ c · Fij − c · Fik + δ. (5.11)

This inequality is linear in the variables c1, . . . , c`. Note that the value of the
estimator c · Fij will always be in the range [0, 1], and we are assuming that
the constant δ � 1. To set the values of the binary variables sij , for all i, j, k
we add the inequalities

sij ≥ tijk + tikj + zik − 2. (5.12)

While the ILP only has to capture relationships between parameter choices
that are in set P , we do not constrain the variables sij and tijk for parameter
choices outside P to be 0, but allow the ILP to set them to 1 if needed for a
feasible solution.

We now use the variables sij and tijk to express the relationships in the
former inequalities (5.8) through (5.10). We replace inequality (5.8) by the
following inequality over all i, j, k,

zij + yk ≤ 2 −
(
c · Fik − c · Fij

)
. (5.13)

We replace inequality (5.9) by the following inequality over all i, j, k with
aik < aij ,

xij + yk + sij + sik ≤ 3. (5.14)

Finally, we replace inequality (5.10) by the following inequality over all i, j, k,

xij + yk ≤ 2 −
(
c · Fik − c · Fij − δ

)
. (5.15)

D
RA
FT

5.3 Approximation algorithm for learning advisor sets 55

To summarize, the ILP for Advisor Coefficients has binary variables xij ,
yj , zij , sij , tijk, real variables ch, constraints (5.6)–(5.7) and (5.11)–(5.15),
plus the elementary constraints on the yj and ch. This is O(m2n) variables
and O(m2n) constraints. While in general this is an enormous mixed-integer
linear program, we are able to solve it to optimality for small, fixed sets P .
Its difficulty increases with the size of P , and instances up to |P |≤4 can be
solved in two days of computation.

5.2.4 Modeling the Optimal Advisor Problem

The ILP for Optimal Advisor is simply the above ILP for Advisor Coefficients
where set P coincides with the entire universe of parameter choices: P =
{1, . . . ,m}. Solving this ILP is currently beyond reach.

While very large integer linear programs can be solved to optimality in
practice using modern solvers such as CPLEX [21] there is no known algorithm
for integer linear programming that is efficient in the worst-case. Thus our
reductions of the optimal advising problems to integer linear programming
do not yield algorithms for these problems that are guaranteed to be efficient.
On the other hand, Section 4.3 shows that our optimal advising problems are
all NP-complete, so it is unlikely that any worst-case efficient algorithm for
them exists.

5.3 Approximation algorithm for learning advisor sets

As Advisor Set is NP-complete, it is unlikely we can efficiently find advisor
sets that are optimal ; we can, however, efficiently find advisor sets that are
guaranteed to be close to optimal, in the following sense. An α-approximation
algorithm for a maximization problem, where α < 1, is a polynomial-time
algorithm that finds a feasible solution whose value under the objective func-
tion is at least factor α times the value of an optimal solution. Factor α is
called the approximation ratio. In this section we show that for any constant `
with ` ≤ k, there is a simple approximation algorithm for Advisor Set that
achieves approximation ratio `/k.

For constant `, the optimal advisor set of cardinality at most ` can be found
in polynomial time by exhaustive search (since when ` is a constant there are
polynomially-many subsets of size at most `). The following natural approach
to Advisor Set builds on this idea, by starting with an optimal advisor set
of size at most `, and greedily augmenting it to one of size at most k. Since
augmenting an advisor set by adding a parameter choice can worsen its value
under the objective function, even if augmented in the best possible way, the

D
RA
FT

56 5 Constructing Advisor

procedure Greedy given below outputs the best advisor set found across all
cardinalities.

procedure Greedy(`, k) begin

Find an optimal subset P ⊆ U of size |P | ≤ ` that maximizes f(P).(
P̃ , ˜̀) :=

(
P,
∣∣P ∣∣)

for cardinalities ˜̀+1, . . . , k do begin

Find parameter choice j∗ ∈ U−P̃ that maximizes f
(
P̃ ∪ {j∗}

)
.

P̃ := P̃ ∪ {j∗}
if f

(
P̃
)
> f(P) then P := P̃

end

output P

end

We now show this natural greedy procedure is an approximation algorithm
for Advisor Set.

Theorem 5.1 (Approximation Ratio). Procedure Greedy is an (`/k)-
approximation algorithm for Advisor Set with cardinality bound k, and any
constant ` with ` ≤ k.

Proof. The basic idea of the proof is to use averaging over all subsets of size `
from the optimal advisor set of size at most k, in order to relate the objective
function value of the set found by Greedy to the optimal solution.

To prove the approximation ratio, let

• P ∗ be the optimal advisor set of size at most k,
• P̃ be the optimal advisor set of size at most `,
• P be the advisor set output by Greedy,
• S be the set of all subsets of P ∗ that have size `,
• k̃ be the size of P ∗, and
• ˜̀be the size of P̃ .

Note that if k̃ < `, then the greedy advisor set P is actually optimal and
the approximation ratio holds. So assume k̃ ≥ `, in which case S is nonempty.
Then

D
RA
FT

5.3 Approximation algorithm for learning advisor sets 57

f(P) ≥ f(P̃)

≥ max
Q∈S

f(Q) (5.16)

≥ 1

|S|
∑
Q∈S

f(Q)

=
1

|S|
∑
Q∈S

∑
i

wiAi(Q)

=
1

|S|
∑
Q∈S

∑
i

∑
j ∈Oi(Q)

wi aij∣∣Oi(Q)
∣∣

=
1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(Q)

wi aij∣∣Oi(Q)
∣∣ , (5.17)

where inequality (5.16) holds because P̃ is an optimal set of size at most `
and each Q is a set of size `, while equation (5.17) just changes the order of
summation on i and j.

Note that for any subset Q ⊆ P ∗ and any fixed parameter choice j ∈ Q,
the following relationship on sets of benchmarks holds:{

i : j ∈ Oi(P ∗)
}
⊆

{
i : j ∈ Oi(Q)

}
, (5.18)

since if choice j is within tolerance ε of the highest estimator value for P ∗,
then j is within ε of the highest value for Q.

Continuing from equation (5.17), applying relationship (5.18) to index i of
the innermost sum and observing that the terms lost are nonnegative, yields
the following inequality (5.19):

f(P) ≥ 1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(Q)

wi aij∣∣Oi(Q)
∣∣

≥ 1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(P∗)

wi aij∣∣Oi(Q)
∣∣ . (5.19)

Now define, for each benchmark i, a parameter choice J(i) from P ∗ of
highest estimator value,

J(i) ∈ argmax
j ∈P∗

{
E(Aij)

}
,

where ties in the maximum estimator value are broken arbitrarily. Observe
that when J(i) ∈ Q, the relationship Oi(Q) ⊆ Oi(P ∗) holds, since then both
Q and P ∗ have the same highest estimator value (and Q ⊆ P ∗). Thus when
J(i) ∈ Q, ∣∣Oi(Q)

∣∣ ≤ ∣∣Oi(P ∗)∣∣ . (5.20)

D
RA
FT

58 5 Constructing Advisor

Returning to inequality (5.19), and applying relationship (5.20) in inequal-
ity (5.21) below,

f(P) ≥ 1

|S|
∑
Q∈S

∑
j ∈Q

∑
i : j ∈Oi(P∗)

wi aij∣∣Oi(Q)
∣∣

=
1

|S|
∑
i

∑
Q∈S

∑
j ∈Oi(P∗)

wi aij∣∣Oi(Q)
∣∣

≥ 1

|S|
∑
i

∑
Q∈S : J(i)∈Q

∑
j ∈Oi(P∗)

wi aij∣∣Oi(Q)
∣∣

≥ 1

|S|
∑
i

∑
Q∈S : J(i)∈Q

∑
j ∈Oi(P∗)

wi aij∣∣Oi(P ∗)∣∣ (5.21)

=
1

|S|
∑
i

∣∣∣{Q∈S : J(i)∈Q
}∣∣∣ ∑

j ∈Oi(P∗)

wi aij∣∣Oi(P ∗)∣∣
=

(
k̃− 1
`− 1

)
(
k̃
`

) ∑
i

∑
j ∈Oi(P∗)

wi aij∣∣Oi(P ∗)∣∣
=
(
`
/
k̃
)
f(P ∗)

≥
(
`
/
k
)
f(P ∗) .

Thus Greedy achieves approximation ratio at least `/k.
Finally, to bound the running time of Greedy, consider an input instance

with d features, n benchmarks, and m parameter choices in universe U . There
are at most m` subsets of U of size at most `, and evaluating objective
function f on such a subset takes O(d`n) time, so finding the optimal subset
of size at most ` in the first step of Greedy takes O(d`nm`) time. The
remaining for-loop considers at most k cardinalities, at most m parameter
choices for each cardinality, and evaluates the objective function for each
parameter choice on a subset of size at most k, which takes O(dk2mn) time.
Thus the total time for Greedy is O(d`nm` + dk2mn). For constant `, this
is polynomial time.

In practice, we can compute optimal advisor sets of size up to ` = 5 by ex-
haustive enumeration, as shown in Section 6.5.1. Finding an optimal advisor
set of size k = 10, however, is currently far out of reach. Nevertheless, Theo-
rem 5.1 shows we can still find reasonable approximations even for such large
advisor sets, since for ` = 5 and k = 10, Greedy is a (1/2)-approximation
algorithm.

We next show it is not possible to prove a greater approximation ratio
than in Theorem 5.1, as that ratio is in fact tight.

D
RA
FT

5.3 Approximation algorithm for learning advisor sets 59

Theorem 5.2 (Tightness of Approximation Ratio). The approximation
ratio `/k for algorithm Greedy is tight.

Proof. Since the ratio is obviously tight for ` = k, assume ` < k. For any
arbitrary constant 0 < δ < 1−(`/k), and for any error tolerance 0 ≤ ε < 1,
consider the following infinite class of instances of Advisor Set with:

• benchmarks 1, 2, . . . , n,
• benchmark weights wi = 1/n,
• cardinality bound k = n, and
• universe U = {0, 1, . . . , n} of n+1 parameter choices.

The estimator values for all benchmarks i are,

E(Aij) =

1, j = 0;
(1−ε)/2, i = j > 0;
0, otherwise;

which can be achieved by appropriate feature vectors Fij . The alternate align-
ment accuracies for all benchmarks i are,

aij =

 (`/k) + δ, j = 0;
1, i = j > 0;
0, otherwise.

For such an instance of Advisor Set, an optimal set of size at most
k is P ∗ = {1, . . . , n}, which achieves f(P ∗) = 1. Every optimal set P̃ of

size at most ` < k satisfies P̃ ⊇ {0}: it cannot include all of parame-
ter choices 1, 2, . . . , n, so to avoid getting accuracy 0 on a benchmark it
must contain parameter choice j = 0. Moreover, every such set P̃ ⊇ {0}
has average accuracy f

(
P̃
)

= (`/k) + δ: parameter choice j = 0 has the
maximum estimator value 1 on every benchmark, and no other parameter
choice j 6=0 has estimator value within ε of the maximum, so on every bench-
mark Ai

(
P̃
)

= (`/k) + δ. Furthermore, every greedy augmentation P ⊇ P̃

also has this same average accuracy f(P) = f
(
P̃
)
. Thus on this instance the

advisor set P output by Greedy has approximation ratio exactly

f(P)

f(P ∗)
=

`

k
+ δ .

Now suppose the approximation ratio from Theorem 5.1 is not tight, in
other words, that an even better approximation ratio α > `/k holds. Then
take δ =

(
α−(`/k)

)
/2, and run Greedy on the above input instance. On this

instance, Greedy only achieves ratio

`

k
+ δ =

1

2

(
`

k
+ α

)
< α ,

D
RA
FT

60 5 Constructing Advisor

a contradiction. So the approximation ratio is tight.

Summary

In this chapter, we have described an ILP for finding optimal advisor sets,
and more general for finding an optimal advisor. As this ILP is not solv-
able in practice we further developed efficient approximation algorithm for
finding estimator-aware advisor sets. In practice, we can find optimal ora-
cle by solving a reduced ILP. Experiments with an implementation of the
approximation algorithm on biological benchmarks, using various accuracy
estimators from the literature, which are shown in Chapter 6, show it finds
advisor sets that are surprisingly close to optimal. Furthermore, the resulting
parameter advisors are significantly more accurate in practice than simply
aligning with a single default parameter choice.

D
RA
FT

Chapter 6

Parameter Advising for Opal

Overview

In Chapters 1-5, we have described several approaches to constructing a pa-
rameter advisor. In this chapter, we demonstrate the performance of the
trained advisor as learned on a set of benchmark alignments. We will also
show the advisors performance compared to both the default parameter
choice, as well as advisors learned on various accuracy estimators. We show
Facet gives the best advising accuracy of any estimator currently available,
and that by using estimator-aware advisor sets we can significantly increase
the accuracy of the advisor over using oracle sets.

6.1 Introduction

In characterizing six stages in constructing a multiple sequence alignment,
[106] gave as the first stage choosing the parameter values for the alignment
scoring function. While many alignment tools allow the user to specify scoring
function parameter values, such as affine gap penalties or substitution scoring
matrices, typically only the default parameter values that the aligner provides
are used. This default parameter choice is often tuned to optimize the average
accuracy of the aligner over a collection of alignment benchmarks. While the
default parameter values might be the single choice that works best on average
on the benchmarks, for specific input sequences there may be a different
choice on which the aligner outputs a much more accurate alignment.

This leads to the task of parameter advising : given particular sequences to
align, and a set of possible parameter choices, recommend a parameter choice
to the aligner that yields the most accurate alignment of those sequences.
Parameter advising has three components: the set S of input sequences, the

This chapter was adapted from portions of previous publications [26, 27, 34, 56].

61

D
RA
FT

62 6 Parameter Advising for Opal

set P of parameter choices, and the aligner A. (Here a parameter choice p ∈ P
is a vector p = (p1, . . . , pk) that specifies values for all free parameters in the
alignment scoring function.) Given sequences S and parameter choice p ∈ P ,
we denote the alignment output by the aligner asAp(S). [106] call a procedure
that takes the set of input sequences S and the set of parameter choices P , and
outputs a parameter recommendation p ∈ P , an advisor. A perfect advisor,
that always recommends the choice p∗ ∈ P that yields the highest accuracy
alignment Ap∗(S), is called an oracle. In practice, constructing an oracle
is impossible, since for any real set S of sequences that we want to align,
a reference alignment for S is unknown (as otherwise we would not need to
align them), so the true accuracy of any alignment of S cannot be determined.
The concept of an oracle is useful, however, for measuring how well an actual
advisor performs.

A natural approach for constructing a parameter advisor is to use an accu-
racy estimator E as a proxy for true accuracy, and recommend the parameter
choice

p̃ := argmax
p∈P

E
(
Ap(S)

)
.

In its simplest realization, such an advisor will run the aligner A repeatedly
on input S, once for each possible parameter choice p ∈ P , to select the output
that has best estimated accuracy. Of course, to yield a quality advisor, this
requires two ingredients: a good estimator E, and a good set P of parameter
choices.

In Chapters 2 and 3 we presented our framework for accuracy estimation
that lead to the new accuracy estimator Facet (short for “feature-based
accuracy estimator”). Which is a linear combination of easy-to-compute fea-
ture functions of an alignment. We then went on in Chapter 5 to present a
greedy approximation algorithm for finding advisor sets. Note that as dis-
cussed in Chapter 4, finding optimal advisor sets is NP-complete.

Given that we have the means to compute both accuracy estimators and
advisor sets, we now apply all of this methodology to the task of parameter
advising.

Plan of the chapter

In the next section, we describe the benchmarks that we use in all of our
experiments. Recall that in order to learn both estimators and advisor sets,
we must have examples for which we know the correct alignment and can cal-
culate true accuracy. Section 6.3 shows examples of the estimator coefficients
we learned, and compares our new Facet estimator to other estimators from
the literature. Section 6.4 describes the differences between various methods
for finding advisor sets. Section 6.5 assesses the increase in accuracy gained
from parameter advising using Facet as well as other estimators. In addi-

D
RA
FT

6.2 Experimental methods 63

tion, we show the increase in accuracy gained from using greedy advisor sets
versus optimal oracle sets. Finally, the last section describes the software im-
plementation of advising using Facet as a stand-alone tool, as an API, and
within the Opal aligner.

6.2 Experimental methods

We evaluate our approach for deriving an accuracy estimator, and the qual-
ity of the resulting parameter advisor, through experiments on a collection of
benchmark protein multiple sequence alignments. In these experiments, we
compare parameter advisors that use our estimator and five other estima-
tors from the literature: COFFEE [78], NorMD [99], MOS [67], HoT [64], and
PredSP [2]. (In terms of our earlier categorization of estimators, COFFEE,
NorMD and PredSP are scoring-function-based, while MOS and HoT are
support-based.) Other estimators from the literature that are not in this com-
parison group are: AL2CO [81], which is known to be dominated by NorMD
[see 67] GUIDANCE [85], which requires at least four sequences, and hence
is not applicable to a large portion of the most challenging benchmarks in
our study, as many hardest-to-align instances involve three very distant se-
quences; and PSAR [61], which at present is only implemented for DNA se-
quence alignments.

We refer to our estimator in the figures that follow by the acronym Facet,
which is short for “feature-based accuracy estimator.”

In our experiments, for the collection of alignment benchmarks we used
the BENCH suite of [40], which consists of 759 benchmarks, supplemented by
a selection of 102 benchmarks from the PALI suite of [9]. (BENCH itself is a
selection of 759 benchmarks from [8], OxBench [87], and SABRE [102].) Both
BENCH and PALI consist of protein multiple sequence alignments mainly
induced by structural alignment of the known three-dimensional structures
of the proteins. The entire benchmark collection consists of 861 reference
alignments.

For the experiments, we measure the difficulty of a benchmark S by the
true accuracy of the alignment computed by the multiple alignment tool
Opal [106, 107] on sequences S using its default parameter choice, where the
computed alignment is compared to the benchmark’s reference alignment on
its core columns. Using this measure, we binned the 861 benchmarks by diffi-
culty, where we divided up the full range [0, 1] of accuracies into 10 bins with
difficulties [(i − 1)/10, i/10] for i = 1, . . . , 10. As is common in benchmark
suites, easy benchmarks are highly over-represented compared to hard bench-
marks. The number of benchmarks falling in bins [0.0, 0.1] through [0.9, 1.0]
are listed below.

D
RA
FT

64 6 Parameter Advising for Opal

bin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
benchmarks 12 12 20 34 26 50 61 74 137 434

To correct for this bias in oversampling of easy benchmarks, our approaches
for learning an estimator nonuniformly weight the training examples, as de-
scribed earlier.

Notice that with this uniform weighting of bins, the singleton advising
set P containing only the optimal default parameter choice will tend to
an average advising accuracy f(P) of 50% (illustrated later in Figures 6.2
and 6.3). This establishes, as a point of reference, average accuracy 50% as
the baseline against which to compare advising performance.

Note that if we instead measure advising accuracy by uniformly averaging
over benchmarks, then the predominance of easy benchmarks (for which little
improvement is possible over the default parameter choice) makes both good
and bad advisors tend to an average accuracy of nearly 100%. By uniformly
averaging over bins, we can discriminate among advisors, though the average
advising accuracies we report are now pulled down from 100% toward 50%.

For each reference alignment in our benchmark collection, we generated
alternate multiple alignments of the sequences in the reference using Opal
with varying parameter choices. Opal constructs multiple sequence align-
ments using as a building block the exact algorithm of [58] for optimally
aligning two multiple alignments under the sum-of-pairs scoring function [16]
with affine gap penalties [46]. Since Opal computes subalignments that are
optimal with respect to a well-defined scoring function, it is an ideal testbed
for evaluating parameter choices, and in particular parameter advising. Each
parameter choice for Opal is a five-tuple (σ, γI , γE , λI , λE) of parameter val-
ues, where σ specifies the amino acid substitution scoring matrix, pair γE , λE
specifies the gap-open and gap-extension penalties for external gaps in the
alignment (also called terminal gaps), and γI , λI specifies the gap penalties
for internal gaps (or non-terminal gaps).

The universe U of parameter choices we consider in our experiments con-
sists of over 2,000 such tuples (σ, γI , γE , λI , λE). Universe U was generated
as follows. For the substitution matrix σ, we considered matrices from the
BLOSUM [49] and VTML [75] families. To accommodate a range of protein se-
quence divergences, we considered the following matrices from these families:
{BLSM45,BLSM62,BLSM80} and {VTML20,VTML40,VTML80,VTML120,VTML200}.
For each of these eight matrices, we took the real-valued version of the sim-
ilarity matrix and transformed it into a substitution cost matrix for Opal
by negating, shifting, and scaling it to the range [0, 100], and then rounding
its entries to the nearest integer. For the gap penalties, we started from the
default parameter setting for Opal [see 106], which is an optimal choice of
gap penalties for the BLSM62 matrix found by inverse parametric alignment
(See 57, 60.) Around these default values we enumerated a Cartesian product
of integer choices in the neighborhood of this central choice, generating over
2,100 four-tuples of gap penalties. The resulting set of roughly 16,900 pa-

D
RA
FT

6.3 Comparison of advisor estimators 65

rameter choices (each substitution matrix combined with each gap penalty
assignment) was then reduced by examining the benchmarks in our collec-
tion as follows. In each hardness bin of benchmarks, we: (1) ran Opal with
all of these parameter choices on the benchmarks in the bin, (2) for a given
parameter choice measured the average accuracy of the alignments computed
by Opal using that parameter choice on the bin, (3) sorted the parameter
choices for a bin by their average accuracy, and (4) in each bin kept the top
25 choices with highest average accuracy. Unioning these top choices from
all 10 hardness bins, and removing duplicates, gave our final set U . This
universe U has 243 parameter choices.

To generate training and testing sets for our experiments on learning ad-
visor sets, we used 12-fold cross validation. For each hardness bin, we evenly
and randomly partitioned the benchmarks in the bin into twelve groups; we
then formed twelve splits of the entire collection of benchmarks into a train-
ing class and a testing class, where each split placed one group in a bin into
the testing class and the other eleven groups in the bin into the training class;
finally, for each split we generated a training set and a testing set of example
alignments as follows: for each benchmark B in a training or testing class,
we generated |U | example alignments in the respective training or testing set
by running Opal on B with each parameter choice from U . An estimator
learned on the examples from a training set was evaluated on examples from
the corresponding testing set. The results we report are averages over twelve
folds, where each fold is one of these pairs of associated training and testing
sets. (Note that across the twelve folds, every example is tested on exactly
once.) Each fold contains over 190,000 training examples.

When evaluating the GUIDANCE estimator, we used 4-fold cross validation
on the reduced benchmark collection described earlier, with folds generated
by the above procedure. Each of these folds has over 109,000 training exam-
ples.

6.3 Comparison of advisor estimators

To learn an estimator using the methods described in chapterch:estimator
we must be given a set of alternate alignments produced by an aligner and
their associated accuracy values. We use a set of alignment benchmarks that
is a combination of the BENCH benchmark suite of [40] supplemented with a
subset of the PALI benchmark suite [9]. In total the benchmark set consisted
of 861 benchmark alignments, for which we knew the correct alignment. We
then computed an alignment for each of them using the Opal aligner using
each of 16,896 parameter settings.

D
RA
FT

66 6 Parameter Advising for Opal

6.3.1 Finding an estimator

We found coefficients for the estimator using the difference-fitting method
described in Section 2.3.2. We used only threshold-difference pairs with ε =
5%, for all 16,896 realignments of each benchmark. Note that here we found
an estimator that is learned for pairs from all 861 benchmarks. When we
use an estimator for experiments involving parameter advising, we use cross-
validation to train new estimator coefficients for each fold, so as to not test
on benchmarks that were used for training the estimator or advisor sets .

Of the features listed in Section 3.2, not all are equally informative, and
some can weaken an estimator. When coefficients are found by solving the
linear programs described in Chapter 2 on a set of example alignments some
of the coefficients of the estimator will be zero. The best overall feature set
found by this process is a 6-feature subset consisting of the following feature
functions:

• Secondary Structure Agreement, fSA,
• Secondary Structure Blockiness, fBL,
• Secondary Structure Identity, fSI,
• Gap Open Density, fGO,
• Amino Acid Identity, fAI, and
• Core Column Percentage, fCC.

The corresponding fitted estimator is

E(A) = 0.239 fSA(A) + 0.141 fBL(A) + 0.040 fSI(A) +

0.465 fGO(A) + 0.204 fAI(A) + 0.003 fCC(A),

Figure 3.1 shows a scatter plot of the five strongest features from the
estimator. Notice that the feature with the highest coefficient value also has
the smallest range.

6.3.2 Comparing estimators to true accuracy

To examine the fit of an estimator to true accuracy, the scatter plots in Fig-
ure 6.1 show the value of an estimator versus true accuracy on all example
alignments in the 15-parameter test set. (This set has over 12,900 test exam-
ples. Note that these test examples are disjoint from the training examples
used to fit our estimator.) The scatter plots show our Facet estimator as
well as the PredSP, MOS, COFFEE, HoT, and NorMD estimators. We note
that the MOS estimator, in distinction to the other estimators, receives as
input all the alternate alignments of an example’s sequences generated by

D
RA
FT

6.4 Comparison of advisor sets 67

the 15 parameter choices, which is much more information than is provided
to the other estimators, which are only given the one example alignment.

An ideal estimator would be monotonic increasing in true accuracy. A real
estimator approaches this ideal according to its slope and spread. To discrim-
inate between low and high accuracy alignments for parameter advising, an
estimator needs large slope with small spread. Comparing the scatter plots by
spread, Facet and PredSP have the smallest spread; MOS and COFFEE have
intermediate spread; and HoT and NorMD have the largest spread. Compar-
ing by slope, PredSP and NorMD have the smallest slope; Facet and HoT
have intermediate slope; and MOS and COFFEE have the largest slope. While
PredSP has small spread, it also has small slope, which weakens its dis-
criminative power. While MOS and COFFEE have large slope, they also have
significant spread, weakening their discrimination. Finally HoT and NorMD
have too large a spread to discriminate. Of all these estimators, Facet seems
to achieve the best compromise of slope and spread, for a tighter monotonic
trend across all accuracies. This better compromise between slope and spread
may be what leads to improved performance for Facet on parameter advis-
ing, as demonstrated later in this section.

Our estimator combines six features to obtain its estimate. To give a sense
of how these features behave, Figure 3.1 shows scatter plots of all of the
feature functions’ correlation with true accuracy (many which all use sec-
ondary structure). As noted in Section 6.3.1 the feature functions that we
use for the Facet estimator are: Secondary Structure Agreement, Amino
Acid Identity, Secondary Structure Blockiness, Secondary Structure Identity,
and Core Column Percentage. Notice that the combined six-feature Facet
estimator, shown in Figure 6.1, has smaller spread than any one of its indi-
vidual features.

6.4 Comparison of advisor sets

Table 6.1 lists the parameter choices in the advisor sets found by the greedy
approximation algorithm (augmenting from the optimal set of cardinality `=
1) for the Opal aligner with the Facet estimator for cardinalities k ≤ 20, on
one fold of training data. (The greedy sets vary slightly across folds.) In the
table, the greedy set of cardinality k contains the parameter choices at rows 1
through k. (The entry at row 1 is the optimal default parameter choice.) Again
a parameter choice is five-tuple (σ, γI , γE , λI , λE), where γI and γE are gap-
open penalties for non-terminal and terminal gaps respectively, and λI and
λE are corresponding gap-extension penalties. The scores in the substitution
matrix σ are dissimilarity values scaled to integers in the range [0, 100]. (The
associated gap penalty values in a parameter choice relate to this range.)
The accuracy column gives the average advising accuracy (in Opal using
Facet) of the greedy set of cardinality k on training data, uniformly averaged

D
RA
FT

68 6 Parameter Advising for Opal

True Accuracy
0 0.2 0.4 0.6 0.8 1

F
a

c
e

t
V

a
lu

e

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

P
re

d
S

P
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

M
O

S
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

T
C

S
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

H
o

T
 V

a
lu

e

0

0.2

0.4

0.6

0.8

1

True Accuracy
0 0.2 0.4 0.6 0.8 1

N
o

rm
D

 V
a
lu

e

0

0.2

0.4

0.6

0.8

1

Fig. 6.1 Correlation of estimators with accuracy. Each scatter plot shows the
value of an estimator versus true accuracy for alignments of the 861 benchmarks used
for testing aligned with the default parameter settings for the Opal aligner.

over benchmark bins. Recall this averaging will tend to yield accuracies close
to 50%.

Interestingly, while BLOSUM62 [49] is the substitution scoring matrix most
commonly used by standard aligners, it does not appear in a greedy set until
cardinality k= 11. The VTML family [75] appears more often than BLOSUM.
The plateau in advising accuracy seen in earlier plots is also indicated in
this training instance, though ever more gradual improvement remains as
cardinality k increases.

D
RA
FT

6.4 Comparison of advisor sets 69

Table 6.1 Greedy Advisor Sets for Opal Using Facet

Cardinality Parameter choice Average
k (σ, γI , γE , λI , λE) advising accuracy

1
(
VTML200, 50, 17, 41, 40

)
51.2%

2
(
VTML200, 55, 30, 45, 42

)
53.4%

3
(
BLSUM80, 60, 26, 43, 43

)
54.5%

4
(
VTML200, 60, 15, 41, 40

)
55.2%

5
(
VTML200, 55, 30, 41, 40

)
55.6%

6
(
BLSUM45, 65, 3, 44, 43

)
56.1%

7
(
VTML120, 50, 12, 42, 39

)
56.3%

8
(
BLSUM45, 65, 35, 44, 44

)
56.5%

9
(
VTML200, 45, 6, 41, 40

)
56.6%

10
(
VTML120, 55, 8, 40, 37

)
56.7%

11
(
BLSUM62, 80, 51, 43, 43

)
56.8%

12
(
VTML120, 50, 2, 45, 44

)
56.9%

13
(
VTML200, 45, 6, 40, 40

)
57.0%

14
(
VTML40, 50, 2, 40, 40

)
57.1%

15
(
VTML200, 50, 12, 43, 40

)
57.2%

16
(
VTML200, 45, 11, 42, 40

)
57.3%

17
(
VTML120, 60, 9, 40, 39

)
57.3%

18
(
VTML40, 50, 17, 40, 38

)
57.4%

19
(
BLSUM80, 70, 17, 42, 41

)
57.4%

20
(
BLSUM80, 60, 3, 42, 42

)
57.6%

6.4.1 Shared structure across advisor sets

To assess the similarity of advisor sets found by the three approaches consid-
ered in our experiments—greedy sets via the approximation algorithm, exact
sets via exhaustive search, and oracle sets via integer linear programming —
we examine their overlap both within and between folds.

Table 6.2 shows the composition of the greedy, exact, and oracle sets for
the training instance in one fold, at cardinality k = 2, 3, 4 and tolerance ε=0.
A non-blank entry in the table indicates that the parameter choice at its row
is contained in the advisor set at its column. (The column labeled “default”
indicates the optimal default parameter choice for the fold, or equivalently,
the exact set of cardinality k = 1.) The value in parentheses at an entry is
the number of folds (for twelve-fold cross-validation) where that parameter
choice appears in that advisor set. (For example, at cardinality k = 4, the
second parameter choice (VTML200, 55, 30, 45, 42) is in the greedy, exact, and
oracle sets for this particular fold, and overall is in exact sets for 9 of 12 folds,
including this fold.) Surprisingly, the default parameter choice (the best single
choice) never appears in the exact or oracle sets for this fold at any of the
cardinalities beyond k=1, and also is reused as the default in only one other
fold. In general there is relatively little overlap between these advisor sets:
often just one and at most two parameter choices are shared.

D
RA
FT

70 6 Parameter Advising for Opal

Table 6.2 Composition of Advisor Sets at Different Cardinalities k

Parameter choice Advisor set
(σ, γI , γE , λI , λE) Default Greedy Exact Oracle

k = 2(
VTML200, 50, 17, 41, 40

)
(2) (2)(

VTML200, 55, 30, 45, 42
)

(2) (3) (1)(
BLSUM80, 60, 9, 43, 42

)
(2)(

BLSUM45, 65, 35, 44, 44
)

(3)

k = 3(
VTML200, 50, 17, 41, 40

)
(2) (2)(

VTML200, 55, 30, 45, 42
)

(3) (5) (1)(
BLSUM80, 60, 26, 43, 43

)
(2) (2)(

VTML200, 55, 30, 41, 40
)

(6)(
VTML40, 45, 29, 40, 39

)
(7)(

BLSUM62, 65, 16, 44, 42
)

(8)

k = 4(
VTML200, 50, 17, 41, 40

)
(2) (2)(

VTML200, 55, 30, 45, 42
)

(3) (9) (6)(
BLSUM80, 60, 26, 43, 43

)
(2)(

VTML200, 60, 15, 41, 40
)

(1)(
VTML200, 45, 6, 40, 40

)
(8) (1)(

VTML200, 55, 30, 41, 40
)

(8)(
BLSUM80, 55, 19, 43, 42

)
(1)(

VTML40, 45, 29, 40, 39
)

(4)(
BLSUM62, 65, 35, 44, 42

)
(3)

Table 6.3 Number of Folds Where Greedy and Exact Sets Share Parameters

Intersection Advisor set cardinality
cardinality k = 2 k = 3 k = 4 k = 5

0 9 4 3 2
1 3 5 6 5
2 0 3 3 4
3 0 0 1
4 0 0
5 0

Table 6.3 examines whether this trend continues at other folds, by counting
how many training instances (out of the twelve folds) share a specified number
of parameter choices between their greedy and exact sets, for a given advisor
set cardinality k. (For example, at cardinality k = 4, six training instances
share exactly one parameter choice between their greedy and exact sets; in
fact, the fold shown in Table 6.2 is one such instance.) On the whole, the two
“estimator-aware” advisor sets — the greedy and exact sets — are relatively
dissimilar, and never share more than dk/2e parameter choices.

D
RA
FT

6.5 Application to parameter advising 71

6.5 Application to parameter advising

Given the accuracy estimator learned using difference fitting that we have
described in earlier sections, and the advisor sets described in the previous
section, we now evaluate the advising accuracy of our new parameter advisor.

A
dv

is
in

g
A

cc
ur

ac
y

Benchmark Bins

	 	 Facet	 (Greedy,	 ε	 =	 0%)	
	 	 Default	
	 	 Oracle	 (Oracle)	

k	 	 	 = 5

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Average

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

(12)

(12) (20)

(34)

(26)

(50)
(62)

(74)
(137)

(434)
100%
 90%
 80%
 70%
 60%
 50%
 40%
 30%
 20%
 10%
 0%

A
dv

is
in

g
A

cc
ur

ac
y

Benchmark Bins

	 	 Facet	 (Greedy,	 ε	 =	 0%)	
	 	 Default	
	 	 Oracle	 (Oracle)	

k = 10

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Average

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

(434) 100%
 90%
 80%
 70%
 60%
 50%
 40%
 30%
 20%
 10%
 0%

Fig. 6.2 Advising accuracy of Facet within benchmark bins. These bar charts
show the advising accuracy of various approaches to finding advisor sets, for car-
dinality k = 5, 10. For each cardinality, the horizontal axis of the chart on the left
corresponds to benchmark bins, and the vertical bars show advising accuracy aver-
aged over the benchmarks in each bin. Black bars give the accuracy of the optimal
default parameter choice, and red bars give the accuracy of advising with Facet using
the greedy set. The dashed line shows the limiting performance of a perfect advisor:
an oracle with true accuracy as its estimator using an optimal oracle set. In the
top chart, the numbers in parentheses above the bars are the number of benchmarks
in each bin. The narrow bar charts on the right show advising accuracy uniformly
averaged over the bins.

D
RA
FT

72 6 Parameter Advising for Opal

A
dv

is
in

g
A

cc
ur

ac
y

Benchmark Bins

	 	 Facet	 (Greedy,	 ε	 =	 0%)	
	 	 Default	
	 	 Oracle	 (Oracle)	

k = 15

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Average

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

100%
 90%
 80%
 70%
 60%
 50%
 40%
 30%
 20%
 10%
 0%

Fig. 6.3 Advising accuracy of Facet within benchmark bins. These bar charts
show the advising accuracy of various approaches to finding advisor sets, for cardinal-
ity k=15. For each cardinality, the horizontal axis of the chart on the left corresponds
to benchmark bins, and the vertical bars show advising accuracy averaged over the
benchmarks in each bin. Black bars give the accuracy of the optimal default param-
eter choice, and red bars give the accuracy of advising with Facet using the greedy
set. The dashed line shows the limiting performance of a perfect advisor: an oracle
with true accuracy as its estimator using an optimal oracle set. In the top chart, the
numbers in parentheses above the bars are the number of benchmarks in each bin.
The narrow bar charts on the right show advising accuracy uniformly averaged over
the bins.

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

Facet (Greedy, ε = 0%)
Facet (Oracle)
Facet (Exact, ε = 0%)
Default

Testing
Facet

50%

51%

52%

53%

54%

55%

56%

57%

58%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

Facet (Greedy, ε = 0%)
Facet (Oracle)
Facet (Exact, ε = 0%)
Default

Training
Facet

Fig. 6.4 Advising using exact, greedy, and oracle sets with Facet. The plots
show advising accuracy using the Facet estimator with parameter sets learned by
the optimal exact algorithm and the greedy approximation algorithm for Advisor Set,
and with oracle sets. The horizontal axis is the cardinality of the advisor set, while
the vertical axis is the advising accuracy averaged over the benchmarks. Exact sets
are known only for cardinalities k ≤ 5; greedy sets are augmented from the exact
set of cardinality ` = 1. The left and right plots show accuracy on the testing and
training data, respectively, where accuracies are averaged over all testing or training
folds.

D
RA
FT

6.5 Application to parameter advising 73

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 l = 1 (ε = 0%)
 l = 2 (ε = .1%)
 l = 3 (ε = .75%)
 l = 4 (ε = 0%)
 l = 5 (ε = 0%)

Facet

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 l = 1 (ε = 0%)
 l = 2 (ε = 5%)
 l = 3 (ε = 5%)
 l = 4 (ε = 5%)
 l = 5 (ε = 5%)

TCS

Fig. 6.5 Greedily augmenting exact advisor sets. The left and right plots show
advising accuracy using the Facet and TCS estimators respectively, with advisor sets
learned by procedure Greedy, which augments an exact set of cardinality ` to form
a larger set of cardinality k > `. Each curve is greedily augmenting from a different
exact cardinality `. The horizontal axis is the cardinality k of the augmented set; the
vertical axis is advising accuracy on testing data, averaged over all benchmarks and
all folds.

50%

51%

52%

53%

54%

55%

56%

57%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 ε = 0% ε = 1%
 ε = 0.05% ε = 2%
 ε = 0.1% ε = 5%
 ε = 0.5% Oracle

Facet

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 ε = 0%
 ε = 1%
 ε = 2%
 ε = 5%
 Oracle

TCS

Fig. 6.6 Effect of error tolerance on advising accuracy using greedy sets. The
plots show advising accuracy on testing data using greedy sets learned for the two
best estimators, Facet and TCS, at various error tolerances ε≥ 0. The plots on the
left and right are for Facet and TCS, respectively. For comparison, both plots also
include a curve showing performance using the estimator on oracle sets, drawn with
a dashed line. The solid curves with circles and diamonds highlight the best overall
error tolerance of ε = 0.

6.5.1 Learning advisor sets by different approaches

We first study the advising accuracy of parameter sets learned for the Facet
estimator by different approaches. Our protocol began by constructing an
optimal oracle set for cardinalities 1 ≤ k ≤ 20 for each training instance.
A coefficient vector for the advisor’s estimator was then found for each of
these oracle sets by the difference-fitting method described in [56]. Using this
estimator learned for the training data, exhaustive search was done to find
optimal exact advisor sets for cardinalities k ≤ 5. The optimal exact set of
size ` = 1 (the best default parameter choice) was then used as the starting
point to find near-optimal greedy advisor sets by our approximation algo-
rithm for k ≤ 20. Each of these advisors (an advising set combined with the
estimator) was then used for parameter advising in Opal, returning the com-

D
RA
FT

74 6 Parameter Advising for Opal

puted alignment with highest estimator value. These set-finding approaches
are compared based on the accuracy of the alignment chosen by the advisor,
averaged across bins.

Figure 6.4 shows the performance of these advisor sets under twelve-fold
cross validation. The left plot shows advising accuracy on the testing data
averaged over the folds, while the right plot shows this on the training data.

Notice that while there is a drop in accuracy when an advising set learned
using the greedy and exact methods is applied to the testing data, the drop
in accuracy is greatest for the exact sets. The value of ε shown in the plot
maximizes the accuracy of the resulting advisor on the testing data. Notice
also that for cardinality k ≤ 5 (for which exact sets could be computed), on
the testing data the greedy sets are often performing as well as the optimal
exact sets.

Figures 6.2 and 6.3 shows the performance within each benchmark bin
when advising with Facet using greedy sets of cardinality k=5, 10, 15 (k=5
and 10 in Figure 6.2 top and bottom respectively, k=15 in Figure 6.3) Notice
that for many bins, the performance is close to the best-possible accuracy
attainable by any advisor, shown by the dashed line for a perfect oracle
advisor. The greatest boost over the default parameter choice is achieved on
the bottom bins that contain the hardest benchmarks.

6.5.2 Varying the exact set for the greedy algorithm

To find the appropriate cardinality ` of the initial exact solution that is aug-
mented within approximation algorithm Greedy, we examined the advising
accuracy of the greedy sets learned when using cardinalities 1 ≤ ` ≤ 5.
Figure 6.5 shows the accuracy of the resulting advisor using greedy sets of
cardinality 1 ≤ k ≤ 20, augmented from exact sets of cardinality 1 ≤ ` ≤ 5,
using for the estimator both Facet and TCS. (These are the two best esti-
mators, as discussed in Section 6.5.4 below). The points plotted with circles
show the accuracy of the optimal exact set that is used within procedure
Greedy for augmentation.

Notice that the initial exact set size ` has relatively little effect on the
accuracy of the resulting advisor; at most cardinalities, starting from the
single best parameter choice (` = 1) has highest advising accuracy. This is
likely due to the behavior observed earlier in Figure 6.4, namely that exact
sets do not generalize as well as greedy sets.

D
RA
FT

6.5 Application to parameter advising 75

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0%)
 Oracle
 Exact (ε = 0%)
 Default

TCS
Testing

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0%)
 Oracle
 Exact (ε = 0%)
 Default

TCS
Training

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .1%)
 Oracle
 Exact (ε = .1%)
 Default

MOSMOS
Testing

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .1%)
 Oracle
 Exact (ε = .1%)
 Default

MOSMOS
Training

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .2%)
 Oracle
 Exact (ε = .2%)
 Default

PredSP
Testing

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality	

 Greedy (ε = .2%)
 Oracle
 Exact (ε = .2%)
 Default

PredSP
Training

Fig. 6.7 Comparing testing and training accuracies of various estimators. The
plots show the advising accuracies on testing and training data using TCS, MOS, and
PredSP with parameter sets learned for these estimators by the exact and greedy
algorithms for Advisor Set, and with oracle sets. From top to bottom, the estimators
used are TCS, MOS, and PredSP, with testing data plotted on the left, and training
data on the right.

6.5.3 Varying the error tolerance for the greedy
algorithm

When showing experimental results, an error tolerance ε has always been used
that yields the most accurate advisor on the testing data. Prior to conducting
these experiments, our expectation was that a nonzero error tolerance ε > 0
would boost the generalization of advisor sets. Figure 6.6 shows the effect of
different values of ε on the testing accuracy of an advisor using greedy sets
learned for the Facet and TCS estimators. (While the same values of ε were
tried for both estimators, raw TCS scores are integers in the range [0, 100]
which were scaled to real values in the range [0, 1], so for TCS any ε<0.1 is
equivalent to ε=0.) No clear relationship between testing accuracy and error

D
RA
FT

76 6 Parameter Advising for Opal

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
Oracle
 Exact (ε = 0.5%)
 Default

Facet
Testing

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
Oracle
 Exact (ε = 0.5%)
 Default

Facet
Training

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 1%)
 Oracle
 Exact (ε = 1%)
 Default

TCS
Testing

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 1%)
 Oracle
 Exact (ε = 1%)
 Default

TCS
Training

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
 Oracle
 Exact (ε = 0.5%)
 Default

Guidance
Testing

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Greedy (ε = 0.5%)
 Oracle
 Exact (ε = 0.5%)
 Default

Guidance
Training

Fig. 6.8 Comparing testing and training accuracies of estimators on bench-
marks with at least four sequences. The plots show advising accuracies for testing
and training data on benchmarks with at least four sequences, using Facet, TCS,
and GUIDANCE with exact, greedy, and oracle sets.

50%

51%

52%

53%

54%

55%

56%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Facet (ε = 0%) MOS (ε = .1%)
 TCS (ε = 0%) PredSP (ε = .2%)

Various

50%

51%

52%

53%

54%

55%

56%

57%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Cardinality

 Facet (ε = 0.5%) Guidance (ε = 0.5%)
 TCS (ε = 1%) Default

Various

Fig. 6.9 Comparing all estimators on greedy advisor sets. The plots show ad-
vising accuracy on greedy sets learned for the estimators Facet, TCS, MOS, PredSP,
and GUIDANCE. The vertical axis is advising accuracy on testing data, averaged over
all benchmarks and all folds. The horizontal axis is the cardinality k of the greedy
advisor set. Greedy sets are augmented from the exact set of cardinality `= 1. The
plot on the left uses the full benchmark suite; the plot on the right, which includes
GUIDANCE, uses a reduced suite of all benchmarks with at least four sequences.

D
RA
FT

6.5 Application to parameter advising 77

tolerance is evident, though for Facet and TCS alike, setting ε = 0 generally
gives the best overall advising accuracy.

6.5.4 Learning advisor sets for different estimators

In addition to learning advisor sets for Facet [56], we also learned sets for
the best accuracy estimators from the literature: namely, TCS [18], MOS [67],
PredSP [2], and GUIDANCE [85]. The scoring-function-based accuracy esti-
mators TCS, PredSP, and GUIDANCE do not have any dependence on the
advisor set cardinality or the training benchmarks used. The support-based
estimator MOS, however, requires a set of alternate alignments in order to
compute its estimator value on an alignment. In each experiment, an align-
ment’s MOS value was computed using alternate alignments generated by
aligning under the parameter choices in the oracle set; if the parameter choice
being tested on was in the oracle set, it was removed from this collection of
alternate alignments.

After computing the values of these estimators, exhaustive search was used
to find optimal exact sets of cardinality ` ≤ 5 for each estimator, as well as
greedy sets of cardinality k ≤ 20 (augmenting from the exact set for ` = 1).

The tendency of exact advisor sets to not generalize well is even more
pronounced when accuracy estimators other than Facet are used. Figure 6.7
shows the performance on testing and training data of greedy, exact, and
oracle advisor sets learned for the best three other estimators: TCS, MOS, and
PredSP. The results for greedy advisor sets for TCS at cardinalities larger
than 5 have similar trend to those seen for Facet (with now a roughly 1%
accuracy improvement over the oracle set), but surprisingly with TCS its
exact set always has lower testing accuracy than its greedy set. Interestingly,
for MOS its exact set rarely has better advising accuracy than the oracle set.
For PredSP, at most cardinalities (with the exception of k = 3) the exact
set has higher accuracy than the greedy set on testing data, though this is
offset by the low accuracy of the estimator.

We also tested GUIDANCE, Facet, and TCS on the reduced suite of all
benchmarks with at least four sequences (as required by GUIDANCE). Fig-
ure 6.8 shows the advising accuracy of set-finding methods using these esti-
mators on these benchmarks. Notice that on this reduced suite the results
generally stay the same, though for Facet there is more of a drop in perfor-
mance of the exact set from training to testing, and the set found by Greedy
generally has greater accuracy on the reduced suite than the full suite.

Finally, a complete comparison of the advising performance of all estima-
tors using greedy sets is shown in Figure 6.9. (The plot on the right shows
advising accuracy on testing data for GUIDANCE, Facet, and TCS on the re-
duced suite of benchmarks with at least four sequences.) Advising with each
of these estimators tends to eventually reach an accuracy plateau, though

D
RA
FT

78 6 Parameter Advising for Opal

their performance is always boosted by using advisor sets larger than a sin-
gleton default choice. The plateau for Facet (the top curve in the plots)
generally occurs at the greatest cardinality and accuracy.

6.6 Software

Parameter advising in our software implementation can be performed in one
of two ways:

(1) Facet aligner wrapper – Similar to using Facet on the com-
mand line, you can use a set of provided Perl scripts that runs
PSIPRED to predict the protein secondary structure, uses a pro-
vided set of Opal parameter settings, computes alignments for
each of these settings, computes the Facet score, and identifies
the highest accuracy alignment. The script must be configured for
each user’s installation location of Opal and PSIPRED.

(2) Within Opal – The newest version of the Opal aligner can per-
form parameter advising internally. The advising set is given to
Opal using the --advising configuration file command
line argument. The most accurate alignment will then be output
to the file identified by the --out argument. More details of the
parameter advising modifications made to Opal are given in Sec-
tion 6.6.1.

The advising wrapper as well as oracle and greedy sets, can be found on
http://facet.cs.arizona.edu.

6.6.1 Opal version 3

We have updated the Opal aligner to include parameter advising inside the
aligner. Opal can now construct alignments under various configuration set-
tings in parallel to attempt to come close to producing a parameter-advised
alignment in no more wall-time than aligning under a single default param-
eter.

Because both Opal and Facet are implemented in Java, they can be
integrated easily. When an alignment is constructed, a Facet score is auto-
matically generated if secondary structure labeling is given. The secondary
structure can be generated using a wrapper for PSIPRED, which will run the
secondary-structure prediction and then format the output so it is readable
by Opal. For the structure to be able to be used for Facet, you must in-
put this file using the --facet structure command-line argument. This
score is output to standard out. In addition, the score can be printed into

http://facet.cs.arizona.edu

D
RA
FT

6.6 Software 79

the file name by adding the string FACETSCORE to the output file name
argument, when the file is created this string is replaced with the computed
Facet score.

The new version of Opal also includes the ability to use popular versions of
the PAM, BLOSUM and VTML matrices. These can be specified via the --cost
command line argument. If the specified cost name is not built in, you can
specify a new matrix by giving the file name via the same command line
argument. The matrix file should fallow the same formatting convention as
BLAST matrices.

If an advisor set of parameter settings is specified using the --advisor configuration file
command line argument then Opal will construct an alignment for each of
the configurations in the file. If in addition a secondary structure predic-
tion is specified, Opal will perform parameter advising. The input advisor
set contains a list of parameter settings in 5-tuple format mentioned earlier
(σ.γI .γT .λI .λT , where σ is the replacement matrix, γI and γT specify the
internal and terminal gap extension penalties and λI and λT specify the gap
open penalties). If advising is performed, the alignment with the highest esti-
mated accuracy is output to the file specified in the --out best command
line argument. In addition, Opal can output the results for each of the con-
figurations specified in the advisor set using --out config; the filename in
that case should contain the string CONFIG , which will then be replaced
with the parameter setting.

While an alignment must be generated for each parameter setting in the
advising set, the construction of these alignments is independent. Because
of this we enabled Opal to construct the alignments in the advising set in
parallel. Opal will automatically detect how many processors are available
and run that many threads to construct alignments, but this can be overrid-
den by specifying a maximum number of threads using the --max threads
command line argument. By doing this, if the number of processors available
is larger than the number of parameter choices in the advising set, then the
total wall-clock time is close to the time it would take to run the multiple
sequence alignment of the input using just a single default parameter choice.

Version 3.0 of the Opal aligner is available at http://opal.cs.arizona.
edu, and the development version of Opal is available on GiHub at http:
//git.io/Opal.

Summary

In this chapter, we described our experimental methodology for testing the
advising accuracy of the Facet estimator, as well as demonstrated the re-
sulting increase in advising accuracy over using a single default parameter
choice.

http://opal.cs.arizona.edu
http://opal.cs.arizona.edu
http://git.io/Opal
http://git.io/Opal

D
RA
FT

D
RA
FT

Chapter 7

Aligner Advising for Ensemble Alignment

Overview

The multiple sequence alignments computed by an aligner for different set-
tings of its parameters, as well as the alignments computed by different align-
ers using their default settings, can differ markedly in accuracy. Parameter
advising is the task of choosing a parameter setting for an aligner to maxi-
mize the accuracy of the resulting alignment. We extend parameter advising
to aligner advising, which in contrast chooses among a set of aligners to maxi-
mize accuracy. In the context of aligner advising, default advising selects from
a set of aligners that are using their default settings, while general advising
selects both the aligner and its parameter setting.

In this chapter, we apply aligner advising for the first time, to create a
true ensemble aligner. Through cross-validation experiments on benchmark
protein sequence alignments, we show that parameter advising boosts an
aligner’s accuracy beyond its default setting for virtually all of the standard
aligners currently used in practice. Furthermore, aligner advising with a col-
lection of aligners further improves upon parameter advising with any single
aligner, though surprisingly the performance of default advising on testing
data is actually superior to general advising due to less overfitting to training
data.

The new ensemble aligner that results from aligner advising is significantly
more accurate than the best single default aligner, especially on hard-to-align
sequences. This successfully demonstrates how to construct out of a collection
of individual aligners, a more accurate ensemble aligner.

81

D
RA
FT

82 7 Aligner Advising for Ensemble Alignment

Aligner Advisor

--qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
---MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
mtkWNYGVFFLYDVVAFsehhidksyn------------------------------
mnkWNYGVFFVYDVINIddhylvkkds------------------------------

 alignment alignment

accuracy 
estimate

max
Accuracy 
Estimator

unaligned
sequences

parameter choices

aligned
sequences

{

alternate
alignments

labelled
alternate

alignments

qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
mtkWNYGVFFLYDVVAFsehhidksyn
mnkWNYGVFFVYDVINIddhylvkkds

 (γE,γI,λE,λI,σ)

Aligner

 (γE,γI,λE,λI,σ)

Aligner

Fig. 7.1 Overview of the ensemble alignment process. An advisor set is a collec-
tion of aligners and associated parameter choices. Default aligner advising sets only
contain aligners and their default parameter settings, while general aligner advising
sets can include non-default parameter settings. An accuracy estimator labels each
candidate alignment with an accuracy estimate. (Conceptually, an oracle gives the
true accuracy of an alignment.) The alignment with the highest estimated accuracy
is chosen by the advisor.

7.1 Introduction

While it has long been known that the multiple sequence alignment computed
by an aligner strongly depends on the settings for its tunable parameters,
and that different aligners using their default settings can output markedly
different alignments of the same input sequences, there has been relatively
little work on how to automatically choose the best parameter settings for an
aligner, or the best aligner to invoke, to obtain the most accurate alignment
of a given set of input sequences.

Automatically choosing the best parameter setting for an aligner on a
given input was termed by [106], parameter advising. In their framework, an
advisor takes a set of parameter settings, together with an estimator that
estimates the accuracy of a computed alignment, and invokes the aligner on
each setting, evaluates the accuracy estimator on each resulting alignment,
and chooses the setting that gives the alignment of highest estimated accu-
racy. Analogously, we call automatically choosing the best aligner for a given
input, aligner advising. Figure 7.1 shows an overview of aligner advising.
Notice that compared to the similar Figure 1.3 which describes the parame-
ter advising figure the aligner has been moved into the advisor set and the
advisor may use more than one aligner to produce alternate alignments

This chapter was adapted from portions of a previous publication [27].

D
RA
FT

7.1 Introduction 83!
d1flma 8 ... fevlknegvvAIATQgedgphlvntwnsylkv-ldgnrivvpvggmhkteanva-rde ... 63
d1ci0a 18 ... tkw-fn--------eakedpret-------------lpeaiTFSS-------Aelpsg ... 46
d1nrga 16 ... aaw-fe--------eavqcpdig-------------eanamCLAT-------Ct-rdg ... 43
d1ejea 22 ... hriltprptvMVTTVdeegninaapfsftmpvsidppvvafasapdhhtarnie-sth ... 78
d1i0ra 8 ... ykisyglyIVTSEsngrkcgqiant---vfqltskpvqiavclnkendthnavk-esg ... 61

(A) MUMMALS/SUP_080
Accuracy: 28.9%
Estimator: 0.540

d1flma 1 ... ------mlpgtffevlkne-----gvvAIATQg-edgph--lvntwnsylk---vldg ... 41
d1ci0a 12 ... d-dpidlftkwfneakedpretlpeaiTFSSAelpsgr----vssrillfk---eldh ... 59
d1nrga 9 ... sldpvkqfaawfeeavqcpdigeanamCLATCt-rdgk----psarmlllk---gfgk ... 56
d1ejea 11 ... s-mdfedfpvesahriltpr----ptvMVTTVd-eegn----inaapfsftmpvsidp ... 56
d1i0ra 1 ... --mdveafykisy------------glyIVTSE-sngrkcgqiantvfqlt---s-kp ... 39

(B) Opal/sup_080
Accuracy: 49.9%
Estimator: 0.578

!

(a) Lower-accuracy alignment computed by MUMMALS

!
d1flma 8 ... fevlknegvvAIATQgedgphlvntwnsylkv-ldgnrivvpvggmhkteanva-rde ... 63
d1ci0a 18 ... tkw-fn--------eakedpret-------------lpeaiTFSS-------Aelpsg ... 46
d1nrga 16 ... aaw-fe--------eavqcpdig-------------eanamCLAT-------Ct-rdg ... 43
d1ejea 22 ... hriltprptvMVTTVdeegninaapfsftmpvsidppvvafasapdhhtarnie-sth ... 78
d1i0ra 8 ... ykisyglyIVTSEsngrkcgqiant---vfqltskpvqiavclnkendthnavk-esg ... 61

(A) MUMMALS/SUP_080
Accuracy: 28.9%
Estimator: 0.540

d1flma 1 ... ------mlpgtffevlkne-----gvvAIATQg-edgph--lvntwnsylk---vldg ... 41
d1ci0a 12 ... d-dpidlftkwfneakedpretlpeaiTFSSAelpsgr----vssrillfk---eldh ... 59
d1nrga 9 ... sldpvkqfaawfeeavqcpdigeanamCLATCt-rdgk----psarmlllk---gfgk ... 56
d1ejea 11 ... s-mdfedfpvesahriltpr----ptvMVTTVd-eegn----inaapfsftmpvsidp ... 56
d1i0ra 1 ... --mdveafykisy------------glyIVTSE-sngrkcgqiantvfqlt---s-kp ... 39

(B) Opal/sup_080
Accuracy: 49.9%
Estimator: 0.578

!

(b) Higher-accuracy alignment computed by Opal

Fig. 7.2 Aligner choice affects the accuracy of computed alignments. (a) Part
of an alignment of benchmark sup 125 from the SABRE [102] suite computed by
MUMMALS [82] using its default parameter choice; this alignment has accuracy value
28.9%, and Facet estimator value 0.540. (b) Alignment of the same benchmark by
Opal [106] using its default parameter choice, which has 49.9% accuracy, and higher
Facet value 0.578. In both alignments, the positions that correspond to core blocks
of the reference alignment, which should be aligned in a correct alignment, are high-
lighted in bold.

To make this concrete, Figure 7.2 shows an example of advising on a
benchmark set of protein sequences for which a correct reference alignment is
known, and hence for which the true accuracy of a computed alignment can
be determined. In this example, the Facet estimator is used to estimate the
accuracy of two alignments computed by the Opal [107] and MUMMALS [82]
aligners. For these two alignments, the one of higher Facet value has higher
true accuracy as well, so an advisor armed with the Facet estimator would
in fact output the more accurate alignment to a user.

For a collection of aligners, this kind of advising is akin to an ensemble
approach to alignment, which selects a solution from those output by differ-
ent methods to obtain in effect a new method that ideally is better than any
individual method. Ensemble methods have been studied in machine learn-
ing [115], which combine the results of different classifiers to produce a single
output classification. Typically such ensemble methods from machine learn-
ing select a result by voting. In contrast, an advisor combines the results of
aligners by selecting one via an estimator.

In this chapter, we extend the framework of parameter advising to aligner
advising, and obtain by this natural approach a true ensemble aligner. More-
over as our experimental results show, the resulting ensemble aligner is sig-
nificantly more accurate than any individual aligner.

D
RA
FT

84 7 Aligner Advising for Ensemble Alignment

7.1.1 Related work

[106] first introduced the notion of parameter advisors; [56] investigated the
construction of alignment accuracy estimators, resulting in the Facet esti-
mator [32, 34]; [26, 33] investigated how to best form the set of parameter
choices for an advisor, called an advisor set, developing an efficient approxi-
mation algorithm for finding a near-optimal advisor set for a given estimator.
This prior work applied parameter advising to boosting the accuracy of the
Opal aligner [107]. In contrast, this chapter applies parameter advising to all
commonly-used aligners, and aligner advising to combine them into a new,
more accurate, ensemble aligner.

To our knowledge, the only prior work on combining aligners is by [103]
on M-Coffee, and by [74] on AQUA. The AQUA tool chooses between an
alignment computed by Muscle [39] or MAFFT [54] based on their NorMD [99]
score; our results given in Chapter 6 show that for choosing the more accurate
alignment, the NorMD score used by AQUA is much weaker than the Facet
estimator used here for aligner advising. M-Coffee uses a standard progres-
sive alignment heuristic to compute an alignment under position-dependent
substitution scores whose values are determined by alignments from different
aligners. As Section 7.3.3 later shows, when run on the same set of aligners,
M-Coffee is strongly dominated by the ensemble approach of this chapter.

Contributions

Our prior work on parameter advising focused on boosting the accuracy of
the Opal aligner [106, 107] through an input-dependent choice of parame-
ter values. This chapter applies our advising technique for the first time to
aligners other than Opal, both by advising parameter choices for them, and
by advising how to combine them into an new ensemble aligner.

Plan of the chapter

An advisor selects aligners and parameter values from a small set of choices
that is drawn from a larger universe of all possible choices. Section 7.2 de-
scribes how we construct this universe of aligners and their parameter choices
for advisor learning. Section 7.3 then experimentally evaluates our approach
to ensemble alignment on real biological benchmarks. Finally, Section 7.4
gives conclusions, and offers directions for further research.

D
RA
FT

7.2 Constructing the universe for aligner advising 85

7.2 Constructing the universe for aligner advising

We extend parameter advising with a single aligner to aligner advising with
a collection of aligners, by having the choices in the advisor set now specify
both a particular aligner and a parameter setting for that aligner. To specify
the universe that such an advisor set is drawn from during learning, we must
determine what aligners to consider, and what parameter settings to consider
for those aligners.

7.2.1 Determining the universe of aligners

For default aligner advising, where the advisor set consists of distinct
aligners, each using their default parameter setting, we learned advisor
sets over a universe containing as many of the commonly-used align-
ers from the literature as possible. Specifically, the universe for de-
fault advising consisted of the following 17 aligners: Clustal [98],
Clustal2 [65], Clustal Omega [93], DIALIGN [94], FSA [12], Kalign [66],
MAFFT [54], MUMMALS [82], Muscle [38], MSAProbs [70], Opal [106],
POA [68], PRANK [71], PROBALIGN [89], ProbCons [35], SATé [69], and
T-Coffee [77].

7.2.2 Determining the universe of parameter settings

For general aligner advising, we selected a subset of the above aligners on
which we enumerated values for their tunable parameters, to form a universe
of parameter settings. We selected this subset of aligners by the following
process. First, we computed an optimal oracle set of cardinality k = 5 over
the universe of 17 aligners for default advising listed above. This set con-
sisted of Kalign, MUMMALS, Opal, PROBALIGN, and T-Coffee. We then
expanded this set further by adding four aligners that are used extensively
in the literature: Clustal Omega, MAFFT, Muscle, and ProbCons. In the
experiments described later in Section 7.3.2, we constructed greedy advisor
sets over the universe of 17 aligners for default aligner advising, and noticed
a large increase in advising accuracy at cardinality [6, 8] (which can be seen
in Figure 7.8). The greedy advisor sets at these cardinalities contained all of
the aligners already chosen so far, with the addition of the PRANK aligner.
Finally, we added PRANK to our set for this reason. The above 10 aligners
comprise the set we considered for general aligner advising.

Table 7.1 lists the universe of parameter settings for these aligners for gen-
eral advising. For each aligner, we enumerated parameter settings by forming
a cross product of values for each of its tunable parameters. We determined

D
RA
FT

86 7 Aligner Advising for Ensemble Alignment

the values for each tunable parameter by one of two ways. For aligners with
web-server versions (namely Clustal Omega and ProbCons), we used all
values recommended for each parameter. For all other aligners, we chose ei-
ther one or two values above and below the default value for each parameter,
to attain a cross product with less than 200 parameter settings. If a range
was specified for a numeric parameter, values were chosen to cover this range
as evenly as possible. For non-numeric parameters, we used all available op-
tions. Table 7.1 summarizes the resulting universe for general advising of over
800 parameter settings.

D
RA
FT

7.2 Constructing the universe for aligner advising 87

T
a
b
le

7
.1

U
n

iv
e
rs

e
o
f

P
a
ra

m
e
te

r
S

e
tt

in
g
s

fo
r

G
e
n

e
ra

l
A

li
g
n

e
r

A
d
v
is

in
g

P
a
r
a
m

e
t
e
r

T
u
n
a
b
le

A
li
g
n
e
r

s
e
t
t
in

g
s

p
a
r
a
m

e
t
e
r
s

V
e
r
s
io

n
P
a
r
a
m

e
t
e
r

n
a
m

e
D

e
fa

u
lt

v
a
lu

e
,
v

A
lt
e
r
n
a
t
e

v
a
lu

e
s

C
l
u
s
t
a
l
O
m
e
g
a

[9
3
]

1
2
0
1

5
1
.2

.0

N
u
m

b
e
r

o
f
g
u
id

e
t
r
e
e

it
e
r
a
t
io

n
s

0
1
,
3
,
5

N
u
m

b
e
r

o
f
H
M

M
it
e
r
a
t
io

n
s

0
1
,
3
,
5

N
u
m

b
e
r

o
f
c
o
m

b
in

e
d

it
e
r
a
t
io

n
s

0
1
,
3
,
5

D
is
t
a
n
c
e

m
a
t
r
ix

c
a
lc

u
la

t
io

n
s
,
in

it
ia

l
m

B
e
d

F
u
ll

a
li
g
n
m

e
n
t
s

D
is
t
a
n
c
e

m
a
t
r
ix

c
a
lc

u
la

t
io

n
s
,
it
e
r
a
t
io

n
s

m
B
e
d

F
u
ll

a
li
g
n
m

e
n
t
s

K
a
l
i
g
n

[6
6
]

1
6
2

4
2
.0

4

G
a
p

o
p
e
n

p
e
n
a
lt
y

5
5

4
0
,
7
0

G
a
p

e
x
t
e
n
s
io

n
p
e
n
a
lt
y

8
.5

7
,
1
0

T
e
r
m

in
a
l
g
a
p

p
e
n
a
lt
y

4
.2

5
3
.5

,
5

B
o
n
u
s

N
o

Y
e
s

M
A
F
F
T

[5
4
]

1
0
0

3
6
.9

2
3
b

S
u
b
s
t
it
u
t
io

n
m

a
t
r
ix

B
L
S
M
6
2

B
L
S
M
8
0
,
V
T
M
L
1
2
0
,
V
T
M
L
2
0
0

G
a
p

o
p
e
n

p
e
n
a
lt
y

1
.5

3
1 4
v
,

1 2
v
,

3 2
v
,
2
v

G
a
p

e
x
t
e
n
s
io

n
p
e
n
a
lt
y

0
.1

2
3

1 2
v
,
2
v
,
4
v

M
u
s
c
l
e

[3
8
]

8
0

3
3
.8

.3
1

P
r
o
fi
le

s
c
o
r
e

L
o
g
-e

x
p
e
c
t
a
t
io

n
:
V
T
M
L
2
4
0

S
u
m

-o
f-
p
a
ir
s
:
P
A
M
2
0
0
,
V
T
M
L
2
4
0

O
b
je

c
t
iv

e
fu

n
c
t
io

n
2

s
p
m

d
p
,
p
s
,
s
p
,
s
p
f
,
x
p

G
a
p

o
p
e
n

p
e
n
a
lt
y
,
p
r
o
fi
le

d
e
p
e
n
d
e
n
t

v
3

1 2
v
,

3 4
v
,

5 4
v
,

3 2
v

M
U
M
M
A
L
S

[8
2
]

2
9

3
4

1
.0

1
D

if
fe

r
e
n
t
ia

t
e

m
a
t
c
h

s
t
a
t
e
s

in
u
n
a
li
g
n
e
d

r
e
g
io

n
s

Y
e
s

N
o

S
o
lv

e
n
t

a
c
c
e
s
s
ib

il
it
y

c
a
t
e
g
o
r
ie

s
1

2
,
3

S
e
c
o
n
d
a
r
y

s
t
r
u
c
t
u
r
e

t
y
p
e
s

3
1

O
p
a
l

[1
0
6
]

1
6
2

5
3
.0

b

S
u
b
s
t
it
u
t
io

n
m

a
t
r
ix

V
T
M
L
2
0
0
5

B
L
S
M
6
2
5
,
V
T
M
L
4
0
5

In
t
e
r
n
a
l
g
a
p

o
p
e
n

p
e
n
a
lt
y

γ
=

4
5

7
0
,
9
5

T
e
r
m

in
a
l
g
a
p

o
p
e
n

p
e
n
a
lt
y

0
.4
γ

0
.0

5
γ
,
0
.7

5
γ

In
t
e
r
n
a
l
g
a
p

e
x
t
e
n
s
io

n
p
e
n
a
lt
y

λ
=

4
2

4
0
,
4
5

T
e
r
m

in
a
l
g
a
p

e
x
t
e
n
s
io

n
p
e
n
a
lt
y

λ
−

3
λ

P
R
A
N
K

[7
1
]

5
0

3
.1

4
0
6
0
3

G
a
p

r
a
t
e

0
.0

0
5

1 5
v
,

1 2
v
,

3 2
v
,
2
v

G
a
p

e
x
t
e
n
s
io

n
0
.5

1 5
v
,

1 2
v
,

3 2
v
,
2
v

T
e
r
m

in
a
l
g
a
p
s

A
lt
e
r
n
a
t
e

s
c
o
r
in

g
N
o
r
m

a
l
s
c
o
r
in

g

P
R
O
B
A
L
I
G
N

[8
9
]

6
4

3
1
.4

C
o
n
s
is
t
e
n
c
y

r
e
p
e
t
it
io

n
s

2
0
,
1
,
3

It
e
r
a
t
iv

e
r
e
fi
n
e
m

e
n
t

r
e
p
e
t
it
io

n
s

1
0
0

0
,
5
0
0

P
r
e
-t

r
a
in

in
g

r
e
p
e
t
it
io

n
s

0
1
,
2
,
3
,
4
,
5
,
2
0

P
r
o
b
C
o
n
s

[3
5
]

4
8
6

3
1
.1

2
T
h
e
r
m

o
d
y
n
a
m

ic
t
e
m

p
e
r
a
t
u
r
e

5
3
,
5

G
a
p

o
p
e
n

2
2

1
1
,
3
3

G
a
p

e
x
t
e
n
s
io

n
1

0
.5

,
1
.5

T
-
C
o
f
f
e
e

[7
7
]

3
6

3
1
0
.0

0
.r
1
6
1
3

S
u
b
s
t
it
u
t
io

n
m

a
t
r
ix

B
L
S
M
6
2

B
L
S
M
4
0
,
B
L
S
M
8
0

G
a
p

o
p
e
n

0
-5

0
,
-5

0
0
,
-1

0
0
0

G
a
p

e
x
t
e
n
s
io

n
0

-5
,
-1

0

T
o
t
a
l

8
5
6

D
RA
FT

88 7 Aligner Advising for Ensemble Alignment

1
P
a
r
a
m

e
t
e
r

s
e
t
t
in

g
s

r
e
t
r
ie

v
e
d

fr
o
m

t
h
e
C
l
u
s
t
a
l
O
m
e
g
a

w
e
b
-s

e
r
v
e
r

a
t

E
B
I
(
w
w
w
.
e
b
i
.
a
c
.
u
k
/
T
o
o
l
s
/
m
s
a
/
c
l
u
s
t
a
l
o
)
.

2
s
p
:
s
u
m

-o
f-
p
a
ir
s
s
c
o
r
e
;
s
p
f
:
d
im

e
r
a
p
p
r
o
x
im

a
t
io

n
o
f
s
u
m

-o
f-
p
a
ir
s
s
c
o
r
e
;
s
p
m
:
in

p
u
t
d
e
p
e
n
d
e
n
t
(
s
p

if
in

p
u
t
is

le
s
s
t
h
a
n

1
0
0

s
e
q
u
e
n
c
e
s
,
s
p
f

o
t
h
e
r
w
is
e
)
;
d
p
:
d
y
n
a
m

ic
p
r
o
g
r
a
m

m
in

g
s
c
o
r
e
;

p
s
:
a
v
e
r
a
g
e

p
r
o
fi
le

s
e
q
u
e
n
c
e

s
c
o
r
e
;
x
p
:
c
r
o
s
s

p
r
o
fi
le

s
c
o
r
e
.

3
D

e
fa

u
lt

v
a
lu

e
s

fo
r

t
h
e

g
a
p

o
p
e
n

p
e
n
a
lt
y

a
r
e

-2
.9

w
h
e
n

t
h
e

lo
g
-e

x
p
e
c
t
a
t
io

n
p
r
o
fi
le

is
c
h
o
s
e
n
,
-1

4
3
9

fo
r

s
u
m

-o
f-
p
a
ir
s

u
s
in

g
P
A
M
2
0
0
,
a
n
d

-3
0
0

fo
r

s
u
m

-o
f-
p
a
ir
s

u
s
in

g
V
T
M
L
2
4
0
.
A
lt
e
r
n
a
t
e

v
a
lu

e
s

a
r
e

m
u
lt
ip

le
s

o
f
t
h
is

d
e
fa

u
lt

v
a
lu

e
.

4
M
U
M
M
A
L
S

is
d
is
t
r
ib

u
t
e
d

w
it
h

2
9

p
r
e
c
o
m

p
u
t
e
d

h
id

d
e
n

M
a
r
k
o
v

m
o
d
e
ls
,
e
a
c
h

o
f
w
h
ic
h

is
a
s
s
o
c
ia

t
e
d

w
it
h

a
s
e
t
t
in

g
o
f
t
h
r
e
e

t
u
n
a
b
le

p
a
r
a
m

e
t
e
r
s
.

5
T
h
e

s
u
b
s
t
it
u
t
io

n
m

a
t
r
ic

e
s

u
s
e
d

b
y

O
p
a
l

a
r
e

s
h
if
t
e
d
,
s
c
a
le

d
,
a
n
d

r
o
u
n
d
e
d

t
o

in
t
e
g
e
r

v
a
lu

e
s

in
t
h
e

r
a
n
g
e

[0
,
1
0
0
].

6
P
a
r
a
m

e
t
e
r

s
e
t
t
in

g
s

r
e
t
r
ie

v
e
d

fr
o
m

t
h
e
P
r
o
b
C
o
n
s

w
e
b
-s

e
r
v
e
r

a
t

S
t
a
n
fo

r
d

(
p
r
o
b
c
o
n
s
.
s
t
a
n
f
o
r
d
.
e
d
u
)
.

D
RA
FT

7.3 Evaluating ensemble alignment 89

42%	
44%	
46%	
48%	
50%	
52%	
54%	
56%	
58%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Advisor	 Set	 Cardinality	

	 	 MUMMALS	 	 	 T-‐Coffee	 	 	 PRANK	
	 	 Probalign	 	 	 MAFFT	 	 	 Kalign	
	 	 Opal	 	 	 MUSCLE	 	 	 Clustal	 Omega	
	 	 ProbCons	

Fig. 7.3 Accuracy of parameter advising using Facet. The plot shows advising
accuracy for each aligner from Table 7.1, using parameter advising on greedy sets
with the Facet estimator learned by difference fitting. The horizontal axis is the
cardinality of the advisor set, and the vertical axis is the advising accuracy on testing
data averaged over all benchmarks and folds, under 12-fold cross-validation.

7.3 Evaluating ensemble alignment

We evaluate the performance of advising through experiments on a collection
of protein multiple sequence alignment benchmarks. A full description of the
benchmark collection is given in Chapter 6, and is briefly summarized below.
The experiments compare the accuracy of parameter and aligner advising to
the accuracy of individual aligners using their default parameter settings.

The benchmark suites used in our experiments consist of reference align-
ments that are largely induced by performing structural alignment of the
known three-dimensional structures of the proteins. Specifically, we use the
BENCH suite of [40], supplemented by a selection of benchmarks from the
PALI suite [9]. The entire benchmark collection consists of 861 reference
alignments.

As is common in benchmark suites, easy-to-align benchmarks are highly
over-represented in this collection, compared to hard-to-align benchmarks. To
correct for this bias when evaluating average advising accuracy, we binned
the 861 benchmarks in our collection by difficulty, where the difficulty of
a benchmark is its average accuracy under three commonly-used aligners,
namely Clustal Omega, MAFFT, and ProbCons, using their default param-
eter settings. We then divided the full range [0, 1] of accuracies into 10 bins
with difficulties [(j−1)/10, j/10] for j = 1, . . . , 10. The weight wi of bench-
mark Bi falling in bin j that we used for training is wi = (1/10)(1/nj), where
nj is the number of benchmarks in bin j. These weights wi are such that each
difficulty bin contributes equally to the advising objective function f(P).
Note that with this weighting, an aligner that on every benchmark gets an

D
RA
FT

90 7 Aligner Advising for Ensemble Alignment

52%	
53%	
54%	
55%	
56%	
57%	
58%	
59%	
60%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Advisor	 Set	 Cardinality	

	 	 Default	 advisisng	 	 	 MUMMALS	
	 	 General	 advising	 	 	 Probalign	
	 	 Opal	 	 	 Opal	 (alternate)	

Facet

Fig. 7.4 Aligner advising and parameter advising using Facet. The plot shows
default and general aligner advising accuracy, and parameter advising accuracy for
Opal, MUMMALS, and PROBALIGN, using the Facet estimator. The horizontal axis is
the cardinality of the advisor set, and the vertical axis is advising accuracy on testing
data averaged over all benchmarks and folds under 12-fold cross-validation.

accuracy equal to its difficulty, will achieve an average advising accuracy of
roughly 50%.

7.3.1 Parameter advising

We first examine the results of parameter advising for a single aligner using
the Facet estimator. We learned the coefficients for Facet by difference
fitting on computed alignments obtained using the oracle set of cardinality
k = 17 found for the parameter universe for each aligner. (We trained the
estimator on an oracle set of this cardinality to match the size of the universe
for default aligner advising.) Given this estimator, we constructed greedy
advisor sets for each aligner.

Figure 7.3 shows the accuracy of parameter advising using greedy advisor
sets of cardinality k≤15, for each of the 10 aligners in Table 7.1, under 12-
fold cross-validation. The plot shows advising accuracy on the testing data,
averaged over all benchmarks and folds.

Almost all aligners benefit from parameter advising, though their advising
accuracy eventually reaches a plateau. While our prior chapters showed that
parameter advising boosts the accuracy of the Opal aligner, Figure 7.3 shows
this result is not aligner dependent.

D
RA
FT

7.3 Evaluating ensemble alignment 91

52%	
53%	
54%	
55%	
56%	
57%	
58%	
59%	
60%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Advisor	 Set	 Cardinality	

	 	 General	 advising	 	 	 Probalign	
	 	 Default	 advising	 	 	 ProbCons	
	 	 MUMMALS	 	 	 Opal	

TCS

Fig. 7.5 Aligner advising and parameter advising using TCS. The plot shows
default and general aligner advising accuracy, and parameter advising accuracy for
Opal, MUMMALS, PROBALIGN, and ProbCons, using the TCS estimator. The horizontal
axis is the cardinality of the advisor set, and the vertical axis is advising accuracy on
testing data averaged over all benchmarks and folds under 12-fold cross-validation.

7.3.2 Aligner advising

To evaluate aligner advising, we followed a similar approach, constructing
an oracle set of cardinality k = 17 over the union of the universe for de-
fault advising from Section 7.2.1 and the universe for general advising from
Section 7.2.2, learning coefficients for Facet using difference fitting, and
constructing greedy sets using Facet for default and general advising.

Figure 7.4 shows the accuracy of default and general advising using greedy
sets of cardinality k≤15, along with the three best parameter advising curves
from Figure 7.3, for Opal, PROBALIGN, and MUMMALS. The plot shows ad-
vising accuracy on testing data, averaged over benchmarks and folds.

The dashed red curve in Figure 7.4 also shows the accuracy of Opal for
parameter advising with greedy sets computed over an alternate universe of
much more fine-grained parameter choices. This is the same universe used
for the experiments in Chapter 6. Note that the dashed curve for parameter
advising with Opal, using greedy sets from these finer universes for each fold,
essentially matches the accuracy of general advising at cardinality k ≥ 4.

7.3.2.1 Testing the significance of improvement

To test the statistical significance of the improvement in default advising ac-
curacy over using a single default aligner, we used the one-tailed Wilcoxon
sign test [109]. Performing this test in each difficulty bin, we found a sig-
nificant improvement in accuracy (p < 0.05) on benchmarks with diffi-

D
RA
FT

92 7 Aligner Advising for Ensemble Alignment

49%	
50%	
51%	
52%	
53%	
54%	
55%	
56%	
57%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	

Av
er
ag
e	
Ac

cu
ra
cy
	

Advisor	 Set	 Cardinality	

	 	 Facet,	 oracle	 set	
	 	 M-‐Coffee,	 oracle	 set	
	 	 M-‐Coffee	 default	 cardinality	

Fig. 7.6 Accuracy of aligner advising compared to M-Coffee. The plot
shows average accuracy for aligner advising using Facet, and meta-alignment us-
ing M-Coffee, on oracle sets of aligners. Performance on the default M-Coffee set
of six aligners is indicated by large circles on the dotted vertical line. The horizon-
tal axis is cardinality of the oracle sets, and the vertical axis is average accuracy on
testing data over all benchmarks and folds under 12-fold cross-validation.

culty (0.3, 0.4] at all cardinalities 2≤k≤15, and on benchmarks with difficulty
at most 0.4 at cardinality 6≤k≤9.

We also tested the significance of the improvement of default advising over
the best parameter advisor at each cardinality k (namely MUMMALS for k≤4
and Opal for k ≥ 5), and found that at cardinality k ≥ 5 there is again
significant improvement (p<0.05) on benchmarks with difficulty (0.3, 0.4].

7.3.2.2 Advising with an alternate estimator

We also evaluated in the same way parameter advising and aligner advising
on greedy sets using the TCS estimator [18] (the best other estimator for ad-
vising from the literature). Figure 7.5 shows results using TCS for parameter
advising (on the four most accurate aligners), and for general and default
aligner advising. Note that while TCS is sometimes able to increase accu-
racy above using a single default parameter, this increase is smaller than for
Facet; moreover, TCS often has a decreasing trend in accuracy for increasing
cardinality.

D
RA
FT

7.3 Evaluating ensemble alignment 93

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Average	
0%	

10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	

100%	

0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1.0	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Benchmark	 Bins	

Default	 advising	
MUMMALS	 default	
Opal	 default	
Probalign	 default	

(12)	
(13)	

(29)	
(33)	

(35)	

(60)	
(51)	

(74)	
(136)	

(418)	

Fig. 7.7 Accuracy of default aligner advising, and aligners with their default
settings, within difficulty bins. In the bar chart on the left, the horizontal axis shows
all ten benchmark bins, and the vertical bars show accuracy averaged over just the
benchmarks in each bin. The accuracy of default advising using the Facet estimator
is shown for the greedy sets of cardinality k = 5, along with the accuracy of the
default settings for PROBALIGN, Opal, and MUMMALS. The bar chart on the right
shows accuracy uniformly averaged over the bins. In parentheses above the bars are
the number of benchmarks in each bin.

7.3.3 Comparing ensemble alignment to
meta-alignment

Another approach to combining aligners is the so-called meta-alignment ap-
proach of M-Coffee [103] (described in Section 7.1.1). M-Coffee com-
putes a multiple alignment using position-dependent substitution scores ob-
tained from alternate alignments generated by a collection of aligners. By
default, M-Coffee uses the following six aligners: Clustal2, T-Coffee,
POA, Muscle, MAFFT, Dialign-T [95], PCMA [84], and ProbCons. The
tool also allows use of Clustal, Clustal Omega, Kalign, AMAP [91], and
Dialign-TX. Figure 7.6 shows the average accuracy of both M-Coffee
and our ensemble approach with Facet, using the default aligner set of
M-Coffee (the dotted vertical line with large circles), as well as oracle sets
constructed over this M-Coffee universe of 13 aligners. Notice that at all
cardinalities our ensemble aligner substantially outperforms meta-alignment
even on the subset of aligners recommended by the M-Coffee developers.

D
RA
FT

94 7 Aligner Advising for Ensemble Alignment

54%	
55%	
56%	
57%	
58%	
59%	
60%	
61%	
62%	
63%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Advisor	 Set	 Cardinality	

	 	 General	 advising,	 tes6ng	
	 	 Default	 advising,	 tes6ng	
	 	 General	 advising,	 training	
	 	 Default	 advising,	 training	

Fig. 7.8 General and default aligner advising on training and testing data. The
plot shows general and default aligner advising accuracy using Facet. Accuracy on
the training data is shown with dashed lines, and on the testing data with solid lines.
The horizontal axis is cardinality of the advisor set, and the vertical axis is advising
accuracy averaged over all benchmarks and folds under 12-fold cross-validation.

7.3.4 Advising accuracy within difficulty bins

Figure 7.7 shows advising accuracy within difficulty bins for default aligner
advising compared to using the default parameter settings for the three align-
ers with highest average accuracy, namely MUMMALS, Opal, and PROBALIGN.
The figure displays the default advising result from Section 7.3.2 at cardinal-
ity k=5. The bars in the chart show average accuracy over the benchmarks
in each difficulty bin, as well as the average accuracy across all bins. (The
number of benchmarks in each bin is in parentheses above the bars.) Note
that aligner advising gives the greatest boost for the hardest-to-align bench-
marks: for the bottom two bins, advising yields an 8% increase in accuracy
over the best aligner using its default parameter setting.

7.3.5 Generalization of aligner advising

The results thus far have shown advising accuracy averaged over the testing
data associated with each fold. We now compare the training and testing
advising accuracy to assess how our method might generalize to data not in
our benchmark set.

Figure 7.8 shows the average accuracy of default and general aligner advis-
ing on both training and testing data. Note that the drop between training
and testing accuracy is much larger for general advising than for default
advising, resulting in general advising performing worse than default advis-

D
RA
FT

7.3 Evaluating ensemble alignment 95

52%	
54%	
56%	
58%	
60%	
62%	
64%	
66%	
68%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Ad
vi
si
ng
	 A
cc
ur
ac
y	

Advisor	 Set	 Cardinality	

	 	 Oracle,	 general	 advising	 	 	 Oracle,	 default	 advising	
	 	 Facet,	 general	 advising	 	 	 Facet,	 default	 advising	

Fig. 7.9 Accuracy of aligner advising using a perfect estimator. The plot shows
advising accuracy for default and general aligner advising, both on oracle sets for a
perfect estimator, and on greedy sets for the Facet estimator. The horizontal axis is
the cardinality of the advisor set, and the vertical axis is advising accuracy on testing
data averaged over all benchmarks and folds under 12-fold cross-validation.

ing though its training accuracy is much higher. This indicates that general
advising is strongly overfitting to the training data, but could potentially
achieve much higher testing accuracy. Additionally, there is a drop in train-
ing accuracy for default advising with increasing cardinality, though after its
peak an advisor using greedy sets should remain flat in training accuracy as
cardinality increases when using a strong estimator.

7.3.6 Theoretical limit on advising accuracy

An oracle is an advisor that uses a perfect estimator, always choosing the
alignment from a set that has highest true accuracy. To examine the theoret-
ical limit on how well aligner advising can perform, we compare the accuracy
of aligner advising using Facet with the performance of an oracle. Figure 7.9
shows the accuracy of both default and general aligner advising using greedy
sets, as well as the performance of an oracle using oracle sets computed on
the default and general advising universes. (Recall an oracle set is an optimal
advisor set for an oracle.) The plot shows advising accuracy on testing data,
averaged over all benchmarks and folds. The large gap in performance be-
tween the oracle and an advisor using Facet shows the increase in accuracy
that could potentially be achieved by developing an improved estimator.

D
RA
FT

96 7 Aligner Advising for Ensemble Alignment

Table 7.2 Greedy Default and General Advising Sets

Default advising General advising
1 MUMMALS MUMMALS (0.2, 0.4, 0.6, 1, 2, 3)
2 Opal Opal (VTML200, 45, 2, 45, 45)
3 PROBALIGN Opal (BLSM62, 70, 3, 45, 42)
4 Kalign MUMMALS (0.15, 0.2, 0.6, 1, 1, 3)
5 Muscle Opal (BLSM62, 45, 33, 42, 42)
6 T-Coffee MSAProbs ()
7 PRANK Kalign (55, 8.5, 4.25, 0)
8 Clustal Omega MAFFT (VTML200, 0.7515, 0.492)
9 DIALIGN Opal (BLSM62, 95, 4, 45, 42)

10 ProbCons Opal (BLSM62, 45, 2, 45, 42)

7.3.7 Composition of advisor sets

Table 7.2 lists the greedy advisor sets for both default and general advising
for all cardinalities k ≤ 10. A consequence of the construction of greedy
advisor sets is that the greedy set of cardinality k consists of the entries in
a column in the first k rows of the table. The table shows these sets for just
one fold from the 12-fold cross-validation. For general advising sets, an entry
specifies the aligner that is used, and for aligners from the general advising
universe, a tuple of parameter values in the order listed in Table 7.1. The two
exceptions are MUMMALS, whose 6-tuple comes from its predefined settings
file, and whose last three elements correspond to the three parameters listed
in Table 7.1; and MSAProbs, whose empty tuple stands for its default setting.
It is interesting that other than MSAProbs, the general advising set does not
contain any aligner’s default parameter settings, though its values are close
to the default setting.

7.3.8 Running time for advising

We compared the time to evaluate the Facet estimator on an alignment to
the time needed to compute that alignment by the three aligners used for de-
termining alignment difficulty: Clustal Omega, MAFFT, and ProbCons. To
compute the average running time for these aligners on a benchmark, we mea-
sured the total time for each of these aligners to align all 861 benchmarks on a
desktop computer with a 2.4 GHz Intel i7 8-core processor and 8 Gb of RAM.
The average running time for Clustal Omega, MAFFT, and ProbCons was
less than 1 second per benchmark, as was the average running time for Facet.
As stated in Chapter 3 the time complexity for Facet is dependent on the
number of columns in an alignment, and should take relatively less time than
computing an alignment for benchmarks with long sequences; the standard
benchmark suites tend to include short sequences, however, which are fast

D
RA
FT

7.4 Software 97

to align. This time to evaluate Facet does not include the time to pre-
dict protein secondary structure, which is done once for the sequences in a
benchmark, and was performed using PSIPRED [51] version 3.2 with its
standard settings. Secondary structure prediction with a tool like PSIPRED
has a considerably longer running time than alignment, due to an internal
PSI-BLAST search during prediction; on average, PSIPRED took just under
6 minutes per benchmark to predict secondary structure.

7.4 Software

Our new ensemble aligner is implemented using Perl as a wrapper around
the various underlying aligners. The Perl programs can be used in one of
two ways:

(1) Using the predefined set program – The Facet release comes
with two applications, default ensemble alignment.pl and
ensemble alignment.pl, which can be used to run default and
general ensemble alignment on sets learned from all training bench-
marks. To use these applications, you provide the set cardinality
you would like to use, the unaligned sequences, and predicted sec-
ondary structure. The application then runs each program in order,
and outputs the result to standard out.

(2) Using a program that accepts an advisor set – We have also
included an application ensemble alignment from set.pl that
accepts the input unaligned sequences, secondary structure predic-
tion, and an advisor set similar to the one defined in earlier chap-
ters for parameter advising. The advisor set contains the aligner
and parameter setting information that will be used to run the
aligners. Each line of the file contains one aligner and parameter
setting in the format A S where A is the aligner name and S is the
tuple of parameter settings for that aligner separated by “.” char-
acters; for example, the default Opal parameter setting would be
Opal VTML200.45.11.42.41. Parameter advising sets for each of the
applications tested, as well as default and general advising param-
eter sets in the proper format, can be found on the Facet website.

For both of these methods, the applications must be edited if any of the
applications being used are not in the default installation location.

D
RA
FT

98 7 Aligner Advising for Ensemble Alignment

Summary

In this work, we have extended parameter advising to aligner advising, to
yield a true ensemble aligner. Parameter advising gives a substantial boost
in accuracy for nearly all aligners currently used in practice. Furthermore,
default and general aligner advising both yield further boosts in accuracy,
with default advising having better generalization. As these results indicate,
ensemble alignment by aligner advising is a promising approach for exploiting
future advances in aligner technology.

D
RA
FT

Chapter 8

Adaptive Local Realignment

Overview

Mutation rates differ across the length of most proteins, but when multiple
sequence alignments are constructed for protein sequences, a single alignment
parameter choice is often used across the entire length. We provide for the
first time an approach called adaptive local realignment that computes
protein multiple sequence alignments using diverse parameter settings for
different regions of the input sequences. In this way, parameter choices can
vary across the length of a protein to more closely model the local mutation
rate.

Using adaptive local realignment boosts alignment accuracy over using
a default parameter choice. In addition, when adaptive local realignment is
combined with global parameter advising, we see an increase in accuracy of
almost 24% over the default parameter choice on hard-to-align benchmarks.

8.1 Introduction

Since the 1960s it has been known that proteins can have distinct muta-
tion rates at different locations along the molecule [44]. The amino acids at
some positions in a protein may stay unmutated for long periods of time,
while other regions change a great deal (often called “hypermutable” re-
gions). This has led to methods in phylogeny construction that take variable
mutation rates into account when building trees from sequences [113]. In mul-
tiple sequence alignment, however, to our knowledge variation in mutation
rates across sequences has yet to be exploited to improve alignment accuracy.
Multiple sequence alignments are typically computed using a single setting
of values for the parameters of the alignment scoring function. This single

This chapter was adapted from portions of a previous publication [30].

99

D
RA
FT

100 8 Adaptive Local Realignment

parameter setting affects how residues across a protein are aligned, and im-
plicitly assumes a uniform mutation rate. In contrast, the approach of this
paper identifies alignment regions that may be misaligned under a single pa-
rameter setting, and finds alternate parameter settings that may more closely
match the local mutation rate of the sequences.

1cpt_ ... gydpMWIATKhadvmqigkqpglfs ... dkyinayyvaiataghdtTSSSSGGaiiglsrnpeqlalaksdpaLIPR------------------LVDEAVRW-Tapv ...	--hmclgqhlAKLEMKIFFEELLPklksv ...
1e9x_A ... gkqVVLLSGshane----------- ... adeitgmfismmfaghhtSSGTASWtlielmrhrdayaavideldelygdgrsvsfhalrqipQLENVLKETLRL-Hppl ...	--hrcvgaafAIMQIKAIFSVLLRey-ef ...
1oxa_ ... gqdAWLVTGydeakaal-------- ... adeltsialvlllagfeaSVSLIGIgtylllthpdqlalvradpsALPN------------------AVEEILRY-Iapp ...	--hfcmgrplAKLEGEVALRALFGrfpal ...
1phd_ ... dlvwtrcnggHWIATR--------- ... sdeakrmcglllvggldtVVNFLSFsmeflakspehrqelierpeRIPA------------------ACEELLRR-Fslv ...	--hlclgqhlARREIIVTLKEWLTripdf ...
2hpd_A ... grvTRYLSSqrlikeac-------- ... deniryqiitfliaghetTSGLLSFalyflvknphvlqkaaeeaarvlvd-pvpsykqvkqlkYVGMVLNEALRL-Wpta ...	--racigqqfALHEATLVLGMMLKhf-df ...
1izo_A ... gknFICMTGaeaak----------- ... srmaaielinvlrp-ivaISYFLVFsalalhehpkykewlrsgnsrERE-----------------MFVQEVRRY-Ypfg ...	kghrcpgegiTIEVMKASLDFLVHqi-ey ...
1dt6_A ... mkpTVVLHGyeavk----------- ... leslviavsdlfgagtetTSTTLRYslllllkhpevaarvqeeiervigrhrspcmqdrsrmpYTDAVIHEIQRF-Idll ...	--rmcvgeglARMELFLFLTSILQnf-kl ...
1n40_A ... gaeAWLVSSyalctqvl-------- ... delfatigvtffgagvisTGSFLTTalisliqrpqlrnllhekpeLIPA------------------GVEELLRINlsfa ...	--hfcpgsalGRRHAQIGIEALLKkmpgv ...
1n97_A ... rfpLALIFDpegve----------- ... reralseavtllvaghetVASALTWsflllshrpdwqkrvaeseeAALA------------------AFQEALRL-Yppa ...	--rlclgrdfALLEGPIVLRAFFRrf-rl ...

1cpt_ ... ah-iegydpMWIATKhadvmqigkq ... ddkyinayyvaiataghdtTSSSSGGaiiglsrnpeqlalaksdpa------------------LIPRLVDEAVRWTapv ... --hmclgqhlAKLEMKIFFEELLPklksv ...
1e9x_A ... fq-lagkq-VVLLSGshanefffra ... sadeitgmfismmfaghhtSSGTASWtlielmrhrdayaavideldelygdgrsvsfhalrqipQLENVLKETLRLHppl ...	--hrcvgaafAIMQIKAIFSVLLReyef- ...
1oxa_ ... vr-flgqd-AWLVTGydeakaalsd ... sadeltsialvlllagfeaSVSLIGIgtylllthpdqlalvradps------------------ALPNAVEEILRYIapp ...	--hfcmgrplAKLEGEVALRALFGrfpal ...
1phd_ ... tr-cnggH--WIATRgqlireayed ... tsdeakrmcglllvggldtVVNFLSFsmeflakspehrqelierpe------------------RIPAACEELLRRFslv ...	--hlclgqhlARREIIVTLKEWLTripdf ...
2hpd_A ... fe-apgrv-TRYLSSqrlikeacde ... ddeniryqiitfliaghetTSGLLSFalyflvknphvlqkaaeeaarvlvd-pvpsykqvkqlkYVGMVLNEALRLWpta ...	--racigqqfALHEATLVLGMMLKhfdfe ...
1izo_A ... ar-llgkn-FICMTGaeaakvfydt ... dsrmaaielinvlrp-ivaISYFLVFsalalhehpkykewlrsgnsr-----------------EREMFVQEVRRYYpfg ...	kghrcpgegiTIEVMKASLDFLVHqiey- ...
1dt6_A ... vy-lgmkp-TVVLHGyeavkealvd ... tleslviavsdlfgagtetTSTTLRYslllllkhpevaarvqeeiervigrhrspcmqdrsrmpYTDAVIHEIQRFIdll ...	--rmcvgeglARMELFLFLTSILQnfklq ...
1n40_A ... vrtitgae-AWLVSSyalctqvled ... sdelfatigvtffgagvisTGSFLTTalisliqrpqlrnllhekpe------------------LIPAGVEELLRINlsf ...	--hfcpgsalGRRHAQIGIEALLKkmpgv ...
1n97_A ... lp-lprfp-LALIFDpegvegalla ... preralseavtllvaghetVASALTWsflllshrpdwqkrvaesee------------------AALAAFQEALRLYppa ...	--rlclgrdfALLEGPIVLRAFFRrfrld ...
 |

	

	

(a) default parameter settings

1cpt_ ... gydpMWIATKhadvmqigkqpglfs ... dkyinayyvaiataghdtTSSSSGGaiiglsrnpeqlalaksdpaLIPR------------------LVDEAVRW-Tapv ...	--hmclgqhlAKLEMKIFFEELLPklksv ...
1e9x_A ... gkqVVLLSGshane----------- ... adeitgmfismmfaghhtSSGTASWtlielmrhrdayaavideldelygdgrsvsfhalrqipQLENVLKETLRL-Hppl ...	--hrcvgaafAIMQIKAIFSVLLRey-ef ...
1oxa_ ... gqdAWLVTGydeakaal-------- ... adeltsialvlllagfeaSVSLIGIgtylllthpdqlalvradpsALPN------------------AVEEILRY-Iapp ...	--hfcmgrplAKLEGEVALRALFGrfpal ...
1phd_ ... dlvwtrcnggHWIATR--------- ... sdeakrmcglllvggldtVVNFLSFsmeflakspehrqelierpeRIPA------------------ACEELLRR-Fslv ...	--hlclgqhlARREIIVTLKEWLTripdf ...
2hpd_A ... grvTRYLSSqrlikeac-------- ... deniryqiitfliaghetTSGLLSFalyflvknphvlqkaaeeaarvlvd-pvpsykqvkqlkYVGMVLNEALRL-Wpta ...	--racigqqfALHEATLVLGMMLKhf-df ...
1izo_A ... gknFICMTGaeaak----------- ... srmaaielinvlrp-ivaISYFLVFsalalhehpkykewlrsgnsrERE-----------------MFVQEVRRY-Ypfg ...	kghrcpgegiTIEVMKASLDFLVHqi-ey ...
1dt6_A ... mkpTVVLHGyeavk----------- ... leslviavsdlfgagtetTSTTLRYslllllkhpevaarvqeeiervigrhrspcmqdrsrmpYTDAVIHEIQRF-Idll ...	--rmcvgeglARMELFLFLTSILQnf-kl ...
1n40_A ... gaeAWLVSSyalctqvl-------- ... delfatigvtffgagvisTGSFLTTalisliqrpqlrnllhekpeLIPA------------------GVEELLRINlsfa ...	--hfcpgsalGRRHAQIGIEALLKkmpgv ...
1n97_A ... rfpLALIFDpegve----------- ... reralseavtllvaghetVASALTWsflllshrpdwqkrvaeseeAALA------------------AFQEALRL-Yppa ...	--rlclgrdfALLEGPIVLRAFFRrf-rl ...

1cpt_ ... ah-iegydpMWIATKhadvmqigkq ... ddkyinayyvaiataghdtTSSSSGGaiiglsrnpeqlalaksdpa------------------LIPRLVDEAVRWTapv ... --hmclgqhlAKLEMKIFFEELLPklksv ...
1e9x_A ... fq-lagkq-VVLLSGshanefffra ... sadeitgmfismmfaghhtSSGTASWtlielmrhrdayaavideldelygdgrsvsfhalrqipQLENVLKETLRLHppl ...	--hrcvgaafAIMQIKAIFSVLLReyef- ...
1oxa_ ... vr-flgqd-AWLVTGydeakaalsd ... sadeltsialvlllagfeaSVSLIGIgtylllthpdqlalvradps------------------ALPNAVEEILRYIapp ...	--hfcmgrplAKLEGEVALRALFGrfpal ...
1phd_ ... tr-cnggH--WIATRgqlireayed ... tsdeakrmcglllvggldtVVNFLSFsmeflakspehrqelierpe------------------RIPAACEELLRRFslv ...	--hlclgqhlARREIIVTLKEWLTripdf ...
2hpd_A ... fe-apgrv-TRYLSSqrlikeacde ... ddeniryqiitfliaghetTSGLLSFalyflvknphvlqkaaeeaarvlvd-pvpsykqvkqlkYVGMVLNEALRLWpta ...	--racigqqfALHEATLVLGMMLKhfdfe ...
1izo_A ... ar-llgkn-FICMTGaeaakvfydt ... dsrmaaielinvlrp-ivaISYFLVFsalalhehpkykewlrsgnsr-----------------EREMFVQEVRRYYpfg ...	kghrcpgegiTIEVMKASLDFLVHqiey- ...
1dt6_A ... vy-lgmkp-TVVLHGyeavkealvd ... tleslviavsdlfgagtetTSTTLRYslllllkhpevaarvqeeiervigrhrspcmqdrsrmpYTDAVIHEIQRFIdll ...	--rmcvgeglARMELFLFLTSILQnfklq ...
1n40_A ... vrtitgae-AWLVSSyalctqvled ... sdelfatigvtffgagvisTGSFLTTalisliqrpqlrnllhekpe------------------LIPAGVEELLRINlsf ...	--hfcpgsalGRRHAQIGIEALLKkmpgv ...
1n97_A ... lp-lprfp-LALIFDpegvegalla ... preralseavtllvaghetVASALTWsflllshrpdwqkrvaesee------------------AALAAFQEALRLYppa ...	--rlclgrdfALLEGPIVLRAFFRrfrld ...
 |

	

	

(b) after local adaptive realignment

Fig. 8.1 Impact of adaptive local realignment. The figure shows portions of an align-
ment of benchmark BB11007 from the BAliBASE suite, where the highlighted amino
acids in red uppercase are from the core columns of the reference alignment, which
should be aligned in a correct alignment. (a) The alignment computed by Opal using
its optimal default parameter setting (VTML200, 45, 11, 42, 40) across the sequences,
with an accuracy of 89.6%. The regions of the alignment in gray boxes are automat-
ically selected for realignment. (b) The outcome of using adaptive local realignment,
with an improved accuracy of 99.6%. The realignments of the three regions use al-
ternate parameter settings (BLOSUM62, 45, 2, 45, 42), (BLOSUM62, 95, 38, 40, 40), and
(VTML200, 45, 18, 45, 45), respectively, which increase the accuracy of these regions.

We present a method that takes a given alignment and attempts to improve
its overall accuracy by replacing sections of it with better subalignments, as
demonstrated in Figure 8.1. The top alignment of the figure was computed
using a single parameter setting: the optimal default setting of the Opal
aligner [106]. The bottom alignment is obtained by our new method, taking
the top alignment, automatically identifying the sections in gray boxes, and
realigning them using alternate parameter settings, as described later in Sec-
tion 8.2. This increases the overall alignment accuracy by 10%, as most of
the misaligned core blocks (highlighted in red uppercase) are now corrected.

Related work

Methods that partition a set of sequences to align or realign them can be
divided in two categories, based on the type of partition. Vertical realigners
cut the input sequences into substrings, and once these shorter substrings are
realigned, they stitch their alignments together. Horizontal realigners split an
alignment into groups of whole sequences, which are then merged together by
realigning between groups, possibly using each group’s induced subalignment.

D
RA
FT

8.1 Introduction 101

Crumble and Prune [90] is a pair of algorithms for performing both ver-
tical (Crumble) and horizontal (Prune) splits on an input set of sequences.
During the Crumble stage, a set of constraints is found that anchor the input
sequences together, and the substrings or blocks between these anchor points
are aligned. Once the disjoint blocks of the sequences are aligned, they are
then fused by aligning their overlapping anchor regions. During the Prune
stage, smaller groups of sequences are aligned that correspond to subtrees of
the progressive aligner’s guide tree. The subset of sequences in a subtree is
then replaced by their alignment’s consensus sequence in the remaining steps
of progressive alignment. The original subalignments of the groups are finally
reinserted to form the output alignment. Replacing a group of sequences by
their consensus sequence during alignment reduces the number of sequences
that are aligned at any one time. The objective for splitting sequences both
vertically and horizontally within Crumble and Prune is to reduce time
and space usage to make feasible the alignment of large numbers of long
sequences, rather than to improve alignment accuracy.

ReAligner [5] is a horizontal realignment method for improving DNA se-
quence assembly by removing and then realigning sequencing reads. If a read
is initially misaligned in the assembly it may be corrected when the read is
removed and realigned. This realignment process is repeated over all reads
to continually refine the assembly.

[47] presented several horizontal methods for heuristically aligning two
multiple sequence alignments, which he called “group-to-group” alignment.
This could be used for alignment construction in a progressive aligner, pro-
ceeding bottom-up over the guide tree and applying group-to-group alignment
at each node, or for polishing an existing alignment by assigning sequences
to two groups and using it to realign the groups.

AlignAlign [58] is a horizontal method that implements an exact algo-
rithm for optimally aligning two multiple sequence alignments under the sum-
of-pairs scoring function with affine gap costs. This optimal group-to-group
alignment algorithm, used for both alignment construction and alignment
polishing, forms the basis of the Opal aligner [106].

By comparison, adaptive local realignment is a vertical approach that aims
to improve alignment accuracy, applies to any alignment method that has
tunable parameters, and to our knowledge is the first approach to alignment
that can automatically adapt to varying mutation rates along a protein.

Plan of the chapter

In the next section, we describe our adaptive local realignment method, which
can be viewed as a form of local parameter advising, and discusses how it
interacts with global parameter advising. Section 8.3 experimentally evaluates
our approach, and compares it with prior methods for advising.

D
RA
FT

102 8 Adaptive Local Realignment

8.2 Adaptive local realignment

To overcome the issue of protein sequences being non-homogeneous and hav-
ing regions that may require different alignment parameters we have devel-
oped a method we call adaptive local realignment. Adaptive local realignment
uses some of the the same basic principles that have been shown to work well
for global parameter advising. We apply the techniques described above lo-
cally to choose the best alignment parameters for a subset of columns of an
alignment.

The adaptive local realignment method for an alignment can be broken
down into two steps: (1) choosing regions of the alignment that are correctly
aligned which we should save, and (2) producing a new alignment for those
regions that are not correctly aligned.

Similar to global parameter advising local realignment relies on a set of
alternate parameter choices and the accuracy estimator.

8.2.1 Identifying local realignment regions

Just as with global alignments we do not have a known reference alignment so
we cannot simply identify the alignment columns that are recovered correctly
in an input computed alignment. Therefore we are forced to use an accuracy
estimator E to define the regions of a given alignment that are going to be
saved (and which will be realigned). We calculate the estimated accuracy of
a sliding window across the alignment (see Figure 8.2a). The window size
is a fraction w ≤ 1 of the total length of the alignment. The window size w
must be chosen carefully because the accuracy estimator has features that are
global calculations of an alignment. A larger sliding window will provide more
context at each position and should provide a better estimate of accuracy. At
the same time, if the window is too large there will not be enough granular-
ity to identify the separation points between correct and incorrectly aligned
columns. To account for very short and very long alignments a minimum
wmin and maximum wmax window size is specified.

We now have the scores for approximately 1
w windows that overlap each

column of an alignment. We calculate a score for each column as a sum of
these scores weighted proportionally to the distance to the center column of
that window (see Figure 8.2b). We use a gamma decay distribution with a
decay factor d ≤ 1 centered on the middle column to weight the contribution
of each window. As d approaches 1 a column gets equal weight from all
covering windows. Conversely as it approaches 0 the score is dependent only
on the window centered at that column.

We then calculate two thresholds τB and τS based on the percentage of
columns from the original alignment we would like to keep TB and the per-
centage of columns we will use to seed realignment regions TS . The thresholds

D
RA
FT

8.2 Adaptive local realignment 103

barrier

Accuracy
Estimator

0.90

weighted sum

seed

qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
-MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
--------------------------mtkWNYGVFFLYDVVA--Fsehhidksyn
--------------------------mnkWNYGVFFVYDVIN--Iddhylvkkds

Parameter Advisor

--qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnnd
---MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadne
mtkWNYGVFFLYDVVAFsehhidksyn------------------------------
mnkWNYGVFFVYDVINIddhylvkkds------------------------------

rkeyagLYHEVAQAHGVDVSQVrqMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnndPLVFrwddsnaqHKLTLLVNQNVDGEAARAEARVyleefvresysnt
kkaqldLYNEVATEHGYDVTKId-MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadnePMILswiintheHCLSYITSVDHDSNRAKDICRNflghwy-dsyvna
riellnHYQAAAAKFNVDIANVr--------------------------mtkWNYGVFFLYDVVA--FsehhidksynPLLFkwddsqqkHRLMLFVNVNDNPTQAKAELSIyledyl--sytqa
rlkllsFYNASASKYNKNIDLVr--------------------------mnkWNYGVFFVYDVIN--IddhylvkkdsPLVFkwddineeHQLMLHVNVNEAETVAKEELKLyienyv--actqp

rkeyagLYHEVAQAHGVDVSQVr--qMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnndPLVFrwddsnaqHKLTLLVNQNVDGEAARAEARVyleefvresysnt
kkaqldLYNEVATEHGYDVTKId---MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadnePMILswiintheHCLSYITSVDHDSNRAKDICRNflghwy-dsyvna
riellnHYQAAAAKFNVDIANVrmtkWNYGVFFLYDVVAFsehhidksyn------------------------------PLLFkwddsqqkHRLMLFVNVNDNPTQAKAELSIyledyl--sytqa
rlkllsFYNASASKYNKNIDLVrmnkWNYGVFFVYDVINIddhylvkkds------------------------------PLVFkwddineeHQLMLHVNVNEAETVAKEELKLyienyv--actqp

(a)

(b)

(c)

(e)

(d)

(f)

rkeyagLYHEVAQAHGVDVSQVrqMKFGLFFLFDTLAVyenhfsnngvvldqmsegrfafhkiindafttgychpnndPLVFrwddsnaqHKLTLLVNQNVDGEAARAEARVyleefvresysnt
kkaqldLYNEVATEHGYDVTKId-MKFGNFLLFDTVWLlehhftefgllldqmskgrfrfydlmkegfnegyiaadnePMILswiintheHCLSYITSVDHDSNRAKDICRNflghwy-dsyvna
riellnHYQAAAAKFNVDIANVr--------------------------mtkWNYGVFFLYDVVA--FsehhidksynPLLFkwddsqqkHRLMLFVNVNDNPTQAKAELSIyledyl--sytqa
rlkllsFYNASASKYNKNIDLVr--------------------------mnkWNYGVFFVYDVIN--IddhylvkkdsPLVFkwddineeHQLMLHVNVNEAETVAKEELKLyienyv--actqp

seedseed

####

####

column scores

input  
alignment

alignment window

window scores

alignment  
region

realigned  
region

{

barrier

output
alignment

barrier

Fig. 8.2 The adaptive local realignment process. (a) We calculate a Facet score
for a sliding window across at the input alignment. (b) To calculate a score for each
column from the set of window scores we use a weighted sum of the values for all
windows that overlap that column. (c) Columns that a column score value greater
than τG are labeled as barriers and then columns with value less than τB are used as
seeds for realignment regions. (d) These seeds are then extended in both directions
until they reach a barrier column to define a realignment region that is extracted
from the alignment. (e) The unaligned subsequences defined by this region are then
realigned using a parameter advisor. (f) Once the most accurate realignment of the
region is found it is reinserted into the input alignment replacing the section that was
removed.

are set so that at least d` TBe columns have score that are above τB , and
least d` TSe columns have scores below τS . All columns with scores ≥ τB are
labeled “barriers” and all columns with scores ≤ τS are labeled as “seeds”
(see Figure 8.2b).

To find alignment regions that will be realigned we start a region by in-
cluding a seed column. This region is then extended to include any other seed
or unlabeled column to the left and right. This expansion continues until a
barrier column (or the end of the alignment) is reached in both directions.

D
RA
FT

104 8 Adaptive Local Realignment

The barrier columns will never be included in an alignment region that
will be realigned. In this way we guarantee that at least TB percent of the
columns from the original alignment will remain, and there will always be at
least one alignment region to realign.

8.2.2 Local parameter advising on a region

During local advising we will construct a new alignment that contains all of
the columns that are surrounded by only barrier columns and more accurate
alignments of the columns covered by alignment regions (if a more accurate
alignment can be found).

For each alignment region we extract the sub-alignment in the contained
columns and calculate it’s Facet score (see Figure 8.2d). We will later com-
pare other alternate alignments with this base accuracy. The unaligned sub-
sequences of this region are then collected. This set of unaligned sequences
becomes the input to parameter advising.

We use same parameter advising method described in Section 1.2 and
Figure 1.3 with one exception. The Opal aligner has 5 tunable parameters:
the replacement matrix as well as two internal and two terminal gap costs
(we describe them in detail in Section 8.3). For those regions that do include
the alignment terminals (the first or last column of the input alignment), the
terminal gap penalties are replaced with the corresponding internal gap cost.
For those regions that do include terminals we use the terminal gap penalty
only on the one side that is terminal in the context of the global alignment.
Note that an alignment region as we have defined it will never include both
terminals.

We then compare the advisors choice with the original alignment of this
region, if the accuracy of the new alignment is higher we remove the columns
covered by the alignment region from the input alignment and replace them
with the new alignment of this region (see Figure 8.2f).

As a final step we compare the accuracy of the new alignment, with the
realignments in the alignment regions, to the input alignment. The more
accurate global alignment is returned.

8.2.3 Iterative local realignment

Once we have a new global alignment of the input sequences we can repeat
the process to continue to refine the alignment. Using the same methods
described earlier we compute the Facet score on windows of this new align-
ment, combine these to get column scores, and define alignment regions for
which we will use parameter advising to realign. We iterate this process until

D
RA
FT

8.3 Assessing local realignment 105

a user defined maximum number of iterations is reached. Note that the local
advising procedure may reach a point where none of the misaligned regions
are replaced, even though continuing iteration will not effect the output we
stop iterating when this happens to reduce the running time.

8.2.4 Combining local with global advising

Local advising is a method for improving the accuracy of an existing align-
ment. It has been shown previously that using parameter choices other than
the default can greatly increase the alignment accuracy for some inputs. We
can use global advising to find a more accurate starting point for adaptive
local realignment.

Local and global advising can be combined in two ways.

(1) Local advising on all global alignments: using adaptive local
realignment on each of the alternate alignments produced within
global parameter advising then choosing among all 2|P | alternate
alignments (|P | unaltered global alignments and |P | locally advised
alignments), and

(2) Local advising on best global alignment: choosing the best
global alignment then using adaptive local realignment to boost
it’s accuracy.

We will compare both methods for combining local and global advising as
well as local advising on the default alignment in the next section.

8.3 Assessing local realignment

We evaluate the performance of adaptive local realignment and its use in com-
bination with global advising through experiments on a collection of protein
multiple sequence alignment benchmarks. A full description of the bench-
marks and universe of parameters used for parameter advising can be found
in [56] and is briefly described here.

The benchmark suites used in our experiments consist of reference align-
ments of proteins that are largely induced by structurally aligning their
known three-dimensional structure. In particular, we use the BENCH suite
of [40] (which is a combination of the BAliBASE [8], PREFAB [38], OxBench [87],
and SABRE [102] databases), supplemented by a selection from the PALI suite
of [9]. The full benchmark collection we use consists of 861 reference align-
ments.

As is common in benchmark suites, easy-to-align benchmarks are highly
over-represented in this collection. To correct for this bias towards easy to

D
RA
FT

106 8 Adaptive Local Realignment

align benchmarks when evaluating average advising accuracy, we binned the
861 benchmarks by hardness, which we measured by the true accuracy of the
alignment of the benchmark’s sequences using the multiple alignment tool
Opal under the optimal default parameter setting. We then divided the the
full range [0, 1] of accuracies into 10 bins, where bin b for b = 1, ..., 10 con-
tains hardness interval

(
(b−1)/10, b/10

]
, and has 12, 12, 20, 34, 26, 50, 62, 74,

137, and 434 benchmarks respectively. We report the average accuracy across
bins rather than across benchmarks. This means that the average accuracy
of alignments using the Opal default parameter settings is near 50%. Even
though the binning is based on the Opal default alignments, most other stan-
dard aligners have default accuracy near 50%: Clustal Omega [93, 47.3%],
Muscle [38, 48.4%], MAFFT [54, 51.0%]. This is not to say for instance that
MAFFT is necessarily more accurate than Clustal Omega, if you bin based
on any aligner other than Opal you would get a completely new ordering. [33]
shows that for the task of parameter advising many of the top aligners perfor-
mance nearly equally well and our choice to use Opal is made based on the
fact that it has the highest advising accuracy in our tests. The methodology
presented here is general and can be implemented for any other aligner.

We developed a universe of alignment parameter settings U by enumer-
ating the tunable alignment parameters within the Opal aligner and enu-
merated values from within the reasonable range of those parameters. In
particular the tunable parameters for Opal are represented as a 5-tuple
(σ, λI , λT , γI , γT) which represent the replacement matrix (σ) as well as the
the internal and terminal gap open (λ) and extension costs (γ). For the sub-
stitution matrix we selected 3 matrices form the BLOSUM [49] and VTML [75]
families, three choices each for the internal and external gap open costs, three
choices of internal gap extension cost, and two choices of terminal gap ex-
tension costs. We then took the cross product of the choices for each of the
parameters to generate a universe of 162 parameter settings.

We use 12-fold cross validation to examine the increase in accuracy gained
using local advising both with and without the addition of global advising. We
construct training and testing subsets of the alignment benchmarks by evenly
and randomly distributed benchmarks into twelve groups for each hardness
bin; we then formed twelve splits of the entire collection of benchmarks into
a training class and a testing class, where each split placed one group in a bin
into the training class and the other eleven groups in the bin into the training
class; finally, for each split we generated a training set and testing set of
examples alignments as follows: for each benchmark B in a training or testing
class, we generate |U | example alignments in the respective training or testing
set by running Opal on B with each parameter in U . An estimator learned
on the examples from a training set was evaluated on examples from the
corresponding testing set. The results we reported are averages over twelve
folds, where each fold is one of these pairs of associated training and testing
sets. (Note that across twelve folds, every example is tested on exactly once.)

D
RA
FT

8.3 Assessing local realignment 107

We trained the estimator coefficients for Facet using the difference fitting
method described in Chapter 2 on the training sets described above. We
found that there was very little change in coefficients between the training
folds so for ease of experimentation we use the estimator coefficients that are
release with the newest version Facet which were trained on all available
benchmarks.

We examined several settings for the tunable parameters of the local re-
alignment method: estimator window size percentage w (10%,20%,30%,...,90%),
minimum window sizes wmin (5,10,20,30), minimum window sizes wmax
(30,50,75,100,125), good and bad column label percentagesBG, BB (5%,10%,20%,30%,...,70%),
and gamma decay value d (0.5,0.66,0.9,0.99). We used the performance on
training benchmarks described above to find the combination of these set-
tings that gave the highest improvement in accuracy when local advising was
applied to the default alignments from Opal. We found that using w = 30%,
wmin = 10, wmax = 30, BG = 10%, BB = 30%, and d = 0.9 provided the
highest increase for the training benchmarks and these are the settings we
use through out the experimental results. We also iterate the local advising
step five times and use this for all experiments other than the comparison
to TCS in Section 8.3.3, full details why we used five iterations are shown in
Section 8.3.4.

8.3.1 Effect of local realignment across difficulty bins

Figure 8.3 shows the alignment accuracy across difficulty bins for default
alignments from Opal, local advising on these default alignments, global ad-
vising alone, and local combined with global alignment. Here the combination
method uses local advising on all alternate alignments within global advis-
ing. The oracle set of cardinality k = 10 was used for both global and local
advising.

Local advising greatly improves the alignment accuracy of default align-
ments (left two bars in each group). In the two most difficult benchmark bins
(to the left of the figure) using local advising increases the average accuracy
by 11.5% and 9.1% respectively. The accuracy increases on all bins. Overall
using local advising increases the accuracy of the default alignments by and
average of 4.5% across bins.

Combining local and global advising greatly improves the accuracy over
either of the methods individually. This is most pronounced for the hardest
to align benchmarks. For the bottom two bins using both parameter advising
and adaptive local realignment increases the accuracy by 23.0% and 25.6%
accuracy over using just the default parameter choices. Additionally, using
adaptive local realignment increases the accuracy by 5.9% accuracy on the
bottom most bins over using parameter advising alone. On average thats an
8.9% increase in accuracy over all bins by using the combined procedure over

D
RA
FT

108 8 Adaptive Local Realignment

using just the default parameter choice and a 3.1% increase over using only
parameter advising.

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	

100%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Al
ig
nm

en
t	A

cc
ur
ac
y	

Benchmark	Bins	

			Default	alignment	
			Local	advising	only	
			Global	advising	only	
			Local	combined	with	global	advising	

0%	
10%	
20%	
30%	
40%	
50%	
60%	
70%	
80%	
90%	
100%	

Average	

Fig. 8.3 Accuracy of the default alignment, local realignment of the default
alignment, parameter advising, and parameter advising with local realignment
within difficulty bins. In the bar chart on the left the horizontal axis shows all
ten benchmarks bins, and the vertical bars show the accuracy averaged over just
the benchmarks in that bin. The accuracy of the default alignment and parameter
advising using an oracle set of cardinality k = 10, before local realignment is shown
as well as the application of local realignment to both results. The car chart on the
right shows the accuracy uniformly averaged over the bins.

8.3.2 Varying advising set cardinality

In previous sections we focused on using advising sets of cardinality k = 10.
Because an alignment is produced for each region of local realignment for
each parameter choice in the advising set it may be desirable to use a smaller
set to reduce the running time of local (or or global) advising. We produced
oracle advising sets for cardinalities k = 2...15 and used them to test the
effect of local advising both alone and in combination with global advising.
Figure 8.4 shows the average advising accuracies of using advising sets of
increasing cardinalities under the 3 conditions described above as well as
the combination of local with global advising where the local advising step is
only performed on the single best alignment identified by global advising. The
cardinality of the set used for both parameter advising and local realignment
is shown on the horizontal axis, while the vertical axis shows the alignment
accuracy of the produced alignments averaged first within difficulty bins then
across bins.

D
RA
FT

8.3 Assessing local realignment 109

The accuracy of alignments produced by all four methods shown eventually
reaches a plateau where adding additional parameters to the advising set no
longer increases the alignment accuracy. This plateau is reached at cardinality
k = 10 when local realignment is applied to the default alignments and at
k = 6 for parameter advising with and without local realignment, but this
plateau is higher for the combined methods.

Across all cardinalities using local combined with global advising improves
alignment accuracy by nearly 4% on average.

The results above give average advising accuracy uniformly weighted
across bins. We now report average advising accuracy uniformly weighted
across benchmarks. Using its default parameter choice the Opal aligner
achieves accuracy 80.4%. Applying both local and global advising at car-
dinality k = 10, this increases to 83.1% (performing local advising on all
global alternate alignments). Using only local or global advising achieves ac-
curacy 82.1% or 81.8% respectively. At k = 5 the accuracy of using local
and global advising is 82.7%. By comparison, the average accuracy of other
standard aligners on these benchmarks is: Clustal Omega, 77.3%; Muscle,
78.09%; MAFFT, 79.38%.

48%	

50%	

52%	

54%	

56%	

58%	

60%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Al
ig
nm

en
t	A

cc
ur
ac
y	

Advisor	Set	Cardinality	

Local	combined	with	global	advising	
														Local	advising	on	all	gloabl	
														Local	advising	on	best	global	
									Global	advising	only	
									Local	advising	on	default	

Fig. 8.4 Advising accuracy using various methods versus set cardinality. This figure
compares the accuracy of alignments produced by local advising on the alignment
produced using the Opal default parameter settings, global advising alone, and two
variants on combining local and global advising. The horizontal axis represents and
increasing oracle advising set cardinality used for both parameter advising and local
realignment. The vertical axis shows the accuracy of the alignments produced by each
of the advising methods averaged across difficulty bins.

D
RA
FT

110 8 Adaptive Local Realignment

8.3.3 Comparing estimators for local advising

We have shown previously that the Facet estimator has the best perfor-
mance for the task of global advising compared to the other accuracy esti-
mators available [see 33, 56]. Figure 8.5 shows the average accuracy of local
advising on default alignments using both Facet and TCS (the next best
estimator for advising) using advisor sets of cardinality k = 2...15. We found
that using TCS for local advising greatly increased the running time because
it is an additional system call and additional file IO. Because of the additional
computational requirements we did not iterate the local advising for either
estimator. Using TCS for local advising gives an increase in accuracy of less
than half that of Facet.

50%	

51%	

52%	

53%	

54%	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15	

Al
ig
nm

en
t	A

cc
ur
ac
y	

Advisor	Set	Cardinality	

 Local realignment (Facet)
 Local realignment (TCS)

Fig. 8.5 Accuracy of the default alignment and local realignment using TCS and
Facet with various advisor set cardinalities. This figure compares the accuracy of
alignments produced by the Opal default parameter settings applying local realign-
ment using either the TCS or Facet estimator. The horizontal axis represents and
increasing oracle advising set cardinality used for local realignment. The vertical axis
shows the accuracy of the alignments produced by each of the advising methods
averaged across difficulty bins.

8.3.4 Effect of iterating local realignment

The local advising process can be considered a refinement step for multiple
sequence alignment. To continue refining the alignment we can iterate the
local advising procedure (see Section 8.2.3). Iterating local advising should
eventually reach some convergence in the alignment where you’re no longer
improving the result (i.e. the alignment regions are not being changed) or
even worse you start deteriorating the result due to some noise in the accu-

D
RA
FT

8.3 Assessing local realignment 111

racy estimator. To find the optimal iteration limit we ran all iteration limits
from 1 to 25. We found that the peak accuracy on training benchmarks was
at 5 iterations, and we use that for all other experiments shown in this chap-
ter (other than those in Section 8.3.3). The table below shows the average
accuracy of using local adaptive realignment on the default alignment with
various number of iterations.

Iterations 1 2 3 4 5 10 15 25
Testing 53.5% 53.7% 54.1% 54.4% 54.5% 54.5% 54.5% 54.5%
Training 53.5% 53.9% 54.5% 54.6% 54.8% 54.8% 54.9% 54.9%

8.3.5 Summarizing the effect of adaptive local
realignment

Table 8.1 summarizes how adaptive local realignment behaves across difficulty
bins when used to modify alignments produced using the default parameter
setting in Opal. The first two rows show how many of the 861 benchmarks
are in each bin, as well as how many of them had at least one realignment
region where the advisor chose to replace the global alignment. The fourth
row shows the average number of Bad in a benchmark; on average about 2 re-
gions were realigned for each default alignment. The last two rows summarize
the percentage of the original columns those Bad regions covered, and how
many of the columns from the original alignment ended up being replaced. In
the easiest-to-align benchmark bin only 47% of the alignment columns were
altered, while in the rest of the bins over 60% of the alignment columns were
improved.

D
RA
FT

112 8 Adaptive Local Realignment

T
a
b
le

8
.1

S
u

m
m

a
ry

o
f

L
o
ca

l
R

ea
li
g
n

m
en

t
o
n

D
ef

a
u

lt
A

li
g
n

m
en

ts

B
in

1
2

3
4

5
6

7
8

9
1
0

O
v
e
r
a
ll

T
o
t
a
l

n
u
m

b
e
r

o
f

b
e
n
c
h
m

a
r
k
s

1
2

1
2

2
0

3
4

2
6

5
0

6
1

7
4

1
3
7

4
3
4

8
6
1

B
e
n
c
h
m

a
r
k
s

u
n
c
h
a
n
g
e
d

4
5

4
7

7
1
6

1
6

1
3

2
2

8
2

1
7
6

B
e
n
c
h
m

a
r
k
s

m
o
d
ifi

e
d

b
y

a
d
a
p
t
iv

e
lo

c
a
l

r
e
a
li

g
n
m

e
n
t

8
7

1
6

2
7

1
9

3
4

4
6

6
1

1
1
5

3
5
2

6
8
5

P
e
r
c
e
n
t
a
g
e

o
f

b
e
n
c
h
m

a
r
k
s

a
lt

e
r
e
d

6
7
%

5
8
%

8
0
%

7
9
%

7
3
%

6
8
%

7
4
%

8
2
%

8
4
%

8
1
%

8
0
%

A
v
e
r
a
g
e

B
a
d

r
e
g
io

n
s

p
e
r

b
e
n
c
h
m

a
r
k

1
.9
2

2
.1
7

2
.5
0

1
.8
8

2
.2
3

2
.1
4

2
.3
1

2
.1
6

2
.4
8

2
.1
9

2
.2
3

A
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
f

o
r
ig

in
a
l

c
o
lu

m
n

r
e
a
li

g
n
e
d

7
5
%

7
3
%

7
6
%

7
0
%

7
5
%

7
7
%

7
4
%

7
3
%

7
5
%

7
2
%

7
3
%

A
v
e
r
a
g
e

p
e
r
c
e
n
t
a
g
e

o
f

o
r
ig

in
a
l

c
o
lu

m
n

r
e
p
la

c
e
d

6
4
%

6
0
%

6
8
%

6
0
%

6
6
%

7
2
%

6
5
%

6
3
%

6
4
%

4
7
%

5
7
%

D
RA
FT

8.3 Assessing local realignment 113

8.3.6 Running time

As currently implemented in Opal local advising does not take advantage
of the independence of the calls to the aligner in the parameter advising
step and running them in parallel. Therefore we see a large increase in time
consumption when generating locally advised alignments. In particular the
average time for computing an alignment using the default global parameter
setting goes from about 8 seconds to just over 36 seconds using an advisor
set cardinality of k = 10. When iterating the local advising step 5 times we
see the average running time increase to 110 seconds.

In contrast global advising exploits the independence of the aligner on
different parameter settings. The running time for advisor set cardinality
k = 10 for global advising alone is around 33 seconds, much less than the 10-
fold increase to be expected if advising was not done in parallel. Even though
global advising is done in parallel, local advising is not; the average running
time over all benchmarks increases to 68 and 178 seconds for combining local
and global advising, performing local advising on all global alignments with
and without iteration, respectively.

8.3.7 Local and global advising in Opal

The development trunk of the Opal aligner includes the ability to perform
adaptive local realignment both with and without parameter advising. To
achieve the same results shown here the following commands were used to
run the aligner:

(A) Parameter advising with local realignment on all
java opal.Opal --in <input file>\
--facet structure <structure file>\
--configuration file <parameter set>\
--out best <output file>

(B) Parameter advising with local realignment on single
java opal.Opal --in <input file>\
--facet structure <structure file>\
--configuration file <parameter set>\
--out prerealignment best realignment\
<output file>

(C) Parameter advising without local realignment
java opal.Opal --in <input file>\

--facet structure <structure file>\
--advising configuration file <set>\
--out best <output file>

D
RA
FT

114 8 Adaptive Local Realignment

(D) Default alignment with local realignment
java opal.Opal --in <input file>\
--facet structure <structure file>\
--realignment configuration file <set>\
--out <output file>

(E) Default alignment without local realignment
java opal.Opal --in <input file>\
--out <output file>

Summary

We have presented adaptive local realignment, to our knowledge the first
method that demonstrably boosts protein multiple sequence alignment ac-
curacy by locally realigning regions that may have distinct mutation rates
using different aligner parameter settings. Applying this new method alone
to alignments initially computed using a single optimal default parameter
setting already improves alignment accuracy significantly. When combined
with methods to select an initial non-default parameter setting for the par-
ticular input sequences through global parameter advising, this new local
parameter advising method greatly improves accuracy even further. We have
also made available a tool that performs adaptive local realignment with the
Opal aligner.

D
RA
FT

Chapter 9

Predicting Core Columns

Overview

In a computed multiple sequence alignment, the coreness of a column is the
fraction of its substitutions that are in so-called core columns of the unknown
reference alignment of the sequences, where the core columns of the reference
alignment are those that are reliably correct. In the absence of knowing the
reference alignment, the coreness of a column can only be estimated. We
develop for the first time a column coreness estimator for protein multiple
sequence alignments.

Our approach to predicting coreness is similar to nearest-neighbor clas-
sification from machine learning, except we transform nearest-neighbor dis-
tances into a coreness estimate using a regression function, and we auto-
matically learn an appropriate distance function through a new optimization
formulation that solves a large-scale linear programming problem. We apply
our coreness estimator to improving parameter advising, the task of choos-
ing good parameter values for an aligner’s scoring function, and show that
our estimator strongly outperforms others from the literature, providing a
significant boost in advising accuracy.

9.1 Introduction

The accuracy of a multiple sequence alignment computed on a benchmark set
of input sequences is usually measured with respect to a reference alignment
that represents the gold-standard alignment of the sequences. For protein
sequences, reference alignments are typically determined by structural su-
perposition of the known three-dimensional structures of the proteins in the
benchmark. The accuracy of a computed alignment is then defined to be the

This chapter was adapted from portions of a previous publication [28, 29].

115

D
RA
FT

116 9 Predicting Core Columns

fraction of substitutions of pairs of residues in the so-called core columns of
the reference alignment that are also present in columns of the computed
alignment. Core columns represent those in the reference that are deemed to
be reliable, and are columns containing a residue from every input sequence
such that the pairwise distances between these residues in the structural su-
perposition of the proteins are all within some threshold (typically a few
angstroms). In short, given a known reference alignment whose columns are
labeled as either core or non-core, we can determine the accuracy of any other
computed alignment of its proteins by evaluating the fraction of substitutions
in these core columns that are recovered. For a given column in a computed
alignment, we can also define the coreness value of the column to be the
fraction of its substitutions that are in core columns of the reference align-
ment. A coreness value of 1 means the column of the computed alignment
corresponds to a core column of the reference alignment.

When aligning sequences in practice, obviously such a reference alignment
is not known, and the accuracy of the computed alignment, or the coreness
of its columns, must be estimated. A good accuracy estimator for computed
alignments is extremely useful. It can be leveraged to pick among alternate
alignments of the same sequences the one of highest estimated accuracy, for
example, to choose good parameter values for an aligner’s scoring function,
called parameter advising ; or to select the best result from a collection of
different aligners, yielding a natural ensemble aligner that can be far more
accurate than any individual aligner in the collection.

Similarly, a good coreness estimator for columns in a computed alignment
can be used to mask out unreliable regions of the alignment before computing
an evolutionary tree, or to improve an alignment accuracy estimator by con-
centrating its evaluation function on columns of higher estimated coreness,
thereby boosting the performance of parameter advising. In fact, in principle
a perfect coreness estimator would itself yield an ideal accuracy estimator.

In this chapter, we develop for the first time a column-coreness estimator
for protein multiple sequence alignments. Our approach to predicting core-
ness is similar in some respects to nearest-neighbor classification from ma-
chine learning, except we transform nearest-neighbor distance into a coreness
estimate using a regression function, and automatically learn an appropriate
distance function through a new optimization formulation that solves a large-
scale linear programming problem. We evaluate the performance of our new
coreness estimator by applying it to the task parameter advising in multiple
sequence alignment.

9.1.1 Related work

To our knowledge, this is the first fully general attempt to directly estimate
the coreness of columns in computed protein alignments. In the literature,

D
RA
FT

9.2 Learning a coreness estimator 117

the GUIDANCE tool [92] gives reliability values for alignment columns, which
they evaluate by measuring the classification accuracy of predicting totally
correctly aligned core columns from reference alignments, though they do not
attempt to relate reliability to coreness. GUIDANCE also requires alignments
to contain at least four sequences, which limits the alignment benchmarks
that can be considered. Tools are also available that assess the quality of
columns in a multiple alignment, and can be categorized into those that
compute a column quality score which can be thresholded, and those that only
identify columns that are unreliable (for removal from further analysis). The
popular quality score tools are TCS [18], ZORRO [112], and Noisy [36]; these
can be used to modify the feature functions in an accuracy estimator such
as Facet [32], as we later propose in Section 9.3.2. Tools that simply mask
unreliable columns of an alignment include ALISCORE [62], GBLOCKS [17],
and TrimAL [15].

We focus on comparing our coreness estimator to TCS and ZORRO, as these
are the most recent tools that provide quality scores, as opposed to simply
masking columns. Furthermore, of the above tools, ALISCORE, GBLOCKS
and GUIDANCE have been shown to be dominated by ZORRO, while Noisy
in turn has been shown to be dominated by GUIDANCE.

Plan of the chapter

In the next section, we present our method for learning a coreness estima-
tor. Section 9.3 explains how we use predicted coreness to improve accuracy
estimation for protein alignments. Section 9.4 then evaluates our approach
to coreness prediction by applying the improved accuracy estimator to align-
ment parameter advising.

9.2 Learning a coreness estimator

To describe how we learn a column coreness estimator, we first discuss our rep-
resentation of alignment columns, and our grouping of consecutive columns
into window classes; we then present our regression function for estimating
coreness, which transforms a distance to a window class into a coreness value;
and finally, we describe how we learn this window distance function by solving
a large-scale linear programming problem.

D
RA
FT

118 9 Predicting Core Columns

9.2.1 Representing alignment columns

We want to represent a multiple alignment column in a form that captures
the association of amino acids and predicted secondary-structure types, but is
independent of the number of sequences in the alignment. This is necessary for
the labeled column examples in our training set to be useful for estimating the
coreness of columns that come from other alignments with arbitrary numbers
of sequences.

Let Σ be the 20-letter amino acid alphabet, and Γ = {α, β, γ} be the
secondary-structure alphabet, corresponding respectively to types α-helix,
β-strand, and other (also called coil). We encode the association of an amino
acid c ∈ Σ with its predicted secondary structure type s ∈ Γ using an ordered
pair (c, s) that we call a state, from the set Q = (Σ×Γ) ∪ {ξ}. Here ξ = (ε, ε)
is the gap state, where ε 6∈ Σ is the alignment gap character (often displayed
by the dash symbol ‘-’).

We represent a multiple alignment column as a distribution over the set of
states Q, which we call its profile (mirroring standard terminology [e.g., 37,
p. 101]). We denote the profile C for a given column by a function C(q)
on states q ∈ Q satisfying C(q) ≥ 0 and

∑
q∈Q C(q) = 1. For a col-

umn (c1c2 · · · ck) in a multiple alignment of k sequences, with associated
predicted secondary structure types (s1 · · · sk), where for a gap ci = ε the
associated secondary structure type is also si = ε, its profile C is,

C(q) :=
1

k

∣∣∣{i : (ci, si) = q
}∣∣∣ .

In other words, C(q) is the relative frequency of state q in the column.
We generalize this to secondary structure predictions that for amino acid ci

give confidences pi(α), pi(β), pi(γ) that the amino acid is in each of the three
secondary structure types (where these confidences sum to 1), as follows. For
state q = (a, s) 6= ξ, profile C is then,

C(q) :=
1

k

∑
1≤i≤k : ci=a

pi(s) .

In other words, C(q) is now the normalized total confidence in state q 6= ξ.
For gap state q = ξ, value C(ξ) is the same as before.

9.2.2 Classes of column windows

The ground truth of whether a column in a reference alignment is core or
non-core depends on whether the residues of the proteins in that column
are sufficiently close in space in the structural superposition of the folded

D
RA
FT

9.2 Learning a coreness estimator 119

3-dimensional structures of the proteins. This folded structure at a residue is
not simply a function of the amino acid of the residue itself, or its secondary
structure type, but is also a function of the nearby residues in the protein.
Consequently, to estimate the coreness of a given column in a computed
alignment, we need additional contextual information from nearby columns
of the alignment.

We gather this additional context around a given column by forming a
window of consecutive columns centered on the given column. Formally, a
column window W of width w ≥ 1 is a sequence of 2w+1 consecutive column
profiles W−w · · ·W−1W0W+1 · · ·W+w centered around profile W0.

We define the following set of window classes C, depending on whether the
columns in a labeled training window are known to be core or non-core with
respect to their reference alignment. We denote a column labeled core by C,
and a column labeled non-core by N. For window width w=1, which we use in
our experiments, such labeled windows can be described by strings of length 3
over alphabet {C,N}. The three classes of core windows are CCC,CCN,NCC,
and the three classes of non-core windows are CNN,NNC,NNN. (A window is
considered core or non-core depending on the label of its center column.)
Together these six classes comprise set C. We call the five classes with at
least one core column C in the window as structured classes, and the one
class with no core columns the single unstructured class, which we denote by
the symbol ⊥ = NNN.

Reference alignments explicitly label their columns as core or non-core.
For computed alignments, which have a known reference alignment, we label
a column as core or non-core depending on whether the true coreness value
for the column is above a fixed threshold.

9.2.3 The coreness regression function

We learn an estimator for the coreness of a column by fitting a regression
function that first measures the similarity between a window around the
column and training examples of windows with known coreness, and then
transforms this similarity into a coreness value.

We express the similarity between windows in terms of the similarity of
their corresponding columns. To measure the similarity between columns we
use a distance function d on pairs of column profiles A,B of the form,

d(A,B) :=
∑
p,q∈Q

A(p) B(q) σ(p, q) ,

where σ(p, q) is a substitution score that measures the dissimilarity between
the pair of states p, q.

D
RA
FT

120 9 Predicting Core Columns

We extend this to a distance d on pairs of windows V = V−w · · ·Vw and
W = W−w · · ·Ww by,

d(V,W) :=
∑

−w≤ i≤+w

di(Vi,Wi) ,

where the di are positional distance functions on column profiles. Function di
is given by its positional substitution scores σi(p, q). The positional σi can
score dissimilarity higher at positions i at the center of the window, and lower
toward the edge of the window.

Finally, we extend this to class-specific window distance functions dc that
are specific to each window class c ∈ C−{⊥}. Function dc is given by its class-
specific positional profile distance functions dc,i, which are in turn given by
class-specific positional substitution scores σc,i.

The regression function that estimates the coreness of a column first forms
a window W centered on the column, and then performs the following. To
transform a distance to coreness we use two different functions: function fcore
for core classes, and function fnon for non-core classes.

(1) (Find distance to closest class) Across all labeled training win-
dows, in all structured window classes, find the training window
that has smallest class-specific distance to W . Call this closest win-
dow V , its class c, and their distance δ = dc(V,W).

(2) (Transform distance to coreness) If class c is a core class, return
coreness value fcore(δ). Otherwise, return value fnon(δ).

We next explain how we efficiently find distance δ, and then describe the
transform functions f .

9.2.3.1 Finding the distance to a class

To find the distance of a window W to a class c, we need to find the near-
est neighbor of W among the set of training windows Tc in class c, namely
argminV ∈Tc

{
dc(V,W)

}
. Finding the nearest neighbor through exhaustive

search by explicitly evaluating dc(V,W) for every window V can be expen-
sive when Tc is large (and cannot be avoided in the absence of exploitable
properties of function dc).

When the distance function is a metric, for which the key property is the
triangle inequality (namely that d(x, z) ≤ d(x, y) + d(y, z) for any three ob-
jects x, y, z), faster nearest neighbor search is possible. In this situation, in a
preprocessing step we can first build a data structure over the set Tc, which
then allows us to perform faster nearest neighbor searches on Tc for any query
window W . One of the best data structures for nearest neighbor search un-
der a metric is the cover tree of (author?) [11]. Theoretically, cover trees
permit nearest neighbor searches over a set of n objects in O(log n) time,

D
RA
FT

9.2 Learning a coreness estimator 121

after constructing a cover tree in O(n log n) time, assuming that the intrin-
sic dimension of the set under metric d has a so-called bounded expansion
constant [11]. (For actual data, the expansion constant can be exponential in
the intrinsic dimension.) In our experiments, for nearest neighbor search we
use the recently-developed dispersion tree data structure of (author?) [111],
which in extensive testing on scientific data is significantly faster in practice
than cover trees.

We build a separate dispersion tree for each structured window class c ∈
C−{⊥} over its training set Tc using its distance function dc, in a prepro-
cessing step. To find the nearest neighbor to window W over all training
windows T =

⋃
c Tc, we then perform a nearest neighbor search with W in

each class dispersion tree, and merge these |C|−1 search results by picking
the one with smallest distance to W .

9.2.3.2 Transforming distance to coreness

We use a sigmoid function to transform nearest neighbor distance into a core-
ness value. Once we have learned the distance functions dc, as described in
Section 9.2.4, we fit the transform function to empirical coreness values mea-
sured at the distances observed for example windows from our set of training
windows, as follows. We sort the examples by their observed nearest neighbor
distance, and at each observed distance δ, we collect the m adjacent examples
whose distance is below δ, and the m adjacent examples above δ. We then
compute the average true coreness value of these 2m+1 examples, and assign
this average true coreness value to distance δ. A sigmoid curve is then fit to
these pairs of average true coreness and observed nearest neighbor distance
values. This fitting process is performed separately for example windows from
core classes, and non-core classes.

The particular sigmoid that we fit is the logistic function. The general form
of the logistic function f that we use is,

f(x) := ` + (u−`) 1

1 + eax+b
,

with four parameters a, b, `, u, where ` and u are respectively the minimum
and maximum average true coreness values observed for the examples, and a
and b are shape parameters. We use the curve fitting tools in SciPy [52]
(which are a wrapper for MINPACK [73]) to find values for the shape param-
eters a, b that best fit the data.

We separately fit logistic functions fcore(δ) and fnon(δ), with their own
parameter values a, b, `, u, to data from the core and non-core classes, re-
spectively. For function fcore, shape parameter a is positive (so coreness is
decreasing in the distance δ to a core class); for fnon, parameter a is nega-
tive (so coreness is increasing in the distance δ from a non-core class). As

D
RA
FT

122 9 Predicting Core Columns

Figure 9.1 in Section 9.4.1.2 later shows, these logistic transform functions
fit actual coreness data remarkably well.

9.2.4 Learning the distance function by linear
programming

We now describe the linear program used to learn the distance function on
column windows. The linear program learns a different, class-specific, distance
function dc for each window class c ∈ C. These distance functions dc are made
commensurate between classes by a final rescaling step after solving the linear
program.

Again we divide the window classes C into two categories: the structured
classes, containing windows centered on core columns, or centered on non-
core columns that are flanked on at least one side by core columns; and the
unstructured class, containing windows of only non-core columns. We again
denote this unstructured class of completely non-core windows by ⊥ ∈ C.

In principle, the linear program tries to find distance functions dc that
would make the following “conceptual” nearest neighbor classifier accurate.
(Note we are not actually learning such a classifier.) This conceptual classifier
forms a window W centered on the column to be classified, and first finds
the nearest neighbor to W over all structured classes C−{⊥} in the training
set using their corresponding distance functions dc. If the distance to this
nearest neighbor is at most a threshold τ , the central column of window W is
declared “core” or “non-core” depending on whether this nearest structured
class c is core or non-core. Otherwise, the nearest neighbor distance exceeds
threshold τ , the window is deemed to be in the unstructured non-core class ⊥,
and its central column is declared “non-core.” The key aspect of this concep-
tual nearest neighbor classifier is that it can recognize a completely non-core
window W from class ⊥, without actually having any examples in its train-
ing set that are close to W . This is critical for our coreness estimation task,
as the set of possible windows from the unstructured class ⊥ is enormous
and probably lacks any recognizable structure, which makes identifying them
through having a near neighbor in the training set essentially hopeless. On
the other hand, identifying windows from the structured classes is possible
by having sufficiently many examples in the training set. The following linear
program learns both distance functions dc and such distance thresholds τc.

To construct the linear program, we partition the training set T of labeled
windows by window class: subset Tc ⊆ T contains all training windows of
class c ∈ C. We then form a smaller training sample Sc ⊆ Tc for each class c
by choosing a random subset of Tc with a specified cardinality |Sc|.

The constraints of the linear program fall in several categories. For a sam-
ple training window W ∈ Sc, we identify other windows V ∈ Tc from the
same class c in the full training set that are close to W (under a default

D
RA
FT

9.2 Learning a coreness estimator 123

distance d̃c). We call these close windows V from the same class c, targets.
Similarly for W ∈ Sc, we identify other windows U ∈ Tb from a different
class b 6= c in the full training set that are also close to W (under d̃b). We
call these other close windows U from a different class b, impostors. (This
parallels the terminology of (author?) [105].) More formally, the neighbor-
hood Nc(W, i) for a structured class c ∈ C −{⊥} denotes the set of i-nearest-
neighbors toW (not includingW) from training set Tc under the class-specific

default distance function d̃c. (The default distance function that we use in
our experiments is described in Section 9.4.1.1.) The constraints of the lin-
ear program find distance functions that for a sample window W ∈ Sc, pull
in targets V ∈ Nc(W, i) by making dc(V,W) small, and push away impos-
tors U ∈ Nb(W, i) for b 6= c by making db(U,W) large.

The neighborhoods N (W, i) that give the sets of targets and impostors
for the linear programming formulation are defined with respect to default
distance functions d̃, as mentioned above. These neighborhoods really should
be defined with respect to the learned distance functions dc, but obviously
they are not available until after the linear program is solved. We address
this discrepancy by iteratively solving a series of linear programs. The first
linear program at iteration 1 defines neighborhoods with respect to distance
functions d(0) = d̃, and its solution yields the new functions d(1). In general,
iteration i uses the previous iteration’s functions d(i−1) to formulate a linear
program whose solution yields the new distance functions d(i). This process is
repeated for a fixed number of iterations, or until the change in the distance
functions is sufficiently small.

The target constraints for each sample window W ∈ Sc from each struc-
tured class c ∈ C − {⊥}, and each target window V ∈ Nc(W,k), are,

eVW ≥ dc(V,W) − τc , (9.1)

eVW ≥ 0 , (9.2)

where eVW is a target error variable and τc is a threshold variable. In the
above, quantity dc(V,W) is a linear expression in the substitution score vari-
ables σc,i(p, q), so constraint (9.1) is a linear inequality in all these variables.
Intuitively, we would like condition dc(V,W) ≤ τc to hold (so W will be
considered to be in its correct class c); in the solution to the linear program,
variable eVW will equal max

{
dc(V,W)−τc, 0

}
, the amount of error by which

this ideal condition is violated.
In the target neighborhoodNc(W,k) above, parameter k specifies the num-

ber of targets for each sample window W . In our experiments we use a small
number of targets, with k = 2 or 3.

The impostor constraints for each sample window W ∈ Sc from each struc-
tured class c ∈ C − {⊥}, and each impostor window V ∈ Nb(W, `) from each
structured class b ∈ C − {⊥} with b 6= c, are,

D
RA
FT

124 9 Predicting Core Columns

fW ≥ τb − db(V,W) + 1 , (9.3)

fW ≥ 0 , (9.4)

where fW is an impostor error variable. Intuitively, we would like condi-
tion db(V,W) > τb to hold (so W will not be considered to be in the incor-
rect class b), which we can express by db(V,W) ≥ τb + 1 using a margin of 1.
(Since the scale of the distance functions is arbitrary, we can always pick
a unit margin without loss of generality.) In the solution to the linear pro-
gram, variable fW will equal maxb∈C−{⊥}, V ∈Nb(W,`)

{
τb − db(V,W) + 1, 0

}
,

the largest amount of error by which this condition is violated for W across
all b and V .

We also have impostor constraints for each completely non-core win-
dow W ∈ T⊥, and each core window V ∈ Nb(W, `) from each structured
core class b (as we do not want W to be considered core), which are of the
same form as inequalities (9.3) and (9.4) above.

In the impostor neighborhood Nb(W, `) above, parameter ` specifies the
number of impostors for each sample window W . We use a large number
of impostors ` ≈ 100 in our experiments. Having a single impostor error
variable fW per sample window W (versus a target error variable eVW for
every W and target V) allows us to use a very large ` while still keeping the
number of variables in the linear program tractable.

The triangle inequality constraints, for each structured class c ∈ C − {⊥},
each window position −w ≤ i ≤ w, and all states p, q, r ∈ Q (including the
gap state ξ), are,

σc,i(p, r) ≤ σc,i(p, q) + σc,i(q, r) . (9.5)

These reduce to simpler inequalities when states p, q, r are not all distinct or
coincide with the gap state (which we do not enumerate here to save space).

The remaining constraints, for all classes c ∈ C, positions −w ≤ i ≤ w,
states p, q ∈ Q, and gap state ξ, are,

σc,i(p, q) = σc,i(q, p) , (9.6)

σc,i(p, p) ≤ σc,i(p, q) , (9.7)

σc,i(p, q) ≥ 0 , (9.8)

σc,i(ξ, ξ) = 0 , (9.9)

τc ≥ 0 , (9.10)

which ensure the distance functions are symmetric and non-negative. (We do
not enforce the other metric conditions dc(W,W) = 0 and dc(V,W) > 0 for
V 6= W , as these are not needed for our coreness estimation task, and we
prefer having a less constrained distance dc that might better minimize the
following error objective.)

Finally, the objective function minimizes the average error over all training
sample windows. Formally, we minimize,

D
RA
FT

9.2 Learning a coreness estimator 125

α
1

|C|−1

∑
c∈C−{⊥}

1

|Sc|
∑

W ∈Sc

1

k

∑
V ∈Nc(W,k)

eVW +

(1−α)
1

|C|
∑
c∈C

1

|Sc|
∑

W ∈Sc

fW ,

where 0 ≤ α ≤ 1 is a blend parameter controlling the weight on target error
versus impostor error. We note that in an optimal solution to this linear pro-
gram, variables eVW = max

{
dc(V,W)− τc, 0

}
and fW = maxV,b

{
τb − db(V,W) + 1, 0

}
,

since inequalities (9.1)–(9.4) ensure the error variables are at least these val-
ues, while minimizing the above objective function ensures they will not
exceed them. Thus solving the linear program finds distance functions dc,
given by substitution scores σc,i(p, q), that minimize the average over the
training windows W ∈ Sc of the amount of violation of our ideal conditions
dc(V,W) ≤ τc for targets V ∈ Tc and db(V,W) > τb for impostors V ∈ Tb.

To summarize, the variables of the linear program are the substitution
scores σc,i(p, q), the error variables eVW and fW , and the threshold vari-
ables τc. For n total training sample windows, k impostors per sample win-
dow, m window classes of width w, and amino acid alphabet size s, this
is Θ(kn + s2wm) total variables. The main constraints are the target con-
straints, impostor constraints, and triangle inequality constraints. For ` im-
postors per sample window, this is Θ

(
(k+`m)n+ s3wm

)
total constraints.

We ensure that solving the linear program is tractable by controlling the
number ` of impostors and the total size n of the training sample.

After solving the linear program, we rescale the distance functions so their
corresponding distance thresholds all match the common value τ := maxc∈C τc.
Specifically, we scale up distance function dc by multiplying its substitution
scores σc,i(p, q) (and distance threshold) by factor τ/τc. (Scaling up main-
tains that each class has a margin of at least 1.) This makes the distance
functions dc commensurate across classes. A conceptual 1-nearest-neighbor
classifier for window W (which we do not employ) could then just find the
nearest neighbor of W across all structured classes using their class-specific
distance functions, say it is window V from class c, and classify W as a mem-
ber of structured class c if dc(V,W) ≤ τ , and as a member of the unstructured
non-core class ⊥ otherwise. In actuality, rather than classifying W , we map
its 1-nearest-neighbor distance dc(V,W) to a coreness value, as described in
Section 9.2.3.2.

9.2.4.1 Ensuring the triangle inequality

We now show that the resulting distance functions satisfy the triangle in-
equality, which allows us to use fast data structures for metric-space nearest-
neighbor search when evaluating the coreness estimator (as discussed in Sec-
tion 9.2.3.1).

D
RA
FT

126 9 Predicting Core Columns

Theorem 9.1 (Triangle inequality on window distance). The class dis-
tance functions dc obtained by solving the linear program satisfy the triangle
inequality.

Proof. For every class c, and all windows U , V , and W ,

dc(U,W) =
∑
i

∑
p,r

Ui(p) Wi(r) σc,i(p,r)

=
∑
i

∑
p,q,r

Ui(p) Vi(q) Wi(r) σc,i(p,r) (9.11)

≤
∑
i

∑
p,q,r

Ui(p) Vi(q) Wi(r) ·
(
σc,i(p,q) + σc,i(q,r)

)
(9.12)

=
∑
i

∑
p,q

Ui(p) Vi(q) σc,i(p,q) +

∑
i

∑
q,r

Vi(q) Wi(r) σc,i(q,r) (9.13)

=
∑
i

dc,i(Ui, Vi) +
∑
i

dc,i(Vi,Wi)

= dc(U,V) + dc(V,W) ,

where equation (9.11) follows from
∑
q Vi(q) = 1; inequality (9.12) follows

from constraint (9.5) in the linear program; and equation (9.13) follows from∑
rWi(r) =

∑
p Ui(p) = 1.

9.3 Using coreness to improve accuracy estimation

The Facet estimator (see Chapter 3) of alignment accuracy is a linear com-
bination of efficiently-computable feature functions that are positively corre-
lated with the true accuracy of an alignment. In general, the true accuracy
of a computed alignment is evaluated just with respect to the columns of
the reference alignment that are labeled as core; non-core columns do not
contribute to true accuracy. Consequently, the ability to predict whether a
column in a computed alignment corresponds to a core column in the un-
known reference, or even better, to predict the coreness value of the column,
should afford improved feature functions. We use the predicted coreness of
computed alignment columns to improve the Facet estimator by: (1) cre-
ating a new feature function that attempts to directly estimate alignment
accuracy by essentially counting the number of columns in the computed
alignment that are predicted to be core and dividing by the estimated num-
ber of core columns in the reference, and (2) modifying the original feature
functions so their evaluation is concentrated on columns with high predicted
coreness. We first describe how we construct this new feature, and then briefly

D
RA
FT

9.3 Using coreness to improve accuracy estimation 127

review the original features used in Facet and how we augment them with
predicted coreness.

9.3.1 Creating a new coreness feature

The alignment accuracy measure known in the literature as “total column
score” (or TC-score) is defined as the number of core columns in the refer-
ence alignment that are perfectly aligned in the computed alignment, divided
by the number of core columns in the reference. Our new feature function,
which we call Predicted Alignment Coreness, is designed to estimate the total
column score of a computed alignment (which cannot be exactly determined
as the correct reference alignment is unknown). Denote our coreness esti-
mator from Section 9.2.3 for alignment column C by χ(C), which predicts
coreness by evaluating our coreness regression function on a window centered
on C. For a computed multiple sequence alignment A of a set of sequences S,
and a given coreness threshold κ, the Predicted Alignment Coreness feature
function is,

FAC(A) :=

∣∣∣{C ∈ A : χ(C) ≥ κ
}∣∣∣

L(S)
, (9.14)

where the numerator counts the number of columns of A whose predicted
coreness is above threshold κ (in which case the column is effectively pre-
dicted as being core), and the normalization function L in the denominator
is an estimate of the number of core columns in the unknown reference align-
ment of the sequences S. The estimator L is a polynomial in several easily-
computed quantities of sequences S, whose coefficients are found by fitting L
on benchmark sets of sequences for which a reference alignment (and the true
number of core columns) is known.

We next describe how we determine estimator L.

9.3.1.1 Estimating the number of core columns

Function L(S) that estimates the number of core columns in the reference
alignment should tend to be increasing in the length of the sequences, and
decreasing in their dissimilarity. The form of the estimator that we consider
is a polynomial whose terms are generally the product of a measure of se-
quence length and a fractional quantity related to the percent identity of the
sequences. We consider a variety of such measures, which gives a polynomial
with many terms, and then solve a linear programming problem to find their
coefficients by minimizing the L1-norm to true core column counts on exam-
ple benchmarks, which effectively selects the appropriate terms (since many
coefficients turn out to be zero).

D
RA
FT

128 9 Predicting Core Columns

The length measures on sequence set S that we consider are the maximum,
minimum, and average length of the sequences in set S. We call L the set
of these three length measures `max, `min, and `avg. The similarity measures
on S that we consider are forms of percent identity, evaluated by summing
over all pairs of sequences in S the maximum number of identities between
each pair of sequences (computed by dynamic programming using the iden-
tity substitution matrix with no gap penalties), and normalizing by summing
over all pairs of sequences the minimum, maximum, or average lengths of the
sequences, giving percent identity measures pmin, pmax, and pavg. We call P
the set of these three percent identity measures. As a gap dissimilarity mea-
sure we also consider the difference in length between the longest and shortest
sequences in S normalized by any of the length measures, giving the ratio
measures rmax, rmin, and ravg, as well as the length ratios rmm :=`min/`max,
ram :=`avg/`max, rma :=`min/`avg. Call R the set of these ratio measures.

The general form of estimator L is then,

L(S) :=
∑

`∈L, p∈P

c`p `(S) p(S) +
∑

`∈L, r∈R

c`r `(S) r(S) +

∑
`∈L, p∈P, r∈R

c`pr `(S) p(S) r(S) .

We fit coefficients c`p, c`r, c`pr by solving a linear program that minimizes the
sum of the absolute values of the differences between the true number of core
columns and the estimated number over all reference alignments in our suite
of benchmarks.

The fitted function L that we use for evaluating the Predicted Alignment
Coreness feature FAC is given in Section 9.4.1.3.

9.3.2 Augmenting former features by coreness

Since the true accuracy of a computed alignment is measured just with re-
spect to the core columns of a reference alignment, and non-core columns are
ignored, concentrating an accuracy estimator on columns with higher core-
ness should improve the estimator. Accordingly, we modify the alignment
feature functions used by the Facet estimator (see Chapter 3) to focus their
evaluation on columns of higher predicted coreness. Below we discuss only
those features that can incorporate coreness; a full description of all feature
functions in Facet is in Chapter 3.

Secondary Structure Blockiness takes secondary structure predictions from
PSIPRED [51] and finds a packing of secondary structure blocks of maximum
total score, where a block is an interval of columns and a subset of the se-
quences such that all residues in the block have the same secondary structure
prediction, a packing is a set of blocks whose column intervals are disjoint,

D
RA
FT

9.4 Assessing the coreness prediction 129

and the score of a block is the total number of pairs of residues within the
columns in the block. We modify the score of a block by weighting the number
of pairs per column by the column’s predicted coreness. Secondary Structure
Identity is the fraction of substitutions in the computed alignment that share
the same predicted secondary structure, which we modify by weighting the
count of substitutions with shared structure by their column’s predicted core-
ness. Amino Acid Identity uses predicted coreness to weight the fraction of
substitutions in a column that are in the same amino acid equivalence class.
We modify Average Substitution Score by averaging the BLOSUM62 score [49]
of all substitutions, weighted by their column’s predicted coreness.

9.4 Assessing the coreness prediction

We evaluate the performance of our new approach to core column predic-
tion, and its use in accuracy estimation for alignment parameter advising,
through experiments on a collection of protein multiple sequence alignment
benchmarks. A full description of the benchmarks, and the universe U of
parameter choices used for parameter advising, can be found in Chapter 3,
and is briefly described here.

The benchmarks used in our experiments consist of reference alignments
of protein sequences that are largely induced by structurally aligning their
known three-dimensional structures. In particular, we use the BENCH suite
of (author?) [40], supplemented by a selection from the PALI suite of (au-
thor?) [9]. The full benchmark collection we use consists of 861 reference
alignments.

As is common in benchmark suites, easy-to-align benchmarks are highly
over-represented in this collection. To correct for this bias towards easy bench-
marks when evaluating average advising accuracy, we binned the 861 bench-
marks by hardness, which we measured by the true accuracy of the alignment
of the benchmark’s sequences computed using the multiple alignment tool
Opal under its optimal default parameter setting. We then divided the full
range [0, 1] of accuracies into 10 bins, where bin b for b = 1, . . . , 10 contains
hardness interval

(
(b−1)/10, b/10

]
, and has 12, 12, 20, 34, 26, 50, 62, 74, 137,

and 434 benchmarks, respectively.
We use 12-fold cross-validation to assess the improvement in advising per-

formance gained by learning the coreness estimator and our improved accu-
racy estimator. We construct training and testing subsets of the alignment
benchmarks by evenly and randomly distributing benchmarks into 12 groups
for each hardness bin; forming 12 splits of the entire collection of benchmarks
into a training class and a testing class, where each split places one group in a
bin into the training class and the other 11 groups in the bin into the training
class; and for each split, generating a training set and testing set of example
alignments by, for each benchmark B in a training or testing class, generating

D
RA
FT

130 9 Predicting Core Columns

|U | example alignments in the respective training or testing set by running
Opal on B with each parameter choice in universe U . An estimator learned
on the examples from a training set was evaluated on examples from the
corresponding testing set. The results we report are averages over 12 folds,
where each fold is one of these pairs of associated training and testing sets.
(Note that across the 12 folds, every example is tested on exactly once.)

9.4.1 Constructing the coreness regressor

We next present results on constructing the coreness regressor, specifically, on
learning its distance function, mapping distances to coreness, and estimating
the number of core columns.

9.4.1.1 Learning the distance function

The set of column windows for each class were constructed using the reference
alignments of the benchmarks in the training set for each cross-validation
fold. A subsampling of 4000 examples of each class was put into the set of
training examples, and 4000 examples (or the remaining examples of that
class, whichever is smaller) are put into the database for each class searched
for nearest neighbors. We use a subset of 2000 of the 24,000 collected training
examples for learning distances, to reduce the training time. A similar set of
2000 windows was collected from the alignments of testing benchmarks, to
test the generalization of the distance functions when used for core column
prediction.

We use a default distance between the training windows and each example
window in the database for each class to get the initial sets of targets and
impostors. The default distance on a pair of states is a linear combination of
the VTML200 amino acid substitution score (shifted and scaled to a dissim-
ilarity value in the range [0, 1]) and the identity of the secondary structure
prediction. For each column i with −1 ≤ i ≤ 1 in a window of three columns,
we set the column weight wi to w0 = 1

2 , w{−1,+1} = 1
4 for all columns in a

class c that are core, and wi = 0 for non-core columns. The distance between
states p = (a, s) and q = (b, t) in the ith column of class c is,

σc,i(p, q) = wi

(
αVTML200(a, b) + (1−α) [s 6= t]

)
,

where α = 1
2 , and expression [s 6= t] evaluates to 1 if s 6= t and 0 otherwise.

We then learn a distance function using these initial sets of targets and
impostors. We use 2 targets and 150 impostors per training window per class.
Once a distance function is learned, we can use it to recompute the sets of
targets and impostors for learning a new distance function, and iterate this

D
RA
FT

9.4 Assessing the coreness prediction 131

learning process. The table below shows the area under the receiver operating
characteristic curve (AUC) for the first 10 iterations of distance learning, on
both the training and testing examples. There is a steady increase in AUC on
training examples for the first four iterations, with only a slight improvement
in testing AUC; after the fifth iteration, no further improvement is seen.

Iteration 1 2 3 4 5 6 7 8 9 10
training AUC 86.3 93.9 98.9 99.3 99.3 99.4 99.3 99.3 99.3 99.4
testing AUC 83.8 82.5 84.9 84.8 85 84.8 84.6 84.6 84.6 84.3

We also performed this same training procedure using random examples from
the correct and incorrect class databases for the targets and imposters. Using
random targets and impostors, the training and testing AUC values were
respectively 85.8 and 88.7 after a single iteration. While distance learning is
effective, it is overfitting to the training data, most likely due to the small
number of training examples used. Increasing the set of training examples
led to prohibitively long running times for solving the linear program to find
the optimal distance. Consequently, we use the distance functions learned on
random points in our experiments that apply predicted coreness to improve
the Facet estimator, as they generalize better.

9.4.1.2 Mapping distance to coreness

Figure 9.1 shows on its vertical axis the average true coreness of examples, su-
perimposed with the fitted logistic transform function for predicted coreness,
and on its horizontal axis the corresponding 1-nearest-neighbor distance, for
one training fold of examples. The blue and red lines show the average core-
ness of the examples in the training set for which the nearest neighbor is in a
core class and a structured non-core class, respectively. The top and bottom
green curves show the two logistic transform functions for the core and non-
core classes, respectively, fitted to this training data (which are used when
predicting column coreness on testing data). Clearly the green logistic curves
fit the data quite well. Note the steep transition from high to low coreness
when the nearest neighbor is from a core class.

9.4.1.3 Estimating the number of core columns

For function L(S) that estimates the number of core columns in the un-
known reference alignment, the linear programming approach described in
Section 9.3.1.1 to find optimal coefficients gave the fitted estimator,

(1.020) `min pmax rmm + (0.151) `min rmm +
(0.035) `avg pmax ram + (0.032) `avg pmin rmin +
(0.003) `max pavg ravg .

D
RA
FT

132 9 Predicting Core Columns

Figure 9.2 shows the correlation between the estimated number of core
columns and the true number of core columns for each benchmark. The fit-
ted estimator correlates well with the true number of core columns, but tends
to overestimate, possibly due to larger benchmarks having columns that are
very close to being core.

1-Nearest Neighbor Distance x105
1 1.5 2 2.5 3

A
ve

ra
ge

 T
ru

e
C

or
en

es
s

0

0.2

0.4

0.6

0.8

1
 Core Examples
 Non-core Examples
 Fitted Transform

Fig. 9.1 Fit of the logistic transform functions for the coreness regressor to the
average true coreness of training examples at each nearest neighbor distance.

True Number of Core Columns
0 100 200 300 400 500 600Es
tim

at
ed

 N
um

be
r o

f C
or

e
C

ol
um

ns

0

100

200

300

400

500

600

Fig. 9.2 Correlation of the estimated number and true number of core columns.

D
RA
FT

9.4 Assessing the coreness prediction 133

9.4.2 Improving parameter advising

The task of parameter advising is to select a choice of values for the pa-
rameters of the alignment scoring function for a multiple sequence alignment
tool, based on the set of input sequences to align. A parameter advisor has
two ingredients: (1) an accuracy estimator, which estimates the accuracy of a
computed alignment (for which the reference is unavailable); and (2) an ad-
visor set, which is the set of assignments of values to the aligner’s parameters
that are considered by the advisor. The advisor picks the choice of values from
the advisor set for which the aligner produces a computed alignment of the
input sequences of highest estimated accuracy. In our experiments, we assess
the performance of parameter advising using the Facet accuracy estimator
modified by predicted coreness. For comparison, we also assess the advising
accuracy of the TCS estimator, an unmodified version of Facet, and three
versions of Facet modified using the column quality scores of TCS, ZORRO,
and true coreness. We modify using true coreness to show a theoretical upper
bound on the improvement possible if we could predict coreness perfectly.

We focus in this study on parameter advising for the multiple sequence
alignment tool Opal [106, 107]. While parameter advising increases the ac-
curacy of many of the popular alignment tools (see Chapter 7), Opal is an
ideal test bed for parameter advising, as in contrast to other aligners, it com-
putes subalignments that are optimal with respect to the parameter choice
for the sum-of-pairs scoring function at each node of the guide tree during
progressive alignment.

The choice of advisor set is crucial for parameter advising. Clearly the
performance of an advisor is limited by the quality of the parameter settings
from which the advisor can pick. We consider two kinds of advisor sets (see
Chapter 5): accuracy-estimator-independent oracle sets, which contain an
optimal set of choices that maximize the performance of a perfect advisor
that uses true accuracy for its accuracy estimator; and accuracy-estimator-
dependent greedy sets, which tend to yield better performance in practice
than oracle sets, but are tuned for a specific accuracy estimator. Finding
such advisor sets requires specifying a finite universe of parameter choices
from which to draw the set. Starting from roughly 16,900 parameter choices
for Opal, we form a reduced universe by selecting the 25 most accurate
parameter choices from each benchmark difficulty bin. This gave a universe
of 243 parameter choices from which to construct oracle and greedy advisor
sets.

When evaluating average advising accuracy on benchmarks, we correct for
the over-representation of easy-to-align benchmarks by weighting benchmarks
according to the same hardness bins described earlier. The weight of a bench-
mark falling in bin b is (1/10)(1/nb), where nb is the number of benchmarks
in bin b. These weights are such that each hardness bin contributes equally to
the advising accuracy, which effectively uniformly averages advising accuracy
across the full range of hardnesses.

D
RA
FT

134 9 Predicting Core Columns

Note that under this equal weighting of hardness bins, an advisor that uses
only the single optimal default parameter choice will have an average advising
accuracy of roughly 50% (illustrated later in Figure 9.3). This establishes as a
point of reference an average advising accuracy of 50% as the baseline against
which to compare advising performance.

Note that if we instead measured advising accuracy by uniformly averag-
ing over benchmarks, then the predominance of easy benchmarks (for which
little improvement is possible over the default parameter choice) makes both
good and bad advisors tend to an average accuracy of nearly 100%. By uni-
formly averaging over bins, we can discriminate among advisors, though a
typical value for average advising accuracy is now pulled down from 100%
toward 50%.

9.4.2.1 Modifying the Facet accuracy estimator

We explore using our new coreness estimator, as well as TCS and ZORRO, to
modify the existing features of Facet according to the procedure described
in Section 9.3.2, and we also include the new Predicted Alignment Coreness
feature described in Section 9.3.1. For the existing feature functions that can
be modified by coreness, we consider using both the original and modified fea-
ture. We also explore using true coreness (as opposed to predicted coreness),
which provides a theoretical limit on what is possible with a perfect coreness
estimator. We learned coefficients for the feature functions of all these vari-
ants of Facet separately, using the difference-fitting technique described in
Chapter 2.

The new alignment accuracy estimator that uses our coreness estimator
has non-zero coefficients for seven features: our new feature, Predicted Align-
ment Coreness FAC; two features that have been modified with predicted
coreness, namely, Amino Acid Identity F ′AI and Secondary Structure Iden-
tity F ′SI; and the four original features Gap Open Density FGO, Secondary
Structure Agreement FSA, Amino Acid Identity FAI, and Secondary Structure
Blockiness FBL. The fitted accuracy estimator that uses predicted coreness is,

(0.512)FGO + (0.304)F ′SI + (0.157)FSA + (0.109)FAI +
(0.096)FBL + (0.025)F ′AI + (0.013)FAC .

These feature functions have different ranges, so the magnitudes of the coef-
ficients do not necessarily correspond to the importance of the features.

9.4.2.2 Improvement on oracle advisor sets

Figure 9.3 compares these various accuracy estimators in the context of pa-
rameter advising using estimator-independent oracle advisor sets (see Chap-

D
RA
FT

9.4 Assessing the coreness prediction 135

ter 5). The horizontal axis is the cardinality of the advisor set, i.e. the number
of parameter choices available to the advisor, while the vertical axis is av-
erage advising accuracy using various accuracy estimators. We compare the
advising accuracy using different versions of Facet, as well as using the TCS
accuracy estimator, on the same oracle sets, to isolate the effect each modifi-
cation to the accuracy estimator has on advising performance. Using our new
coreness predictor to modify the features of Facet increases the accuracy
of parameter advising by as much as much as 3%, compared to the original
unmodified version. This increase is in addition to the improvement of un-
modified Facet over TCS, the next-best accuracy estimator in the literature.

50%

51%

52%

53%

54%

55%

56%

57%

58%

59%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Parameter Set Cardinality

Facet/true Facet/TCS
Facet/predicted Facet/Zorro
Facet/none TCS

Oracle	Sets	

Fig. 9.3 Advising accuracy using oracle sets with the modified Facet or TCS esti-
mators.

50%

51%

52%

53%

54%

55%

56%

57%

58%

59%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
is

ng
 A

cc
ur

ac
y

Parameter Set Cardinality

Facet/true Facet/Zorro
Facet/predicted Facet/TCS
Facet/none TCS

Greedy	Sets	

Fig. 9.4 Advising accuracy using greedy sets with the modified Facet or TCS esti-
mators.

D
RA
FT

136 9 Predicting Core Columns

9.4.2.3 Improvement on greedy advisor sets

The results from the preceding section show the effect of using different ac-
curacy estimators on the same advisor sets of parameter choices. Here we
show the effect of using different accuracy estimators on greedy advisor sets
(see Chapter 5), which are near-optimal accuracy-estimator-dependent advi-
sor sets that are designed to boost the advising accuracy when using a given
accuracy estimator.

Figure 9.4 shows the advising accuracy using the Facet estimator mod-
ified by true coreness, predicted coreness, TCS, and ZORRO, using greedy
advisor sets found specifically for each of these accuracy estimators. (Here
each accuracy estimator is used with a different advisor set learned specif-
ically for it by a greedy algorithm.) Once again the horizontal axis is the
advisor set cardinality, and the vertical axis is advising accuracy averaged
over the testing benchmarks in all folds. Using the new coreness predictor
boosts the advising accuracy over using the original estimator by almost 2%
when using a greedy advisor set of cardinality 7. In contrast, using TCS and
ZORRO to modify features actually reduces the advising accuracy of greedy
sets.

Figure 9.5 shows the advising accuracy on both training and testing bench-
marks for the Facet estimator modified by predicted coreness using greedy
advisor sets. The drop between training and testing accuracy suggests that by
improving the generalization of greedy sets, further improvement in advising
accuracy should be possible.

50%

51%

52%

53%

54%

55%

56%

57%

58%

59%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Parameter Set Cardinality

Training
Testing

Fig. 9.5 Training and testing advising accuracy using Facet with predicted core-
ness.

D
RA
FT

9.4 Assessing the coreness prediction 137

Summary

We have developed a column coreness estimator for protein multiple sequence
alignments that uses a regression function on nearest neighbor distances for
class distance functions learned by solving a new linear programming formu-
lation. When applied to alignment accuracy estimation and parameter advis-
ing, the coreness estimator strongly outperforms others from the literature,
and gives a significant boost in accuracy for advising.

D
RA
FT

D
RA
FT

Chapter 10

Conclusions

In this book, we have addressed one of the major problems in protein multiple
sequence alignment: how to choose a setting for the multitude of parameters
in aligners. Multiple sequence alignment is an essential step in many biological
analyses, and changing a parameter setting even slightly, can greatly affect
the quality of the resulting alignment. Researchers typically use the default
parameter settings that come with an aligner, which may be goof on average,
but can nevertheless produce low quality alignments for particular inputs.

In Chapter 1, we introduced our approach called parameter advising,
which will find a parameter setting that yields a high quality alignment for a
given input. A parameter advisor aligns the input sequences for each of a set of
several parameter choices (where a parameter choice assigns a value to each
of the aligner’s tunable parameters), then selects the alignment of highest
estimated accuracy from the resulting collection of alignments. A parameter
advisor has two major components: (i) an advisor set of parameter choices
considered by the advisor, and (ii) the advisor estimator that is used to rank
the alignments produced by the aligner for these parameter choices.

In Chapters 2 and 3, we presented a new accuracy estimator called
Facet (short for “feature-based accuracy estimator”), that computes an
accuracy estimate as a linear combination of efficiently-computable feature
functions. Multiple sequence alignment accuracy is measured as the fraction
of aligned residue pairs in a known reference alignment that are recovered
in the computed alignment. Without such a reference, alignment we are left
to estimate accuracy. Chapter 2 described out framework for accuracy es-
timation and several techniques for finding coefficients that work well for
parameter advising. Chapter 3 gave details on the feature functions used in
Facet, which include novel features of an alignment that measure non-local
properties.

Chapter 4 formally defined three problems: (1) Optimal Advisor, the
problem of finding both the optimal coefficients for an estimator, and the
optimal set of parameters choices for an advisor; (2) Advisor Set, a restric-
tion of the Optimal Advisor problem where the objective is to find the set of

139

D
RA
FT

140 10 Conclusions

parameter choices for a fixed estimator that has the highest average advising
accuracy; and (3) Advisor Estimator, a restriction of the Optimal Advisor
problem where the objective is to find the best estimator for a fixed advisor
set. We show that all three problems are NP-complete.

Chapter 5 presented two approaches to the Advisor Set problem, in light of
the fact that it is NP-complete. The first formulates the problem as an inte-
ger linear program. Unfortunately, finding its optimal solution is not practical
even for small input sizes. The second is a greedy `

k -approximation algo-
rithm, for any constant ` < k. This greedy algorithm finds a near-optimal
solution of cardinality k, given an optimal solution of size ` (which can be
found in polynomial-time for constant `).

We used the Facet accuracy estimator to perform parameter advising
for the Opal [106, 107] multiple sequence aligner. Chapter 6 demonstrated
parameter advising can greatly increases the accuracy of multiple sequence
alignment for almost all inputs. This increase is most pronounced on the
hardest benchmarks, where using an advising set of cardinality k = 10 boosts
the accuracy by about 15%.

Chapter 7 presented the first true ensemble aligner. Just as different
parameter settings for a given input can produce very different alignments of
the same sequences, the same is true for different aligners. These differences
were exploited by extending parameter advising to aligner advising.

Since protein sequences do not necessarily have a homogeneous mutation
rate across their length, the most accurate alignment for a set of input se-
quences may use different parameter settings in different regions of the align-
ment. Chapter 8 developed adaptive local realignment, which identifies
regions that may be misaligned under a single parameter choice and attempts
to replace these regions with a more accurate alignment via parameter ad-
vising.

Chapter 9 presented a new approach to to predicting so-called core
columns of a tertiary structure based benchmark within a computed align-
ment. Since core columns are the only locations where alignment accuracy is
measured, ideally we would like to identify these locations when estimating
accuracy so we can concentrate our estimator just on these positions. We use
an approach similar to nearest-neighbor classification to construct a regres-
sion function that maps the amino-acid and predicted secondary-structure
information in a window of columns into an estimate of how much of those
windows come from core columns of the unknown reference alignment.

In addition to the developing the theory behind parameter advising, we
have also produced software implementing of our Facet estimator for use by
researchers. Facet is released as a stand-alone tool for parameter advising,
as well as the necessary software to use a system for ensemble alignment.
We have also released a new version of the Opal aligner that incorporates
both parameter advising and adaptive local realignment. This enables any
researcher who utilizes protein multiple sequence alignment to automatically

D
RA
FT

10.1 Further research 141

increase the accuracy of their computed alignments without having to man-
ually search for parameters that work well on their datasets.

10.1 Further research

This book has developed a new methodology for parameter advising that can
be applied outside multiple sequence alignment to any problem domain that
has: (i) a tool, or set of tools, with multiple parameters whose values affect
the accuracy of their resulting output, (ii) a collection of known ground truth
results against which to measure the accuracy of the output of these tools,
and (iii) some domain knowledge to discover feature functions that can be
combined into an accuracy estimator.

One way to expand this work to new applications is to extend Facet to use
on biological data beyond proteins. Extending the estimator to handle DNA
and RNA sequences would allow advising to be used by a broader audience of
researchers who employ multiple sequence alignment. Additionally this would
allow parameter advising to be applied to new domains within bioinformatics
such as sequence assembly and whole-genome alignment. Extending Facet
to DNA and RNA alignments requires the creation of several feature func-
tions that go beyond capturing only basic sequence information. As we have
shown for proteins, the features that have the strongest correlation with true
alignment accuracy are those that exploit the additional information gained
from examining the predicted secondary-structure.

To create RNA feature functions we could also use predicted secondary
structure, but this would only apply to the class of non-coding RNAs
(ncRNA, those that form tertiary structure without coding for proteins).
Just as with proteins, RNA secondary-structure can be predicted for a new
input sequence. While this has been used to modify alignment objective func-
tions [see 24, 25, 31], such approaches typically cannot handle pseudoknots
(crossing secondary-structure pairings) when constructing alignments by dy-
namic programming. Since the features in Facet can take a global view of
an RNA alignment, we could create feature functions that can account for
pseudoknots.

To create DNA feature functions for Facet, there is no longer secondary-
structure to exploit, but we might use some correlates that could guide us
in predicting high accuracy alignments. One such additinal labeling (which
is essentially what structure predictions provide) is to predict the categories
of sequence regions. Such labels might include identifying protein-coding re-
gions, translation start sites, potential ncRNAs, and so on. Another label-
ing that might help in estimating alignment accuracy could be predicting
chromatin placement predictions. (When DNA is stored in chromosomes, it
is wrapped around large proteins called chromatin, and only small regions
between chromatin are accessible.) Recent work has shown that chromatin

D
RA
FT

142 10 Conclusions

placement of these chromatin is used at certain times for translational reg-
ulation, so such locations might be conserved in high accuracy alignments.
Beyond creating new feature functions for DNA, a major challenge is the lack
of DNA multiple sequence alignment benchmarks. Without known ground-
truth alignments, we cannot learn advisor sets and estimator coefficients.
One recourse would be to generate simulated multiple sequence alignment
benchmarks. With simulation, we know the true evolutionary history of a se-
quence, so we can recover the ground-truth alignment. Simulation, however,
limits us to only learning simulated evolutionary parameter values and we
may not learn the true biological parameter values that would yield the most
biologically realistic alignments.

Once we have the Facet estimator for DNA, we can use it not only for
global advising of DNA multiple sequence alignments, but also for local ad-
vising of whole-genome alignments through adaptive local realignment. Each
section of a genome can evolve differently, and may even be rearranged or
transposed from another sequence. Applying adaptive local realignment to
whole-genome alignments could overcome the challenge posed by heterogene-
ity in genomic sequences.

De novo sequence assembly suffers from many of the same complications
as multiple sequence alignment: a multitude of tools that can be used to align
sequences, with each tool having many parameters that can affect the output
of the assembler, and no good way to rank assemblies obtained by different
methods. For sequence assembly, we again have to answer two questions:
(1) What features can we create to measure the accuracy of an assembly?
And (2) what is the ground-truth assembly? Standard measures of assembly
quality are the N50 score, which measures the length of the smallest contig
(a contiguous layout of sequence reads) that when placed in a sorted list of
contigs covers half the expected length of the genome; and the L50 measure,
which is the minimum number of contigs that cover half the genome. We could
again devise new feature functions that measure the consistency of sequence
labels (like those described earlier for DNA alignments). For the ground-truth
assembly one possibility would be to employ read mapping against a known
reference genome, and then remove the reference to leave a result resembling
de novo assembly Alternatively, one could simulate a set of reads and take
their known relation to the original underlying sequence as the ground-truth.

Another application of parameter advising within bioinformatics could be
to read mapping: that is, mapping fragments to a known reference genome.
The feature functions needed for read mapping might be different from those
for de novo assembly, since we know the reference genome. A common quality
measure is the fraction of reads successfully mapped, where reads can fail to
be mapped due to sequencing error or a poor choice of the mapping param-
eters. Just as with DNA alignment and de novo assembly, there may be a
problem with lack of benchmarks, but simulation might provide a ground-
truth benchmarks.

D
RA
FT

10.1 Further research 143

In extending parameter advising to new applications, there are a few issues
that still need to be be addressed. One is the generalization of our greedy
estimator-aware advisor sets. Chapter 6 showed that greedy sets tend to
not generalize well, and furthermore, exact sets generalize even worse. This
behavior is exacerbated in the context of ensemble alignment in Chapter 7,
where we compared default aligner advising to general aligner advising. Since
the general advising universe is a superset of the default advising universe,
as we increase the size of the universe, the advisor accuracy should increase
(assuming we have a good estimator). In our experiments this is true for
training data (see Figure 7.8), but it is not true when applied to testing data
(see Figure 7.9).

One possible method to overcome the generalization issue for learning
advisor sets could be to utilize inverse parametric alignment from [60]. Inverse
parametric alignment find the optimal single choice of aligner parameters that
give the highest average alignment accuracy for a set of examples. In the
methods presented in this book advisor set finding relies on a fixed universe
of advisor parameter choices. This universe is intended to cover the entire
range of possible values for all of the tunable parameters for an aligner. Many
of the tunable parameters are continuous so we are forced to discretize the
range of possible settings to generate a finite universe. As the granularity of
this discretization is increased so too are the changes for overfitting assuming
we keep the same set of benchmark alignments. Rather than relying on a
fixed universe we can use inverse parametric alignment in a greedy manner
to develop an advisor set. Start by using inverse parametric alignment to
generate single parameter choice, P1, that is optimal on average for all of
the available examples. Then remove any example that when aligned using
P1 already have high accuracy, essentially removing the high accuracy bin’s
examples in earlier chapters. With the remaining examples, which we know
have low accuracy when aligned using P1, we use inverse parametric alignment
again to find the optimal parameters, P2. We continue this procedure until
either we have a certain number of parameters or there are no longer any
low accuracy examples. We then construct an advisor set as the union of the
parameter choices we encountered

P = P1 ∪ P2 ∪ · · · ∪ Pk.

Using this method the learned advisor’s accuracy is no longer limited by the
predefined parameter universe.

We also have a similar issue with generalization in core-column predic-
tion. While considerable work was done in Chapter 9 to lean good distance
functions on training data for the nearest-neighbor search in out approach to
coreness prediction, the distance function learned in that chapter were limited
by the available computational resources for project. With more computing
time, we may be able to learn better distance functions that yield a more ac-
curate coreness predictor with the methods already developed. Additionally,

D
RA
FT

144 10 Conclusions

we might also apply other distance metric learning techniques from machine
learning, including kernel transformations on the input data to reduce its
dimensionality.

Clearly there are many prosing directions in which to take this new
methodology of parameter advising.

D
RA
FT

References 145

References

[1] Ahola, V., Aittokallio, T., Vihinen, M., Uusipaikka, E.: A statistical
score for assessing the quality of multiple sequence alignments. BMC
Bioinformatics 7(484), 1–19 (2006)

[2] Ahola, V., Aittokallio, T., Vihinen, M., Uusipaikka, E.: Model-based
prediction of sequence alignment quality. Bioinformatics 24(19), 2165–
2171 (2008)

[3] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic
local alignment search tool. Journal of Molecular Biology 215(3), 403–
410 (1990)

[4] Aniba, M.R., Poch, O., Marchler-Bauer, A., Thompson, J.D.:
AlexSys: a knowledge-based expert system for multiple sequence
alignment construction and analysis. Nucleic Acids Research 38(19),
6338–6349 (2010)

[5] Anson, E.L., Myers, E.W.: ReAligner: a program for refining DNA se-
quence multi-alignments. Journal of Computational Biology 4(3), 369–
83 (1997)

[6] Apweiler, R., Bairoch, A., Wu, C.H., Barker, W.C., Boeckmann, B.,
Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Mar-
tin, M.J., Natale, D.A., O’Donovan, C., Redaschi, N., Yeh, L.S.L.:
UniProt: the Universal Protein knowledgebase. Nucleic Acids Re-
search 32(Database), D115–D119 (2004)

[7] Armougom, F., Moretti, S., Keduas, V., Notredame, C.: The iRMSD:
a local measure of sequence alignment accuracy using structural infor-
mation. In: Bioinformatics, pp. E35–E39 (2006)

[8] Bahr, A., Thompson, J.D., Thierry, J.C., Poch, O.: BAliBASE (Bench-
mark Alignment dataBASE): enhancements for repeats, transmem-
brane sequences and circular permutations. Nucleic Acids Research
29(1), 323–326 (2001)

[9] Balaji, S., Sujatha, S., Kumar, S.S.C., Srinivasan, N.: PALI: a database
of Phylogeny and ALIgnment of homologous protein structures. Nucleic
Acids Research 29(1), 61–65 (2001)

[10] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weis-
sig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic
Acids Research 28(1), 35–242 (2000)

[11] Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neigh-
bor. Proceedings of the 23rd International Conference on Machine
Learning (ICML) pp. 97–104 (2006)

[12] Bradley, R.K., Roberts, A., Smoot, M., Juvekar, S., Do, J., Dewey, C.,
Holmes, I., Pachter, L.: Fast statistical alignment. PLoS Computational
Biology 5(5), 1–15 (2009)

[13] Bucka-Lassen, K., Caprani, O., Hein, J.: Combining many multiple
alignments in one improved alignment. Bioinformatics 15(2), 122–130
(1999)

D
RA
FT

146 10 Conclusions

[14] Camon, E., Magrane, M., Barrell, D., Lee, V., Dimmer, E., Maslen,
J., Binns, D., Harte, N., Lopez, R., Apweiler, R.: The Gene Ontology
Annotation (GOA) Database: sharing knowledge in Uniprot with Gene
Ontology. Nucleic Acids Research 32(90001), 262D–266 (2004)

[15] Capella-Gutierrez, S., Silla-Martinez, J.M., Gabaldón, T.: trimAl: a
tool for automated alignment trimming in large-scale phylogenetic anal-
yses. Bioinformatics 25(15), 1972–1973 (2009)

[16] Carrillo, H., Lipman, D.: The multiple sequence alignment problem
in biology. SIAM Journal on Applied Mathematics 48(5), 1073–1082
(1988)

[17] Castresana, J.: Selection of conserved blocks from multiple alignments
for their use in phylogenetic analysis. Molecular Biology and Evolution
17(4), 540–552 (2000)

[18] Chang, J.M., Tommaso, P.D., Notredame, C.: TCS: a new multiple
sequence alignment reliability measure to estimate alignment accuracy
and improve phylogenetic tree reconstruction. Molecular Biology and
Evolution 31(6), 1625–1637 (2014)

[19] Collingridge, P.W., Kelly, S.: MergeAlign: improving multiple se-
quence alignment performance by dynamic reconstruction of consen-
sus multiple sequence alignments. BMC Bioinformatics 13(117), 1—10
(2012)

[20] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to
Algorithms, Third Edition, 3rd edn. The MIT Press (2009)

[21] IBM Corporation: CPLEX: High-performance mathematical pro-
gramming solver for linear programming, mixed integer pro-
gramming, and quadratic programming (version 12.6.2.0).
http://www.ilog.com/products/cplex. (2015)

[22] Darling, A.C., Mau, B., Blattner, F.R., Perna, N.T.: Mauve: Mul-
tiple alignment of conserved genomic sequence with rearrangements.
Genome Research 14(7), 1394–1403 (2004)

[23] Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary
change in proteins. In Atlas of Protein Sequences and Structure 5,
345–352 (1978)

[24] DeBlasio, D., Bruand, J., Zhang, S.: PMFastR: A new approach to mul-
tiple rna structure alignment. Proceedings of the 9th International Con-
ference on Algorithms in Bioinformatics (WABI’09) pp. 49–61 (2009)

[25] DeBlasio, D., Bruand, J., Zhang, S.: A memory efficient method for
structure-based rna multiple alignment. IEEE/ACM Transactions on
Computational Biology and Bioinformatics 9(1), 1–11 (2012)

[26] DeBlasio, D., Kececioglu, J.: Learning parameter sets for alignment
advising. Proceedings of the 5th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM-BCB) pp. 230–
239 (2014)

[27] DeBlasio, D., Kececioglu, J.: Ensemble multiple sequence alignment via
advising. Proceedings of the 6th ACM Conference on Bioinformatics,

D
RA
FT

References 147

Computational Biology, and Health Informatics (ACM-BCB) pp. 452–
461 (2015)

[28] DeBlasio, D., Kececioglu, J.D.: Predicting core columns of protein mul-
tiple sequence alignments for improved parameter advising. Proc. of
the 16th Workshop on Algorithms in Bioinformatics (WABI) pp. 77–89
(2016)

[29] DeBlasio, D., Kececioglu, J.D.: Core column prediction for protein mul-
tiple sequence alignments. Algorithms for Molecular Biology pp. 1–16
(2017)

[30] DeBlasio, D., Kececioglu, J.D.: Estimating the accuracy of multiple
alignments and its use in parameter advising. Proc. of the 21st Con-
ference on Research in Computational Molecular Biology (RECOMB)
pp. 1–17 (2017)

[31] DeBlasio, D.F.: New Computational Approaches For Multiple RNA
Alignment And RNA Search. Masters Thesis. University of Central
Florida, Orlando, Florida (2009)

[32] DeBlasio, D.F., Kececioglu, J.D.: Facet: software for accuracy
estimation of protein multiple sequence alignments (version 1.1).
http://facet.cs.arizona.edu (2014)

[33] DeBlasio, D.F., Kececioglu, J.D.: Learning parameter-advising sets for
multiple sequence alignment. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics (2016). To appear

[34] DeBlasio, D.F., Wheeler, T.J., Kececioglu, J.D.: Estimating the accu-
racy of multiple alignments and its use in parameter advising. Proceed-
ings of the 16th Conference on Research in Computational Molecular
Biology (RECOMB) pp. 45–59 (2012)

[35] Do, C.B., Mahabhashyam, M.S.P., Brudno, M., Batzoglou, S.:
ProbCons: probabilistic consistency-based multiple sequence align-
ment. Genome Research 15(2), 330–340 (2005)

[36] Dress, A.W., Flamm, C., Fritzsch, G., Grünewald, S., Kruspe, M., Pro-
haska, S.J., Stadler, P.F.: Noisy: Identification of problematic columns
in multiple sequence alignments. Algorithms for Molecular Biology
3(7), 1–10 (2008)

[37] Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.: Biological Sequence
Analysis: Probablistic Models of Proteins and Nucleic Acids. Cam-
bridge University Press (1998)

[38] Edgar, R.C.: MUSCLE: multiple sequence alignment with high accuracy
and high throughput. Nucleic Acids Research 32(5), 1792–1797 (2004)

[39] Edgar, R.C.: MUSCLE: a multiple sequence alignment method with re-
duced time and space complexity. BMC Bioinformatics 5(113), 1—19
(2004)

[40] Edgar, R.C.: BENCH. http://www.drive5.com/bench (2009)
[41] Estabrook, G., Johnson, C., Morris, F.M.: An idealized concept of the

true cladistic character. Mathematical Biosciences 23(3), 263 – 272
(1975)

D
RA
FT

148 10 Conclusions

[42] Feng, D.F., Doolittle, R.F.: Progressive sequence alignment as a pre-
requisitetto correct phylogenetic trees. Journal of Molecular Evolution
25(4), 351–360 (1987)

[43] Finn, R.D., Mistry, J., Tate, J., Coggill, P., Heger, A., Pollington,
J.E., Gavin, O.L., Gunasekaran, P., Ceric, G., Forslund, K., Holm,
L., Sonnhammer, E.L.L., Eddy, S.R., Bateman, A.: The Pfam protein
families database. Nucleic Acids Research 38(Database), D211–D222
(2009)

[44] Fitch, W.M., Margoliash, E.: A method for estimating the number of
invariant amino acid coding positions in a gene using cytochrome c as
a model case. Biochemical Genetics 1(1), 65–71 (1967)

[45] Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to
the Theory of NP-completeness. W.H. Freeman and Company, New
York (1979)

[46] Gotoh, O.: An improved algorithm for matching biological sequences.
Journal of Molecular Biology 162(3), 705–508 (1982)

[47] Gotoh, O.: Optimal alignment between groups of sequences and its
application to multiple sequence alignment. Computer Applications in
the Biosciences 9(3), 361–370 (1993)

[48] Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, New
York, NY, USA (1997)

[49] Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from pro-
tein blocks. Proceedings of the National Academy of Sciences USA
89(22), 10,915–10,919 (1992)

[50] Hertz, G.Z., Stormo, G.D.: Identifying DNA and protein patterns with
statistically significant alignments of multiple sequences. Bioinformat-
ics 15(7-8), 563–577 (1999)

[51] Jones, D.T.: Protein secondary structure prediction based on position-
specific scoring matrices. Journal of Molecular Biology 292(2), 195–202
(1999)

[52] Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source sci-
entific tools for Python. http://www.scipy.org (2001). URL
http://www.scipy.org/

[53] Karlin, S., Altschul, S.F.: Methods for assessing the statistical signifi-
cance of molecular sequence features by using general scoring schemes.
Proceedings of the National Academy of Sciences of the United States
of America 87(6), 2264–2268 (1990)

[54] Katoh, K., Kuma, K.i., Toh, H., Miyata, T.: Mafft version 5: im-
provement in accuracy of multiple sequence alignment. Nucleic Acids
Research 33(2), 511–518 (2005)

[55] Katoh, K., Misawa, K., Kuma, K.i., Miyata, T.: Maft: a novel method
for rapid multiple sequence alignment based on fast fourier transform.
Nucleic Acids Research 30(14), 3059–3066 (2002)

http://www.scipy.org/

D
RA
FT

References 149

[56] Kececioglu, J., DeBlasio, D.: Accuracy estimation and parameter advis-
ing for protein multiple sequence alignment. Journal of Computational
Biology 20(4), 259–279 (2013)

[57] Kececioglu, J., Kim, E.: Simple and fast inverse alignment. Proceed-
ings of the 10th Conference on Research in Computational Molecular
Biology (RECOMB) pp. 441–455 (2006)

[58] Kececioglu, J., Starrett, D.: Aligning alignments exactly. In: Proceed-
ings of the 8th Conference on Research in Computational Molecular
Biology (RECOMB), pp. 85–96. ACM (2004)

[59] Kemena, C., Taly, J.F., Kleinjung, J., Notredame, C.: STRIKE: eval-
uation of protein MSAs using a single 3D structure. Bioinformatics
27(24), 3385–3391 (2011)

[60] Kim, E., Kececioglu, J.: Learning scoring schemes for sequence align-
ment from partial examples. IEEE/ACM Transactions on Computa-
tional Biology and Bioinformatics 5(4), 546–556 (2008)

[61] Kim, J., Ma, J.: PSAR: measuring multiple sequence alignment relia-
bility by probabilistic sampling. Nucleic Acids Research 39(15), 6359–
6368 (2011)

[62] Kück, P., Meusemann, K., Dambach, J., Thormann, B., von Reumont,
B.M., Wägele, J.W., Misof, B.: Parametric and non-parametric masking
of randomness in sequence alignments can be improved and leads to
better resolved trees. Frontiers in Zoology 7(10), 1–12 (2010)

[63] Kuznetsov, I.B.: Protein sequence alignment with family-specific amino
acid similarity matrices. BMC Research Notes 4(296), 1–10 (2011)

[64] Landan, G., Graur, D.: Heads or tails: a simple reliability check for
multiple sequence alignments. Molecular Biology and Evolution 24(6),
1380–1383 (2007)

[65] Larkin, M.A., et al.: ClustalW and ClustalX version 2.0. Bioinfor-
matics 23(21), 2947–2948 (2007)

[66] Lassmann, T., Sonnhammer, E.: Kalign: an accurate and fast multiple
sequence alignment algorithm. BMC Bioinformatics 6(298), 1–9 (2005)

[67] Lassmann, T., Sonnhammer, E.L.L.: Automatic assessment of align-
ment quality. Nucleic Acids Research 33(22), 7120–7128 (2005)

[68] Lee, C., Grasso, C., Sharlow, M.F.: Multiple sequence alignment using
partial order graphs. Bioinformatics 18(3), 452–464 (2002)

[69] Liu, K., Warnow, T.J., Holder, M.T., Nelesen, S.M., Yu, J., Stamatakis,
A.P., Linder, C.R.: SATé-II: Very fast and accurate simultaneous es-
timation of multiple sequence alignments and phylogenetic trees. Sys-
tematic Biology 61(1), 90–106 (2011)

[70] Liu, Y., Schmidt, B., Maskell, D.L.: MSAProbs: multiple sequence
alignment based on pair hidden markov models and partition function
posterior probabilities. Bioinformatics 26(16), 1958–1964 (2010)

[71] Loytynoja, A., Goldman, N.: An algorithm for progressive multiple
alignment of sequences with insertions. Proceedings of the National
Academy of Sciences 102(30), 10,557–10,562 (2005)

D
RA
FT

150 10 Conclusions

[72] Misof, B., Misof, K.: A Monte Carlo approach successfully identifies
randomness in multiple sequence alignments: a more objective means
of data exclusion. Systematic biology 58(1), 21–34 (2009)

[73] Moré, J.J., Sorensen, D.C., Hillstrom, K.E., Garbow, B.S.: The
MINPACK project. Sources and Development of Mathematical Software
pp. 88–111 (1984)

[74] Muller, J., Creevey, C.J., Thompson, J.D., Arendt, D., Bork, P.:
AQUA: automated quality improvement for multiple sequence align-
ments. Bioinformatics 26(2), 263–265 (2010)

[75] Müller, T., Spang, R., Vingron, M.: Estimating amino acid substitution
models: a comparison of Dayhoff’s estimator, the resolvent approach
and a maximum likelihood method. Molecular Biology and Evolution
19(1), 8–13 (2002)

[76] Needleman, S.B., Wunsch, C.D.: A general method applicable to the
search for similarities in the amino acid sequence of two proteins. Jour-
nal of Molecular Biology 48(3), 443–453 (1970)

[77] Notredame, C., Higgins, D.G., Heringa, J.: T-Coffee: A novel method
for fast and accurate multiple sequence alignment. Journal of Molecular
Biology 302(1), 205–217 (2000)

[78] Notredame, C., Holm, L., Higgins, D.G.: COFFEE: an objective function
for multiple sequence alignments. Bioinformatics 14(5), 407–422 (1998)

[79] Ortuño, F., Valenzuela, O., Pomares, H.e., Rojas, I.: Evaluating Mul-
tiple Sequence Alignments Using a LS-SVM Approach with a Hetero-
geneous Set of Biological Features. Proceedings of the 12th Interna-
tional Work-Conference on Artificial Neural Networks (IWANN 2013)
pp. 150–158 (2013)

[80] Ortuno, F.M., Valenzuela, O., Pomares, H., Rojas, F., Florido, J.P.,
Urquiza, J.M., Rojas, I.: Predicting the accuracy of multiple sequence
alignment algorithms by using computational intelligent techniques.
Nucleic Acids Research 41(1), e26–e26 (2012)

[81] Pei, J., Grishin, N.V.: AL2CO: calculation of positional conservation in
a protein sequence alignment. Bioinformatics 17(8), 700–712 (2001)

[82] Pei, J., Grishin, N.V.: MUMMALS: multiple sequence alignment improved
by using hidden Markov models with local structural information. Nu-
cleic Acids Research 34(16), 4364–4374 (2006)

[83] Pei, J., Grishin, N.V.: PROMALS: towards accurate multiple sequence
alignments of distantly related proteins. Bioinformatics 23(7), 802–808
(2007)

[84] Pei, J., Sadreyev, R., Grishin, N.V.: PCMA: fast and accurate multiple
sequence alignment based on profile consistency. Bioinformatics 19(3),
427–428 (2003)

[85] Penn, O., Privman, E., Landan, G., Graur, D., Pupko, T.: An align-
ment confidence score capturing robustness to guide tree uncertainty.
Molecular Biology and Evolution 27(8), 1759–1767 (2010)

D
RA
FT

References 151

[86] Prakash, A., Tompa, M.: Assessing the Discordance of Multiple Se-
quence Alignments. IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics 6(4), 542–551 (2009)

[87] Raghava, G., Searle, S.M., Audley, P.C., Barber, J.D., Barton, G.J.:
OXBench: A benchmark for evaluation of protein multiple sequence
alignment accuracy. BMC Bioinformatics 4(1), 1–23 (2003)

[88] Ren, J.: SVM-based Automatic Annotation of Multiple Sequence Align-
ments. Journal of Computers 9(5), 1109–1116 (2014)

[89] Roshan, U., Livesay, D.R.: PROBALIGN: multiple sequence alignment
using partition function posterior probabilities. Bioinformatics 22(22),
2715–2721 (2006)

[90] Roskin, K.M., Paten, B., Haussler, D.: Meta-alignment with Crumble
and Prune: Partitioning very large alignment problems for perfor-
mance and parallelization. BMC Bioinformatics 12(1), 1–12 (2011)

[91] S. Schwartz, A., Pachter, L.: Multiple alignment by sequence annealing.
Bioinformatics 23(2), e24–e29 (2007)

[92] Sela, I., Ashkenazy, H., Katoh, K., Pupko, T.: GUIDANCE2: accurate
detection of unreliable alignment regions accounting for the uncertainty
of multiple parameters. Nucleic Acids Research 43(W1), W7–W14
(2015)

[93] Sievers, F., et al.: Fast, scalable generation of high-quality protein mul-
tiple sequence alignments using Clustal Omega. Molecular Systems
Biology 7(1), 539–539 (2011)

[94] Subramanian, A.R., Kaufmann, M., Morgenstern, B.: DIALIGN-TX:
greedy and progressive approaches for segment-based multiple sequence
alignment. Algorithms for Mol. Biology 3(6), 1–11 (2008)

[95] Subramanian, A.R., Weyer-Menkhoff, J., Kaufmann, M., Morgenstern,
B.: DIALIGN-T: An improved algorithm for segment-based multiple
sequence alignment. BMC Bioinformatics 6(66), 1–13 (2005)

[96] Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R., Wu, C.H.:
UniRef: comprehensive and non-redundant uniprot reference clusters.
Bioinformatics 23(10), 1282–1288 (2007)

[97] The UniProt Consortium: The universal protein resource (uniprot).
Nucleic Acids Research 35(suppl 1), D193–D197 (2007)

[98] Thompson, J.D., Higgins, D.G., Gibson, T.J.: ClustalW: improving
the sensitivity of progressive multiple sequence alignment through se-
quence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Research 22(22), 4673–4680 (1994)

[99] Thompson, J.D., Plewniak, F., Ripp, R., Thierry, J.C., Poch, O.: To-
wards a reliable objective function for multiple sequence alignments.
Journal of Molecular Biology 314(4), 937–951 (2001)

[100] Thompson, J.D., Prigent, V., Poch, O.: LEON: multiple aLignment
Evaluation Of Neighbours. Nucleic Acids Research 32(4), 1298–1307
(2004)

D
RA
FT

152 10 Conclusions

[101] Thompson, J.D., Thierry, J.C., Poch, O.: RASCAL: rapid scanning and
correction of multiple sequence alignments. Bioinformatics 19(9), 1155–
1161 (2003)

[102] Van Walle, I., Lasters, I., Wyns, L.: SABmark: a benchmark for se-
quence alignment that covers the entire known fold space. Bioinfor-
matics 21(7), 1267–1268 (2005)

[103] Wallace, I.M., O’Sullivan, O., Higgins, D.G., Notredame, C.:
M-Coffee: combining multiple sequence alignment methods with
T-Coffee. Nucleic Acids Research 34(6), 1692–1699 (2006)

[104] Wang, L., Jiang, T.: On the complexity of multiple sequence alignment.
Journal of computational biology : a journal of computational molecular
cell biology 1(4), 337–348 (1994)

[105] Weinberger, K.Q., Saul, L.K.: Distance metric learning for large margin
nearest neighbor classification. Journal of Machine Learning Research
10, 207–244 (2009)

[106] Wheeler, T.J., Kececioglu, J.D.: Multiple alignment by aligning align-
ments. Proceedings of the 15th ISCB Conference on Intelligent Systems
for Molecular Biology (ISMB), Bioinformatics 23(13), i559–i568 (2007)

[107] Wheeler, T.J., Kececioglu, J.D.: Opal: software for aligning multiple bi-
ological sequences (version 2.1.0). http://opal.cs.arizona.edu
(2012)

[108] Wilbur, W.J., Lipman, D.J.: Rapid similarity searches of nucleic acid
and protein data banks. Proceedings of the National Academy of Sci-
ences of the United States of America 80, 726–730 (1983)

[109] Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics
Bulletin 1(6), 80–83 (1945)

[110] Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F., Backofen, R.: Inferring
noncoding rna families and classes by means of genome-scale structure-
based clustering. PLoS Computational Biology 3(4), 680–691 (2007)

[111] Woerner, A., Kececioglu, J.: Faster metric-space nearest-neighbor
search using dispersion trees (2016). In preparation

[112] Wu, M., Chatterji, S., Eisen, J.A.: Accounting for alignment uncer-
tainty in phylogenomics. PLoS ONE 7(1), 1–10 (2012)

[113] Yang, Z.: Maximum-likelihood estimation of phylogeny from DNA se-
quences when substitution rates differ over sites. Molecular Biology
and Evolution 10(6), 1396–1401 (1993)

[114] Ye, Y., Cheung, D.W.l., Wang, Y., Yiu, S.M., Zhang, Q., Lam,
T.W., Ting, H.F.: GLProbs: Aligning multiple sequences adaptively.
IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics (TCBB) 12(1), 67–78 (2015)

[115] Zhihua, Z.: Ensemble Methods: Foundations and Algorithms. Chapman
and Hall (2012)

	Introduction and Background
	Introduction
	Parameter advising
	Survey of related work
	Accuracy estimation
	A priori advising
	Meta-alignment
	Column confidence scoring

	Review of protein secondary structure
	Plan of the book

	Accuracy Estimation
	Introduction
	The estimator
	Encoding higher-order polynomial estimators

	Learning the estimator from examples
	Fitting to accuracy values
	Fitting to accuracy differences

	The Facet Estimator
	Introduction
	Estimator features
	Secondary Structure Blockiness
	Secondary Structure Agreement
	Gap Coil Density
	Gap Extension Density
	Gap Open Density
	Gap Compatibility
	Substitution Compatibility
	Amino Acid Identity
	Secondary Structure Identity
	Average Substitution Score
	Core Column Density
	Information Content
	Results

	Software

	The Optimal Advisor Problem
	Introduction
	Learning an optimal advisor
	Optimal Advisor
	Advisor Set
	Advisor Estimator

	Complexity of learning optimal advisors

	Constructing Advisor
	Introduction
	Constructing optimal advisors by integer linear programming
	Modeling the Advisor Set Problem
	Finding optimal Oracle Sets
	Modeling the Advisor Estimator Problem
	Modeling the Optimal Advisor Problem

	Approximation algorithm for learning advisor sets

	Parameter Advising for Opal
	Introduction
	Experimental methods
	Comparison of advisor estimators
	Finding an estimator
	Comparing estimators to true accuracy

	Comparison of advisor sets
	Shared structure across advisor sets

	Application to parameter advising
	Learning advisor sets by different approaches
	Varying the exact set for the greedy algorithm
	Varying the error tolerance for the greedy algorithm
	Learning advisor sets for different estimators

	Software
	Opal version 3

	Aligner Advising for Ensemble Alignment
	Introduction
	Related work

	Constructing the universe for aligner advising
	Determining the universe of aligners
	Determining the universe of parameter settings

	Evaluating ensemble alignment
	Parameter advising
	Aligner advising
	Comparing ensemble alignment to meta-alignment
	Advising accuracy within difficulty bins
	Generalization of aligner advising
	Theoretical limit on advising accuracy
	Composition of advisor sets
	Running time for advising

	Software

	Adaptive Local Realignment
	Introduction
	Adaptive local realignment
	Identifying local realignment regions
	Local parameter advising on a region
	Iterative local realignment
	Combining local with global advising

	Assessing local realignment
	Effect of local realignment across difficulty bins
	Varying advising set cardinality
	Comparing estimators for local advising
	Effect of iterating local realignment
	Summarizing the effect of adaptive local realignment
	Running time
	Local and global advising in Opal

	Predicting Core Columns
	Introduction
	Related work

	Learning a coreness estimator
	Representing alignment columns
	Classes of column windows
	The coreness regression function
	Learning the distance function by linear programming

	Using coreness to improve accuracy estimation
	Creating a new coreness feature
	Augmenting former features by coreness

	Assessing the coreness prediction
	Constructing the coreness regressor
	Improving parameter advising

	Conclusions
	Further research
	References

