
SiftCU: An Accelerated Cuda Based Implementation of

SIFT

Mahdi S. Mohammadi1, Mehdi Rezaeian2

1 Electrical and Computer Engineering Department, Yazd University, Yazd, Iran

m.s.mohammadi.k@stu.yazduni.ac.ir
2 Electrical and Computer Engineering Department, Yazd University, Yazd, Iran

mrezaeian@yazduni.ac.ir

Abstract. Scale Invariant Feature Transform (SIFT) is a popular image feature

extraction algorithm. SIFT’s features are invariant to many image related varia-

bles including scale and change in viewpoint. Despite its broad capabilities, it is

computationally expensive. This characteristic makes it hard for researchers to

use SIFT in their works especially in real time application. This is a common

problem with many image-processing related algorithm. Utilizing graphical pro-

cessing unit (GPU) through parallel programming is an affordable solution for

this issue. In this paper we present a GPU-based implementation of SIFT using

Compute Unified Device Architecture (CUDA) programming framework. We

compare our CUDA-based implementation, namely siftCU, with CPU-based se-

rial implementations of SIFT both in feature matching accuracy and time con-

sumption. Results show our implementation can gain 4x speed up over serial

CPU implementation even though we have used a low end graphic card while

using a powerful CPU for test platform.

Keywords: CUDA, GPGPU, Image Processing, Feature Extraction, Parallel

Programming, SIFT

1 Introduction

Like any other scientific field, researchers studying image processing face many dif-

ferent difficulties to establish an adequate work. A common and important difficulty is

providing enough computing resources. Researchers usually need high amount of com-

puting resources to implement and test their devised systems. Although researcher try

to optimize their proposed algorithms, most of the time, they end up spending consid-

erable amount of time and money to test their proposed system. To alleviate effects of

these problems, it is highly recommended to all researchers to harness cheap and high

performance GPUs. In this paper we have tried to address this issue with presenting a

CUDA-based implementation of SIFT algorithm.

Graphical processing unit (GPU) is processing unit of a graphic card. Historically

GPUs had been used only in basic computer graphic tasks. The traditional form of use

for GPUs changed when Nvidia Company introduced CUDA programming framework

at the end of 2007. CUDA is a framework for general-purpose programming on GPUs

mailto:m.s.mohammadi.k@stu.yazduni.ac.ir
mailto:mrezaeian@yazduni.ac.ir

(GPGPU). Because of different architecture comparing to CPUs, GPUs have greater

potential for performing stream processing. Stream processing is a computer-program-

ming paradigm. Simply, it means emulating parallel processing through SIMD (single

instruction multiple data). GPU’s peak performance greatly exceeds CPU’s peak per-

formance when comparing two GPU and CPU that are on same price range.

SIFT is an image feature extraction algorithm. SIFT features extracted are invariant

to image scale and rotation, and are shown to provide robust matching across a sub-

stantial range of affine distortion, change in 3D viewpoint, addition of noise, and

change in illumination [1]. SIFT is a very popular algorithm for image matching. It has

been used in object recognition, image retrieval and many other fields. We use CUDA

framework for our implementation, because it is a well-documented and highly sup-

ported schema for GPU-based programming.

Remaining sections are arranged as follow: first, we are going to review related

works. Section 3 briefly describes SIFT algorithm and CUDA programming frame-

work. Our GPU-based implementation of SIFT (siftCU) is discussed in section 4. Re-

sults for accuracy and speed up compression between SIFTpp and siftCU are presented

at section 5. Finally, section 6 concludes the paper.

2 Related Works

Since SIFT introduction in 2004, there have been attempts to implement it on GPU.

Sinh, Farhm, Pollefeys and Genc presented “GPU-SIFT” in 2006 [2]. This was before

CUDA or any other popular GPGPU-based programming framework release. In their

work, they used more traditional GPU-based programming interface; openGL/Cg. Hey-

mann and his colleagues also presented a GPU-based implementation using traditional

GPU-programming interfaces [3]. Heymann and et al. reported a 20 frames/sec pro-

cessing speed. After introduction of CUDA in 2007, researchers started using this new

framework for GPGPU. In 2009, Warn, Emeneker, Cothren and Apon used CUDA for

running SIFT on NVIDA’s GPUs [4]. They only implemented part of the algorithm on

GPU. Warn and et al. reported that GPGPU-based implementation had 1.9X speed up

over CPU-based implementation. Their test platform included an Intel Xeon E6550

CPU and an Nvidia FX 5800 graphic card. In 2011, Huang and his associates used a

CUDA-based SIFT for registration of Synthetic Aperture Radar (SAR) images [5]. In

addition to SIFT, they have also implemented SAR image features registration with

CUDA. Huang and et al. reported that CUDA-based implementation of entire process

showed a 19.6X speed up over CPU-based implementation while using a powerful

GPU, namely C2050, and Intel Xeon E5506 as test platform. Recently, Yang and Chen

used GPGPU-based SIFT, implemented on CUDA, for moving foreground detection in

dynamic background [6]. Using Nvidia GeForce 9800GT, which is a low end GPU,

they still managed to gain a 1.3X speed up.

3 Background

3.1 SIFT Algorithm

SIFT is a very popular image feature extraction algorithm presented by Lowe at 2004

[1]. The popularity of SIFT is due to the fact that the features extracted by this algorithm

are invariant to many image related variables including scale and rotation. As described

by Lowe, SIFT algorithm includes four steps [1]:

 Scale-space extrema detection: At this step, we detect location and scale of candi-

dates that can be repeatedly assigned under differing views of the same object. This

can be done by searching for stable keypoints over all scales, using a function of

scale known as scale space. Lowe proposed we could use scale-space extrema in the

difference-of-Gaussian function convolved with image as candidates.

 Keypoint localization: Every extrema found in the first step of the algorithm is a

keypoint candidate. Nevertheless, before accepting any candidate, a detailed fit must

performed to the nearby data for location, scale, and ratio of principal curvatures.

This process can determine two measures: one for rejecting points that have low

contrast, and one for rejecting points that poorly localized along edges.

 Orientation assignment: Third step in SIFT algorithm is to assign orientation to

each keypoint. After assigning a consistent orientation to each keypoint according

to properties of local image, the keypoint descriptor will be computed relative to this

orientation. This process makes keypoints descriptor invariance to image rotation.

 Keypoint description: Last step in SIFT algorithm is to create descriptors for key-

points, which were found in previous steps. It begins with sampling gradient magni-

tudes and orientations inside an area around the location of the keypoint. The coor-

dinates of the feature vector and the gradient orientations are rotated based on the

keypoint orientation, so descriptors are invariant to changes in orientation.

3.2 GPU Computing Using CUDA

Graphics Processing Unit (GPU) is processing unit of a graphic card. Traditionally de-

velopers used these processing units exclusively for basic computer graphic applica-

tion. In the last decade when their great capability, for stream processing, were noticed;

developers started to use them for general-purpose programming. At the early years

programming on GPUs were hard and complicated. In the last six years, this has been

changed due to introduction of programming frameworks like CUDA. These frame-

works make GPU-based programming easier and more accessible for everyone.

The CUDA programs are typically comprise of two parts: ‘Host Code’ and ‘Device

Code’. The host code part of CUDA codes can be any C++ standard code (or other C++

library code). This part of CUDA program will be compiled with a standard C++ com-

piler available on host machine, like gnu compiler, and run on host CPU. The second

part of CUDA programs is the part that will run on GPU and it is consist of some ker-

nels. Kernels are like normal functions but they run on GPU instead of CPU.

The CUDA execution flow is built upon the idea of launching a kernel with a grid

comprising of blocks. A single block comprises of a collection of threads. Each thread

has a unique identifier within its block, and each block has a unique global identifier.

These are combined to create a unique global identifier per thread [7]. There are three

type of memory available in CUDA: registers, shared memory, and global memory.

Registers are fastest memory available on GPU. They are local for each thread. Usually

the variables defined inside a kernel are placed inside registers. Threads inside a block

can share a fast onboard memory called shared memory. If accessed properly, shared

memory could be as fast as registers. Finally, there is a large but slow memory acces-

sible from all running threads in a device called Global memory.

4 siftCU

Our implementation of SIFT in CUDA has three main stages. Nevertheless since SIFT

operates on grayscale images, there is a preprocessing stage to convert color images to

256 level grayscale images. Our implementation codes and the pictures used for ana-

lyzing are freely available here [8]. We have tried to execute as much of the code as

possible on the device because transferring data between host and device memory is

time-consuming and abundant data transfer will impair performance [9]. In addition,

we want to harness GPU’s high performance computation power as much as possible.

You can see general execution flow of our implementation in Figure 1. Except for cal-

culating Gaussian filters, we only have kernel calls in host code and all calculation take

place in device. Next, we will discuss each major stages of implementation.

Figure. 1. SiftCU execution flow

4.1 GSS Construction

In first step, we need to construct Gaussian scale space. A Gaussian filter should be

applied to input image recursively at the right spatial space with right scale (sigma).

There are two options for performing this process: applying a single 2-dimensional

Gaussian filter; or applying two 1-dimensional Gaussian filter, one vertically and one

horizontally. Computationally speaking second option is more efficient than former

[10]. You can see filter operation process in figure 2.

As you can see in figure 2, to construct a GSS image, a kernel first applies a Gaussian

filter on rows of pervious scale (Left image) while storing it in a transpose manner

(Middle image). Then ‘same filter’ is applied on rows of transposed results to obtain

next GSS image (Right image). Storing intermediate results in a transpose form would

optimize memory access. In addition, this way we get to use the same kernel for both

horizontal and vertical filter. This process is in contrast with approach used in [5],

which uses two distinct kernels for this process. We could have merge horizontal and

vertical kernels into single kernel but generally speaking for the sake of performance it

is better to divide task into smaller parts as long as this would not result in abundant

data transfer [9].

To further optimizing our code, we only directly compute all scales for the first oc-

tave. After that, first three scale of subsequent octaves will be computed by down sam-

pling three top scales of previous octave. Lowe suggested this practice, only for the first

scale of each octave. Nevertheless, it is obvious that this process can also work for

second and third scale of each octave.

4.2 Extrema Detection and Keypoint Localization

In order to optimize memory access by using data localization, we process this stage

independently for each octave. First, the DOG images for an entire octave are com-

puted, then one kernels per scale search for extrema in that octave. We implemented

DOG calculation kernel so each thread will calculate one pixel for each scale of an

octave.

After construction of DOG images, a kernel will check whether a pixel value is ex-

trema or not. This kernel stores pixel location and scale as candidates in case it is an

extrema. Then another kernel, running one thread per each extrema, extracts keypoints

Figure. 2. To construct a GSS image, we first apply Gaussian filter on rows of pervious scale

(Left image) while storing it in a transpose manner (Middle image), then apply same filter on

rows to obtain next GSS image (Right image).

from candidates. Second kernel checks candidates with contrast and edge response

threshold if a candidate satisfies conditions, we choose it as a keypoint.

When trying to store a candidate or keypoint data, threads may access shared array

simultaneously. In this situation, we need a mechanism to avoid race condition. Race

conditions means simultaneous access of shared data by at least two different process

or thread. This could lead to an anomaly in shared data’s final value. CUDA has some

atomic functions that we could use them to implement semaphore like ‘lock variable’

for our purposes. When kernel wants to store a detected extrema, we use atomicAdd

function on a counter variable to do this. This counter is shared among an entire scale.

The partial code bellow demonstrates this process:

if(stat > 0) // is an Extremum?

{

 int in = atomicAdd(counter ,1);

 extrema[in].iy = y; extrema[in].ix = x;

 extrema[in].o = o; extrema[in].is = s;

}

Using synchronization functions like atomicAdd can impair overall performance [9].

In order to decrease scale of synchronization, which results in less performance impair-

ment, we use different part of an array for each scale of an octave. We cannot com-

pletely avoid using this function since there is no other option for avoiding race condi-

tion.

In this stage, shared memory could not be utilized because of data dependency. We

investigated some approaches to exploit shared memory. However, all of them pro-

duced very complicated code with lots of exceptions. Exceptions mean branch inside

code. Too many branches will have great negative impact on performance.

4.3 Orientation Assignment and Keypoint Descriptor

In this stage, we process each octave independently like previous stage. First, a kernel

calculates magnitude and orientation of image gradient for an entire scale. Each thread

processes one pixel’s data. Then one thread per available keypoint will be created and

run orientation assignment kernel. This kernel assigns at least one orientation for each

keypoint. As we discussed in the orientation assignment subsection, when describing

sift algorithm, a single keypoint locations could be assigned more than one orientation.

When a thread assigns more than one orientation to a single keypoint, it creates a new

keypoint for every extra orientation. Newly created keypoints have the same location

and scale as the original keypoint. The only difference between them is their orienta-

tion. After calculating orientations of an entire octave’s keypoints, next, we call key-

point descriptor kernel. Here, each thread computes descriptor for one keypoint.

Although the entire process of computing descriptor for one keypoint is a huge job.

Nevertheless, we choose to assign this job just to a single thread. That is because, due

to high data dependency, its segmentation can decrease performance. Besides, we pro-

cess keypoints of an entire octave simultaneously. Since higher parallelization can re-

sult in higher performance, we were able to achieve adequate speed up over CPU-based

implementation.

5 Compression and Results

In this section, we are going to test our implementation for time consumption and ac-

curacy. We compare siftCU with SIFTpp in both speed up and accuracy. SIFTpp is a

well-known open source implementation of SIFT algorithm in C++ [11]. It is a serial

implementation and considered to be optimized and reliable. Our implementation is

inspired by SIFTpp. Before presenting comparison results, this section analyze siftCU

memory usage.

5.1 System Set Up and Configuration

In test setup, we used an Intel Core i7-2600 with 4 GB DDR3 RAM for host configu-

ration and an Nvidia GeForce GT 440 with 1 GB DDR3 Memory for device configu-

ration. The processor that we used for testing is one of the most powerful processors

for PC computers available in the market. This processor currently has price range

around 350$. On the other hand, the GPU is a low end GPU and it can be bought for

not more than 70$. Part of our objective were to make sift execution affordable. By

affordability, we mean both affordability of execution time and financial source spend

on providing appropriate hardware for execution.

Table 1 Running time: siftCU Vs. SIFTpp. All time scales are in milliseconds.

Subject Stage SIFTpp siftCU Speed up

Image 1

(549*800)

1 437 96 4.55

2 38 18 2.11

3 907 436 2.08

Overall 1382 550 2.51

Image 2

(678*1024)

1 681 128 5.32

2 56 27 2.07

3 1512 641 2.36

Overall 2249 796 2.83

Image 3

(1400*1000)

1 1369 248 5.52

2 151 55 2.75

3 5305 1415 3.75

Overall 6825 1718 3.97

Image 4

(1600*1200)

1 1908 357 5.34

2 162 73 2.22

3 4122 1147 3.59

Overall 6192 1577 3.93

5.2 Speed Up Test

You can see test results for speed up in table 1. Results have been broke down for three

main stages. We were able to achieve a very good speed up in first stage through effec-

tive shared memory utilization. There is high data dependency in second and third

stages, therefore, we were not able to gain speed up as much as first stage. Nevertheless

because of the reasons explained in section 5, implementing all stages in GPU is pref-

erable to implementing some of them in Host. Figure 5 shows overall time consumption

of SIFTpp and siftCU for four images in table 1. SiftCU’s speedup over SIFTpp grows

as picture size and number of extracted keypoints grow. Although image 3 is actually

smaller than image 4 but it takes longer to process. That is because image 3 has much

more keypoints compared to image 4. This results show Nvidia GeForce 440 GT cannot

make siftCU practical for real time applications but if we use a high end GPU, like

Nvidia GTX 670, it can easily satisfy real time demands.

SIFTpp siftCU

Keys match mismatch Keys match mismatch

Set 1
5455

115 0
4925

181 1
1315 1217

Set 2
5455

7 5
4926

19 5
1785 1566

Set 3
5455

137 3
4926

265 1
3199 2514

Figure. 3. SiftCU & SIFTpp overall execution time

0

2000

4000

6000

8000

subject 1 subject 2 subject 3 subject 4

Overall Running Time Comparision

SIFTpp siftCU

Table. 2. Feature matching results for SIFTpp and siftCU

5.3 Precision Test

The keypoint matching is based on a simple but effective matching algorithm described

by Lowe [1]. When you want to see whether a keypoint has a match inside bunch of

other keypoints, the algorithm is as follow:

 Find first and second closest descriptor to sample keypoint descriptor. The distance

factor is Euclidean distance.

 If first distance is smaller than six-tenth of second distance then first distance is a

match otherwise sample does not have a match.

You can see precision comparison results in table 2. The results from two implementa-

tions for each set are not identical. This can be attributed to small differences in the

value of some variables and thresholds. Nevertheless, as it is obvious, our implementa-

tion has not impaired precision of matching. We demonstrated keypoint matching be-

tween test sets in figure 4.

6 Conclusion

In this paper, a GPU-based implementation of sift feature extraction algorithm was pre-

sented. We used CUDA, which is a C++ based framework for GPGPU. Our implemen-

tation, namely siftCU, is simpler and more efficient than previous works. We compare

siftCU with SIFTpp in speed up. Part of our objective were to make sift execution af-

fordable. By affordability, we mean both affordability of execution time and financial

resources. SIFTpp was executed on a powerful but expensive CPU, namely Intel Core

i7-2600. On the other hand, siftCU was executed on a cheap low end GPU, namely

Figure. 4. Feature matching for images in table 2. Top) set 1: left siftCU, right

SIFTpp; Bottom) set 2: left siftCU, right SIFTpp.

Nvidia GeForce 440 GT. Results showed that our implementation could gain 4x speed

up over SIFTpp. This means if we utilize all 4 processing cores of Core i7-2600 using

a multi-core implementation, in best case scenario for multi-core implementation, our

implementation would match up with that implementation in speed up. The results are

satisfactory considering the CPU, we used in test set up worth more than five times the

GPU that was used. Our implementation could gain more than 30x speed up if we were

to use a high end GPU like Nvidia GTX 670 that is in same price range with Core i7-

2600, since it has 14 times more cores than 440 GT, and more than 6 times memory

bandwidth. SiftCU can be easily used for real time applications of SIFT utilizing high

end graphic cards but a low end graphic card like 440 GT cannot satisfy real time de-

mands. We also showed that siftCU could be as precise as any other implementation of

SIFT.

7 References

[1] Lowe, D. G.: Distinctive Image Features from Scale-Invariant Keypoints.

Journal of Computer Vision, vol. 60, no. 2, pp. 91-110 (2004)

[2] Sinha, S.N., Frahm, J.M., M. Pollefeys, Genc, Y.: GPU-based Video

Feature Tracking and Matching. In: Workshop on Edge Computing Using

New Commodity Architectures, Chapel Hill, North Carolina (2006)

[3] Heymann, S., Muller, K., Smolic, A., Froehlich, B., Wiegand, T.: SIFT

Implementation and Optimization for General-Purpose GPU. In: International

Conference in Central Europe on Computer Graphics, Visualization and

Computer Vision (WSCG), Plzen, Czech Republic (2007)

[4] Warn, S., Emeneker, W., Cothren, J., Apon, A..: Accelerating SIFT on

Parallel Architectures. In: IEEE International Conference on Cluster

Computing and Workshops, New Orleans, LA (2009)

[5] Huang, Y., Liu, J., Tu, M., Li, S., Deng, J.: Research on CUDA-based SIFT

Registration of SAR Image. In: 2011 Fourth International Symposium on

Parallel Architectures, Algorithms and Programming, , Tianjin (2011)

[6] Yang, Y., Chen, W.: Parallel Algorithm for Moving Foreground Detection

in Dynamic Background. In: Fifth International Symposium on Computational

Intelligence and Design, Hangzhou (2012)

[7] Brodtkorba, A.R., Hagen, T.R., Satra, M.L.: Graphics processing unit

(GPU) programming strategies and trends in GPU computing. Jurnal of

Parallel and Distributed Computing, vol. 73, no. 1, pp. 4-13 (2013)

[8] Mohammadi, M.S., Personal Page, http://ce.yazd.ac.ir/rezaeian/Mahdi_SM

[9] NVIDIA, CUDA C Best Practices Guide, NVIDIA, (2013)

[10] Szeliski, R.: Computer Vision: Algorithms and Applications. Springer

(2011)

[11] SIFTpp Home, http://www.vlfeat.org/~vedaldi/code/siftpp.html

