
IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 2010 1

Exhausting Resources with CPU/GPU Hybrid
Distributed Systems: SiftD A Distributed

System for SIFT
Mahdi S. Mohammadi, Mehdi Rezaeian

Abstract— Nowadays, it is impossible to manage large scale computer applications with limited resources of a single system.

Consequently, distributed and parallel architectures have become an unavoidable element to provid virtually unlimited resources in

such applications. SIFT is a popular image feature extraction algorithm, which is used in numerous image processing applications

for image matching. Unfortunately, its usability has been undermined due to extreme time and memory complexity. This paper

presents siftD, a distributed application developed for distributing and parallelizing SIFT algorithm. Using simple master-slave

architecture, it can exhaust all computing and memory resources in a network of computers. SiftD’s runtime distributes tasks across

nodes in the network. Inside each node, the algorithm is parallelized and run using all awailable resources. Not only siftD can fully

utilize multi-core processors, but also, it can use Graphical Processing Units (GPUs) to run SIFT in parallel. GPUs are designed for

running algorithms in parallel and their peak floating point operation exceeds CPU’s. SiftD was tested with different hardware

configurations. Results showed it has a great potential for utilizing various hardware architecture. Its performance utilization

generally exceeds 93%, which is fairly appropriate. Furthermore, siftD can handle computing gigantic pictures in any sizes.

Index Terms— distributed systems, distributed computing, distributed implementation, feature extraction, GPU programming;

parallel processing, SIFT

—————————— ——————————

1 INTRODUCTION

omputer technology has made a great impact on all branches of science and technology. It provides hardware and software

resources that can be used to process raw data, extract meaningful information, and store all data for future use. This privilege

accelerates scientific and technological progression. As science and technology advance, the requirement for computing and

storage resources grows exponentially. Depending on scale, these days nearly every industrial and scientific application needs

considerable amount of computing resources. Extracting information from gigantic pictures, streaming high quality video in

cloud gaming, searching inside enormous databases in search engines are all examples of such applications. Evidently, tradi-

tional system architectures with a multi-core processor and limited amount of memory can not satisfy current needs. According-

ly, researchers have turned to parallel and distributed architecture to address this issue.

Distributed systems have been used in many different computer applications in the last four decades. A dis tribut-

ed system is a system, which its hardware and software components are located in the networked computers and

only communicate through message passing [1]. Some applications like World Wide Web (www) are distributed in

essence, therefore, they should be implemented using distributed applications. On the other hand, there are many

centralized applications that deal with giant data sets and need lots of resources to operate. In these applications,

distributed systems are used to meet required demand for computing and storage resources. Parallel systems can

also provide huge computing resources. There is no clear distinction between parallel and distributed systems. Co m-

pared to distributed systems, in parallel systems components are tightly coupled, they may have synchronized clock,

C

2 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 2010

shared memory, and fast means of communication [2]. Frequently, numbers of parallel systems are linked to form a

massive distributed system. Designing, implementing, and maintaining distributed systems are usually less costly

and more manageable than creating a single powerful pure parallel system.

Image matching using SIFT algorithm is a good example of a resource demanding application. SIFT is a popular image

feature extraction algorithm [3]. SIFT has been used in object recognition, dynamic object tracking, image retrieval and

various other fields. While it is a prominent algorithm, it has high time and memory complexity. It could take more than

five seconds to extract SIFT features from a normal size image using only single core of a high end CPU [4]. This high time

complexity is unacceptable in applications, like image retrieval in search engines, which processing thousands of pictures

in matters of seconds is customary. Memory consumption of the algorithm is also extreme. Processing Giga pixel images is

common in aerial, satellite, or deep space images processing. As we explain later in section XX, operating SIFT on such

large images would need more than 400 GB of main memory. Obviously, a serial implementation of SIFT cannot be used

in this type of applications. Utilizing distributed and parallel architectures is a clever choice to make SIFT practical for real

world applications.

In this paper, we discuss architecture and implementation of siftD, which is a distributed system, designed and imple-

mented, for distributing and parallelizing SIFT algorithm. Although there are general purpose distributed frameworks,

which can be used to distribute various algorithms, we preferred to implement siftD from scratch. The main reason is that

normally general purpose distributed frameworks are best suited for processing text based data. Compared to text, images

should be handled more delicately when they are being processed in parallel and distributed applications. Texts are com-

prised of small units named words, consequently, they could be easily partitioned for distributed and parallel processing

purposes. On the other hand, images are much bigger than words and usually we prefer to process them indiscriminately.

Computing SIFT features from parts of an image instead of entire image would decrease accuracy and increase processing

time [4]. This topic will be further discussed in section 4.1.

SiftD can utilize all available resources in a network of computers to get as much computing and memory resources as

possible. Its runtime dynamically distributes tasks among nodes. It can use as many computer stations as available with its

simple master-slave architecture. Inside each node, the algorithm is parallelized and run using all accessible resources.

Contemporary networks can consist of personal and server computers. Server platforms could be equipped with more

than one processor. These processors connect together to provide a bigger processing unit. Typically each CPU comprises

of more than one processing core. SiftD can utilize all the available processors and their processing cores in a station. In

addition to CPUs, siftD can fully utilize all available Graphical Processing Units (GPUs) in the system. GPUs are pro-

AUTHOR: TITLE 3

cessing units of graphic cards. They are designed to maximize floating-point operation and their peak floating point opera-

tion exceeded CPU‟s [5]. Because of their architecture, GPUs can very well run algorithms in parallel. Hence, running SIFT

in parallel using them is quite desirable.

Rest of the paper is arranged as follow: Section II briefly discusses related works to this paper. The next section discuss-

es motivations and backgrounds that are related to paper‟s context, they include SIFT algorithm, its time and memory

complexity, and brief introduction about distributed systems. Section IV discusses SiftD‟s architecture and implementation

in details. Section V presents results from evaluating siftD‟s different aspects. Finally, section VI concludes the paper.

2 REALTED WORKS

The most well-known implementation of SIFT is SIFTpp [6]. It is an optimized serial implementation of the algorithm. No

matter how optimized a serial implementations would be, it cannot be used in real world applications because SIFT time

and memory complexity is too high. That is why they are many parallel implementations of the algorithm. Two different

types of parallel implementations of algorithm exist: multicore implementations and GPU based implementations.

Multicore implementations generally follow one of two existing approaches to parallelize the algorithm. The first ap-

proach is to partition input picture into smaller parts and run entire algorithm on each part independently using multiple

threads [7][8][9]. This approach has two advantages. First of all, it is easy to implement. More importantly it can easily be

used to process gigantic images on cluster of computers [8]. But accuracy of the algorithm would be degraded due to data

loss in borders. Original accuracy can be preserved by concatenating extra data to each partition, which will result in

productivity loss. The second approach includes parallelizing algorithm in thread level [10][11][12]. In every step of the

algorithm, multiple threads of execution run same code concurrently on a portion of the input image. Unlike first ap-

proach, this approach do not need extra data to maintain accuracy, whereas, it is harder to implement.

The second type of parallel implementations of the algorithm is GPU based implementation. GPUs exhibit great per-

formance for parallel implementations, specifically for algorithms that can be easily parallelized. Most of the SIFT algo-

rithm can be efficiently parallelized on GPUs [4]. Two GPU based implementations of the algorithm were presented at the

early years of its introduction [13][14]. These implementations use traditional low level programming interfaces. GPU pro-

gramming using low level interfaces like openGL is complex and time consuming, therefore, it could result in less efficient

codes. By means of high level programming frameworks, GPU programming is basically like multi-thread programing.

After introduction of CUDA, which is an imminent high level programming framework for GPU, researchers used it to

implement SIFT [4][12][15][16][17]. Performance results reported for these implementations are very promising and prove

that GPU based implementations could expedite SIFT execution greatly. Although there are many parallel implementa-

4 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 2010

tions of the algorithm, there is no known distributed implementation to our knowledge.

3 MOTIVATIONS AND BACKGROUND

We need to distribute and parallelize SIFT because of excessive time and memory consumptions. In this section, we first

introduce SIFT algorithm. Next, SIFT‟s time and memory complexities will be discussed. Also, a brief introduction to dis-

tributed systems is presented at the end of the section.

3.1 SIFT

Scale invariant feature transform (SIFT) is an image feature extraction algorithm [3]. It has gain great popularity among

image processing researchers for image matching and object recognition. The popularity of SIFT is due to the fact that the

features extracted by this algorithm are invariant to many variables including scale and rotation. SIFT consist of four major

stages:

1) Scale-space extrema detection: The first stage of the algorithm detects location and scale of candidates that can be re-

peatedly assigned under differing views of the same object. This can be done by searching for stable keypoints

over all scales, using a function of scale known as scale space. The scale space of an image I(x, y), is produced

from the convolution of a variable-scale Gaussian function, G(x, y, σ), with input image. Scale-space extrema in

the difference-of-Gaussian function convolved with image, D(x,y,σ), are used to efficiently detect stable keypoints.

2) Keypoint localization: Every extrema found in first step of the algorithm is a keypoint candidate. Nevertheless, be-

fore accepting any candidate, a detailed fit must performed to the nearby data for location, scale, and ratio of

principal curvatures. This process can determine two measures: one for rejecting points that have low contrast

(which makes them sensitive to noise), and one for rejecting points that are poorly localized along edges.

3) Orientation assignment: Third step in SIFT algorithm is to assign orientation to each keypoint. After assigning a

consistent orientation to each keypoint according to properties of local image, the keypoint descriptor will be

computed relative to this orientation. This process makes keypoints descriptor invariance to image rotation. Ori-

entation is computed from a smoothed image. Gaussian smoothed image, L, with closest scale to the scale of the

keypoint is selected; so that all computations are performed in a scale-invariant manner.

4) Keypoint description: Last step involves creating descriptors for each keypoints, which was found in previous steps.

It begins with, sampling gradient magnitudes and orientations inside an area around the location of the keypoint.

The coordinates of the gradient orientations are rotated based on the keypoint orientation, consequently, de-

scriptors are invariant to changes in orientation.

AUTHOR: TITLE 5

3.2 Time Complexity

We cannot easily calculate SIFT‟s time complexity. Except for the first stage, where time complexity depends on size of the

image, in other three stages, time complexity depends on results from previous stages. Table 1 shows SIFT‟s processing

time for 100 different pictures in three categories. These times are recorded running SIFT++ on a system with Intel Core i-7

2600 processor and 4 GB of DD3 main memory. Suppose we want to use this system for real time object tracking. If we

consider the video feed a moderate 480p quality, the pictures‟ size are usually 480×640. This picture size fits to the first

category in Table 1. Consequently, we need more than 20x speed up over this system, so the algorithm can be used in such

application. This example demonstrates that SIFT‟s time complexity is so high that it cannot be used in many of its applica-

tions using a serial implementation. Therefore, we need to decrease computation time greatly. One way to do this can be

through tampering with algorithm itself [18][19][20]. But this approach can decrease precision and matching ability of fea-

tures, more importantly, it would not solve the problem in very large scale application. A more promising and flexible

approach is to utilize parallel and distributed architecture, which is the purpose of this paper.

TABLE 1

SIFT’S PROCESSING TIME FOR 100 DIFFERENT PICTURES IN THREE CATEGORIES

Time count Picture size in pixel category

74.5 35 Less than 0.5 Mega pixel small

218.3 35 0.5 - 1 Mega pixel Medium

375.6 30 1 – 2 Mega pixel Big

668 100 --- Total

3.3 Memory Complexity

Most of the memory usage of SIFT is spent storing Gaussian Scale Space (GSS), and orientation and magnitude of gradient.

The size of GSS could be computed using (1).

In this equation: S is number of scales per octave, O is number of octaves, omin is index of the first octave, W and H are

width and height of the input picture. Amount of memory required to store orientation and magnitude of gradient can be

calculated using (2).

𝐺𝑟𝑎𝑑𝑖𝑎𝑛 = 2 ∗ 𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝑙𝑜𝑎𝑡) ∗ 𝑆 ∗
𝑊 ∗ 𝐻

2
 (2)

Using single precision floating point is quite adequate for computing SIFT features. In most systems, single precision

floating point is 4 Byte. SIFT operates on gray scale images in which one byte is stored for each pixel. Taking these facts

into account and using Equations 1 and 2, we could say SIFT‟s memory complexity is almost 384 times the size of input

image in Bytes. This is quite extreme memory complexity for an algorithm. This means to execute SIFT on a one Giga pixel

image, we need about 400 Giga Byte of main memory. Processing images of this size is typical in some applications like

𝐺𝑆𝑆 = 𝑠𝑖𝑧𝑒𝑜𝑓(𝑓𝑙𝑜𝑎𝑡) ∗ (𝑆 + 3) ∗ ∑
𝑊 ∗ 𝐻

2

 (1)

6 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 2010

deep space image studies. Such enormous memory could not be found on normal computer systems. On the hand, parallel

and distributed systems could be used to provide virtually unlimited amount of memory. Passing through memory limita-

tions to be able to compute SIFT on gigantic images, in addition to time limitations, was another motivation to create siftD.

Memory usage of the algorithm could be decreased by repeating some parts of the algorithm instead of storing results of

those computations. Clearly this is not a good idea since it further increases time complexity.

3.4 Distributed Systems

A distributed system can be defined as a system in which hardware or software components are located at networked

computers and communicate and coordinate their actions only by passing messages. Distributed systems have a wide

range of applications. They could provide us with collective resources of many independent computer systems, which can

be used for storing, analyzing and processing large quantities of scientific or industrial data. Challenges of designing and

implementing distributed systems can be classified in eight areas [1]: 1) Heterogeneity; 2) Openness; 3) Security; 4) Scala-

bility; 5) Failure handling; 6) Concurrency; 7) Transparency; 8) Quality of service. Depending on nature of our application,

some of these challenges might be more important than others. We will discuss important challenges of implementing

siftD while introducing it throughout section 4.

Comprehensive discussions of designing and implementing distributed systems is a wide area, which we do not wish

to go into it in this paper. Readers can refer to reference books for more information [1][2]. Nonetheless, a briefe introduc-

tion of general purpose distributed frameworks can be useful, especially since we need it for later discussions. General

purpose distributed frameworks are designed to minimize development effort on programmers part for distributing di-

verse range of algorithms. These systems usually provide programmers with high-level routines to write their programs in

parallel manner; completely hiding issues concerning confusing details of parallelization, fault-tolerance, data distribution

and load balancing. Recently developed general purpose distributed frameworks are mostly designed based on a pro-

gramming model called MapReduce.

MapReduce is a programming model for processing and producing large data sets [23]. The general idea of MapReduce

is as follow: user specifies a Map function that processes key/value pairs to generate a set of intermediate key/value pairs,

and then an optional user defined Reduce function merges all intermediate values associated with the same intermediate

key. Many real world applications can be represented in this key/value format [23]. Codes developed using implementa-

tion of MapReduce should be automatically parallelized and executed on a large cluster of nodes and distributing tasks

should be completely transparent for programmer. Programmers without any experience with parallel and distributed

systems should be able to easily utilize the resources of a large distributed system using these frameworks.

The most widely used and mature implementation of MapReduce is considered to be Hadoop [22]. The Apache Ha-

AUTHOR: TITLE 7

doop software library uses MapReduce programming model to distribute processing of large data sets across clusters of

nodes. It is mostly implemented in Java, consequently, it is highly portable. Beside from computing module it includes

other modules, like Hadoop Distributed File System, to handle all distributing related task. There are other programming

frameworks, which more or less follow MapReduce conceptual procedure. Piccolo is a data-centric programming model

for writing parallel in-memory applications in data centers [23]. Unlike MapReduce, Piccolo allows computation running

on different computing nodes to share distributed mutable state via a key-value table interface. In particular, applications

can specify locality policies to exploit the locality of shared state access. There is also Oolong that uses shared partitioned

table schema same as Piccolo but it is designed for asynchronous applications; its global shared states do not need syn-

chronization [24].

4 SIFTD

This section discusses design and implementation of siftD. SiftD includes three major components: Masters, Workers, and

Distributed File Systems (DFSs). Fig. 1 shows a hypothetical network with N computer stations running siftD. Each station

can have heterogeneous hardware and software configuration. They can be configured to run any combination of siftD‟s

components depending on their resources and policies of the network. This schema creates a very flexible system, which

results in a high volume of scalability. Scalability was one of the most important trends for designing and implementing

siftD.

SIFT algorithm is used in wide range of application including: real-time applications, large scale applications, and oth-

ers. Three main goals were pursued in developing siftD: first, to obtain an adequate return time for a single image. Second-

ly, a reasonable response time for processing numerous images. Finally, to have a system that can process gigantic images

without size limitations. In real time applications every tasks, which in our case is processing of a single image, has a

deadline. If this deadline passes, processing that image is not appreciated anymore. Therefore, processing time of a single

image should be smaller than a threshold, in other words, we should have small return time for every task. To reach this

goal, siftD utilizes parallel architecture, more specifically multi-core CPUs and GPUs. Parallel implementation can speed

up computing time of an image in an independent system. On the other hand, in large scale applications like image re-

trieval in search engines, response time of a request should be in a reasonable time frame. This means processing of large

number of tasks should be possible in a short time period. There are also some applications like deep space image pro-

cessing in which images as large as one Giga pixel are processed. Amount of memory for processing images that large can

be catastrophic. No matter how powerful a single independent computer can be, it cannot provide enough resources for

these two categories. Utilizing distributed architectures is best solution in these cases.

8 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 2010

Fig. 1. A hypothetical network with N stations. Each station can run any combination of siftD’s components.

4.1 Designing and implementing from scratchs

General purpose distributed frameworks have novel designs, nonetheless, not every application can be optimally distrib-

uted using them. As flexible as they could be, they are only suited for a specific class of tasks with special characteristics,

most importantly:

 Pertaining large data set should have low data dependency, hence, it can be easily partitioned as little or as big as de-

sired.

 The pertaining algorithm should be simple and parallel in nature. Therefore, it can be simply placed inside a few small

functions, like Map and Reduce, and distributed on cluster of nodes.

Most of the text based information retrieval related tasks, like those in search engines, are fit for being distributed by gen-

eral purpose distributed frameworks, e.g. crawling, indexing, sorting, simple search and other related tasks.

Due to number of characteristics, we prefered to develop a fresh application for distributing SIFT instead of using exist-

ing General-purpose frameworks. For starters, SIFT is much more complicated than typical algorithms that are being im-

plemented with general-purpose distributed frameworks. It includes four steps, each one involving lots of independent

lengthy computations. This means, SIFT cannot be simply divided into Map and Reduce functions or any other similar

concepts. Secondly, SIFT operates on images. Unlike text, images cannot be easily partitioned for processing. It is prefera-

ble not to divide them into smaller pieces unless necessary, since, we will end up losing precision and degrading perfor-

mance. Finally, SIFT includes lots of computations that can be categorized in what we call stream processing [4]. GPUs

have better performance for stream processing compared to CPUs. Although there are some limited supports for GPU

programming in number of general purpose distributed frameworks including Hadoop but they are not actually opti-

mized for utilizing both CPU and GPU.

There are also numbers of general reasons for developing special distributed application from scratch. Adapting to spe-

cial hardware properties and utilizing new hardware innovation sometime could be very important. For example consider

Remote Direct Memory Access, also called RDMA, which is hardware facility formally found in High Performance cluster

AUTHOR: TITLE 9

(HPC), but recently also available in 10GB Ethernet [26]. RDMA operations allow a process to read (or write) from a pre-

registered memory region of a remote process without involving the CPU on the remote side. Although Mitchell, Geng

and Li have designed Pillar [27], which is a general purpose distributed framework with similar design to Piccolo, that

partially utilizes RDMA for high performance data reads but this is only one example and there are many other hardware

properties and innovations that can be exploited. MapReduce is the dominant schema for designing general purpose dis-

tributed frameworks. We expect implementations based on MapReduce programming Model to have highest possible per-

formance for its suitable tasks. This is not necessarily true. Pavlo, Paulson and Rasin showed that Parallel DBMSs can out-

perform Hadoop even in tasks suitable for MapReduce [28].

Fig. 2. External communications between major components of siftD.

4.2 Architecture and Operation Flow

SiftD comprises of three main components. There is one Master in the system that distributes tasks across workers. Also, it

decides how large pictures should be partitioned and arranges for partitioned results to be aggregated. There could be as

many workers as needed, each running inside a station. Workers run algorithm in parallel using multi-core CPUs and

GPUs. Usually every system in the network runs an instance of Distributed file system, which handles files exchange and

partition/aggregate request from Master. Each component consists of many modules, which will be introduced through-

out this section. Fig. 2. shows external communications between major components and those modules that are involved.

Three types of messages are exchanged between components including: worker message, job request message, and file

system message. Each message type has more than one application. Worker message type can be used for advertisement

purposes, which informs Master about workers status (Status). It also used by job replay module of Worker to inform Mas-

ter about a task‟s fate (Job Replay). Job manager and big job manager in Master use Job request messages for requesting a

10 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 2010

job from worker (Job Request). File system messages are used for read/write file request (Read Req, Write Req). They are

also used for image partitioning request and result aggregate request (Part Req, Agg Req).

Master‟s internal design and communications between its modules is shown in Fig. 3. In order to avoid complications,

there are two job queues: one of them is for regular size images (normal jobs), and the other one is for large images (big

jobs) that could not be processed on a single station. Different Modules have their own dedicated pointer for accessing

desired queue to operate independently on lists without conflicting with other modules. Names of these pointers are pre-

sented in the figure. Each module is implemented in a separate thread. Internal communications between modules is de-

picted with dotted lines that are accomplished using POSIX‟s condition variables. Variable‟s names are mentioned above

respective communication line.

Execution flow inside Master is as follow. Initializer uses configuration files to initialize all important variables and two

job queues. Every worker has one or two size limit, one for CPUs and one for GPUs. Limits inform Master about biggest

images that workers can handle. Therefore Master always has a complete list of workers‟ size limit. In order to distinguish

normal and big jobs, most repeated value (mod) in workers‟ size limit list has been used. Consequently, those images that

are smaller than this quantity are placed in normal job queue and those bigger are placed in Big Job queue. Mod value has

been picked since it would create most flexibility for scheduling since there would be more workers able to do one particu-

lar job. Both Online Job Scheduler and Initializer use this notion to choose where to put each job. Inside Normal Jobs

Queue any entry is a picture that should be processed. Job Manager uses a function, named „worker finder,‟ to find a

worker for a job. Worker finder function will be discussed in section 4.4. If no free worker exists when looking for a suita-

ble worker, Job Manager will sleep only to be notified when there is a free worker.

Processing big jobs is more complex than normal jobs. First, Partitioning Handler calculates the size of each partition,

this is discussed in section 4.4. Then, it sends a partitioning request to systems holding the picture. Part Job Creator gets

response messages about images being partitioned. It writes characteristics of big jobs partitions in Big Job Queue then

notifies Big Job Handler about the new big job that should be processed. Big Job Handler treats every partition of a big job

same as Job Manager treats a normal job. When a big job finishes completely, Result Aggregator gets notified. It arranges

for partitioned results to be aggregated by sending aggregation request.

Worker Service receives status and job replay messages from workers. If it gets status message from a new worker that

was not in Master‟s workers list, adds the new worker to the list. It notifies Task Manager when a job replay arrives. It also

sends a free worker notification. Upon receiving a job replay signal, Task Manager checks conditions. It sends signals to

Job Manager and Big Job Manager about failed jobs, so they would schedule them again. If part of big jobs finishes, it

AUTHOR: TITLE 11

checks wither an entire big jobs has finished or not. It will notify Result Aggregator when a big job finishes completely.

Figure. 3. Internal design of Master and communications between its modules

Worker‟s internal design is illustrated in Fig. 4. Like Master, Initializer sets all global and important variables using con-

figuration files. Master Service sends advertisement messages about workers status periodically. Job processing procedure

starts with Job Request Responder receiving a job request. It places the new job inside the jobs queue, and then signals the

Load Ahead that a new job has received. Load Ahead tries to fetch jobs to main memory. If it succeeds, it signals Algo-

rithm Manager that there is new job ready to be processed. It also notifies Job Replay wither new job was fetched success-

fully or not. This module has been discussed in more details at section 4.4. Algorithm Manager runs SIFT algorithm on

requested images in parallel utilizing CPUs and GPUs. When Algorithm Manager extracts a new set of keys, it signals

Keys Handler. Wither it succeeds processing an images or not, it signals Load Ahead and Job Replay. Keys Handler moves

newly extracted keys to their appropriate destination. Job Replay informs Master about a job status in Worker. First time it

does that is when a job is fetched successfully or unsuccessfully, which it gets a notification from Load Ahead. Then if job

was fetched without an error and was processed, it informs Master that wither job was successfully carried out or not.

12 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 2010

Figure. 4. Internal design of Worker and communications between its modules

File system distributes files across network. It tries to spread files evenly among stations. It also creates extra copies of

files according to policies employed by system administrator. A file description structure contains file name and address in

the system. Therefore, a job request that contains file description includes file address in the system. In order to handle file

transfer in the system, there is a module called Resolver that resides in Worker. This module can actually considered a part

of DFS. Any file transfer must go through this module. It keeps records about extra copies of files in the system that DFS

informs it about. File transfer requests categories into three types concerning requested file address: Their address is same

as requester address; their address is different from requester but there is extra copy in requester station; their address is

different from requester and there is no extra copy. First two types are handled locally using fast read/write system inter-

rupts. But third type is carried out using TCP/IP protocol.

4.3 Implementation

SiftD has been implemented entirely in C++ using only POSIX and ANSI C++ standard libraries [29]. Implementation is

portable across most of Linux and UNIX platforms. It uses two separate implementations of SIFT algorithm, one for utiliz-

ing CPUs and another one for utilizing GPUs. SiftCU is an optimize CUDA based implementation of SIFT algorithm to

utilizes Graphical Processing Unites [4]. SiftD uses siftCU to run the algorithm on GPUs. Each major component of the

system is implemented in a separate process and each module is a separate thread inside its components. This paradigm

would help improve performance since it decreases context switch time and maximizes multi-core architecture utilization.

Most of the modules are only a single running thread in the system. But three of Worker‟s modules including Load Ahead,

Algorithm Manager, and Keys Handler have more than one instance, running simultaneously in the system. Those mod-

AUTHOR: TITLE 13

ules do lengthy computations, consequently, in order to maintain high resource occupancy, we need more than one in-

stance of them. Threads are implemented using POSIX‟s Pthread library.

External communications between components has been carried out with POSIX sockets. All normal messages includ-

ing job request and replay, worker status, and file request use UDP protocol as their underling transport layer protocol.

On the other hand, TCP protocol has been used for file transfer. POSIX‟s condition variables have been used for internal

communication between modules. Heterogeneity is a big concern when dealing with many threads trying to access to

shared memories. Condition variables are excellent choice for inter thread communications, not only because they are fast

but also because they are protected with mutex variables. Therefore, any mutual access to shared memories that are relat-

ed to a condition variable can be avoided. There are two queues in Master and one queue in Worker as discussed in previ-

ous subsection. Many modules may access these queues simultaneously. All modules have their dedicated pointers to a

queue, but some modules use other module‟s pointers to differentiate various situations. To avoid any unnecessary race

condition, there are specific mutex variables for protecting those queue pointers that are accessed with more than one

module.).

4.4 Performance Considerations

This section discusses three important considerations about improving performance in siftD‟s design and implementation.

4.4.1 In Advance Task Fetching

One of the existing problems in distributed systems is over head of data and message communication in under lying net-

work. Compared to internal data transfer inside a computer system, data communication using network facilities can have

a large delay. In order to alleviate negative effects of this problem in siftD, there is a module in Worker that caches data

before it is being needed. Load ahead module always fetches number of requested tasks on worker‟s main memory in ad-

vance. This process can almost completely remove extra network transferring overhead. Beside from network delay, an-

other data transfer delay related issue exists in siftD. Right now memory access inside graphic cards is much faster than

main memory [7]. But transferring data between main memory and graphic cards main memory would create another

overhead. To deal with this concern, Algorithm Manager fetches an extra task for any thread running algorithm on GPU to

graphic memory while another task is been running.

4.4.2 Adaptable Worker Selection

Job and Big job manger modules use same function, named worker finder, to find an adequate worker for their tasks. The

worker finder function uses three measures for choosing the right worker to guarantee best possible load balancing in the

system. They include file‟s location in the system, size limitation, and worker‟s business. First priority for choosing right

worker for a job is its pertaining file‟s location. Worker finder tries to appoint a job to a worker that already holds job‟s file.

14 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 2010

As discussed earlier, each worker has one or two size limitations attributed to it. If worker‟s size limitation is close to file

size the best possible performance could be reached. Therefore worker finder tries to choose worker with closest size limi-

tation to a file size. Business is calculated based on workers resources and number of jobs already appointed to the worker.

A worker‟s resources are represented with an integer number, which is calculated based on number processors, GPUs, and

their properties. There is a maximum for number of jobs that can be appointed to a single worker that is calculated based

on workers business. In order to avoid starvation for bigger jobs, worker finder always reserves 20 percent of “reserved

workers” capacity for doing bigger jobs. Reserved workers are the ones that their size limitation is 80 percent of maximum

size limitation. When Job Manager and Big Job Manager call worker finder, if all workers would be in full capacity (busi-

ness), they will sleep until there is at least one worker for appointing jobs.

4.4.3 Appropriate Large Picture Partitioning

Different methods can be used to partition large images for computing SIFT features [7][8] [9]. According to the results

presented in previous works and our studies, the best way that it can be done in a distributed system is plaid partitioning.

It gives better load sharing while maintaining descriptors‟ matching accuracy. But more importantly, this method of seg-

menting has far greater scalability compared to other methods. To maximize scalability, partitions should have equal size

and they should be as squared shaped as possible. Number of part for an image is calculated using (3):

In this equation: „h‟ and „w‟ are image‟s height and width, and 𝑢 is size of one partition (size limitation). Now for calculat-

ing number of horizontal and vertical intersections in image, (4) and (5) are used:

But „hf‟, and „wf‟ are real numbers, which means when they have decimal parts we are force to divide picture into same

size squared shaped parts (for absolute part) and rectangular shaped parts (for decimal part). This is not reasonable since

it would decrease scalability and accuracy. Instead, we use their closest integral multiply to „f‟ for partitioning the image.

Considering floor and ceil functions for mapping real to integral numbers, there is four possible integral multiply for two

real numbers: 1. ceil(hf)×ceil(wf); 2. ceil(hf)×floor(wf); 3. floor(hf)×ceil(wf); 4. floor(hf)×floor(wf). The integral pairs, which

have closest multiply to „f‟ value, is chosen for partitioning.

𝑓 =
ℎ ∗ 𝑤

𝑢
 (3)

ℎ𝑓 = √
ℎ

𝑤
∗ 𝑓 (4)

𝑤𝑓 = √
𝑤

ℎ
∗ 𝑓 (5)

AUTHOR: TITLE 15

4.5 Failure Handling

Failure handling is an important issue in any computer system especially distributed systems. We have classified failures

to three distinct categories: 1) Costumery failures; 2) Problematic failures; 3) Fatal failures.

Costumery failures are those that can easily be predicted and prevented before even happening. For example, occasion-

ally a read/write request to normal or socket file could not be carried out on a single call due to low buffer memory or

small Maximum Transfer Unit. These type of failures are addressed with simple precautionary mechanisms, for example

read/write request for a file is carried more than once if required until entire file is been transferred.

Second types of failures are simple failures that cannot be predicted or they have been neglected, either way there is no

precautionary mechanism to prevent them. These failures would not disturb entire task flow in system, for example file

transfer in network can fail for many unpredictable reasons. These failures are get logged in a permanent file for future

reference. There are mechanisms in the system that each of them can deal with a group of these failures, for example if a

file transfer in network fails, it will get transferred again.

Fatal failures are different from first two types of failures. They cannot be easily dealt with and can have catastrophic ef-

fect on entire execution flow in the system. There are three types of fatal failure: 1) Process fatal failure; 2) Node fatal fail-

ure; 3) Network fatal failure. Every major component of siftD runs on separate process. They could cease running due to

unpredictable events. We can arrange for processes to automatically be restarted after failure through UNIX „init‟ process.

Master and Workers record all critical data pertaining to queues‟ status and vital variables occasionally, consequently,

they can recover their entire process state when restart after a fatal failure. Distributed file system can revive itself partial-

ly. It records those status data that are related to partitioning images but not the data related to file transfer. If DFS fails

during a file transfer, it would not transfer file again after reviving itself rather than it waits for a new file transfer request.

In a node failure an entire computer station in the network would stop working temporarily or permanently. Tempo-

rary nodes failures, like a system restart, are similar to process failure. On the other hand, when a permanent (or long

term) failure happens to a node, its resources cannot be used anymore. Task Manager in Master can detect this type of

failure with two mechanisms: 1) Not receiving advertisement messages from particular Worker after a deadline; 2) Sets

timer for each job, which expires after a deadline. First mechanism can detect node failure relating to stations running

Workers and second one can detect node failure relating to stations running DFSs. When a possible node failure is detect-

ed, jobs appointed to worker running in that node are reappointed to other workers by managers. There is no recovery

procedure for failure that happens for node running the Master. Network failures are very similar to station failures. But a

single network failure could affect more than one node all at once. Nonetheless, their recovery procedures are the exactly

like node failure.

16 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 2010

5 EVALUATIONS AND RESULTS

This section presents tests results for evaluating siftD performance and its capability to utilize different hardware resources.

Tests were completed using Ubuntu 12.04 operating system, nevertheless, system has been tested on some other operating sys-

tems, like CentOS 6, for portability check.

5.1 Heterogeneity

SiftD was tested using numerous hardware platforms to evaluate its capacity to harness various resources. Images set

used in this test are shown in Table. I. Table. II shows all hardware configuration properties used in the test. Notice that

configuration No. 3 is actually a network of five computer stations each with a 2 core multi-core processor (hence 2 × 5

core in total). Also configuration No. 6 is a combination of No. 3 and No. 4 (a single station with both CPU and GPU). Sim-

ilarly No. 7 is a combination of No. 1 and No. 5. Finally, Last configuration is combination of all systems (No. 2, No. 6, and

No. 7). All systems were connected using 100Mb Ethernet network connections.

TABLE 2

VARIOUS HARDWARE CONFIGURATIONS FOR HARDWARE UTILIZATION CAPABILITIES EVALUATION

Memory Number of
Cores

Processor Config

4 GB DDR3 4 Intel core i-7 4700MQ No. 1

4 GB DDR3 4 Intel core i-7 2600 No. 2

1 GB DDR3 Graphic NVidia GeForce 440GT No. 3

2×4 GB DDR3 2 × 5 Intel core i-3 2100 × 5 No. 4

2 GB DDR5 Graphic NVidia GeForce 750M No. 5

4 GB DDR3 +

1 GB GDR3

4 + Graphic Intel core i-7 2600 &

NVidia GeForce 440GT

No. 6

4 GB DDR3 +
2 GB GDR5

4 + Graphic Intel core i-7 4700MQ &
NVidia GeForce 750M

No. 7

Various various All (various) No. 8

Figure. 5. Return time for handling arbitrary jobs with five hardware configuration in Table II.

AUTHOR: TITLE 17

Results are shown in Fig. 5. You can see using more computing power results in smaller processing time. It is obvious

that system has great capability to utilize different hardware configurations in parallel.

5.2 Productivity

In order to evaluate siftD‟s productivity, we preferred to use computer stations with identical hardware configuration.

Using a network of identical nodes is more meaningful for evaluating productivity and makes assessments simpler. Each

node used in this test have same configuration as configuration No. 4 in Table. II, except for in this test only one processing

core in each node was used. Table III. shows processing time of image set in Table I. for different number of stations run-

ning siftD.

TABLE 3

 RETURN TIME FOR HANDLING ARBITRARY JOBS WITH DIFFERENT NUMBER OF COMPUTER NODES.

5 4 3 2 1 Number of Stations

158 199 263 401 749 Processing Time

Equation (1) was used to calculate system’s performance, notice that processing time for a single station is considered as base

measure:

In this equation, Pn and tn respectively are productivity and time complexity of system when using N number of sta-

tions; t1 is time complexity for a single station. Figure 6 shows system productivity for using different number of stations.

General productivity is higher than 93 percent, which could be considered satisfactory. The slight discrepancy in perfor-

mance can be attributed to disruptions in load balancing and file transfer in the network. Higher performance could be

reached using a better load balancing and faster network connections.

Figure. 6. SiftD’s productivity for handling arbitrary jobs with different number of computer nodes.

5.3 Gigantic Pictures

System throughput for handling gigantic picture was evaluted by processing a large picture. The Image used in this test

𝑃 =
𝑡

𝑡 × 𝑛
× 100 (6)

18 IEEE TRANSACTIONS ON XXXXXXXXXXXXXXXXXXXX, VOL. #, NO. #, MMMMMMMM 2010

was a deep space picture with the size of 7000 × 9000 (63 mega pixel), which was derived from the Hubble Telescope web-

site [28]. Table IV shows times recorded for processing this image by incremental number of stations. Fig. 6. depicts system

productivity, which are calculated same as before. The results show that siftD has high capability to handle large images

with modest productivity. Performance discrepancies in this case are much lower than handling arbitrary jobs. This is due

to the fact that load balancing is much better. Since all tasks are parts of a single images and they are all same size, there-

fore, load balancing naturally becomes more appropriate compared to handling arbitrary jobs.

TABLE. 4

 PROCESSING TIME RESULTS WHEN USING DIFFERENT NUMBER OF STATIONS

5 4 3 2 1 Number of Stations

143 179 238 356 674 Processing Time

Figure. 7. SiftD’s productivity for handling a gigantic picture with different number of computer nodes.

6 CONCLUSION

In this paper, we presented a specialized distributed application for distributing SIFT algorithm. SIFT is a popular image feature

extraction algorithm. SiftD is able to utilize both CPUs and GPUs. Its implementation and architecture were discussed in details.

Although, there are general purpose distributed frameworks that can be utilize to develop a distributed application for SIFT, but

we preferred to implement an application from scratch. General-purpose frameworks are better suited for simple algorithms and

associated data sets with limited dependency. On the other hand, for applications involving complex algorithms and high data

dependency, it is better to design and implement new applications. We described characteristics of SIFT algorithm and its asso-

ciated data. SIFT algorithm is not suited to be distributed with general purpose frameworks. We evaluated siftD’s productivity

and throughput. Test results showed siftD has high capacity for utilizing various hardware architectures. Its productivity is gen-

erally higher than 93 percent. We did not use high performance network connections, therefore, this is an adequate performance.

We could gain better performance utilizing more sophisticated hardware systems and better load balancing. Furthermore, siftD is

able to handle processing giant image appropriately.

AUTHOR: TITLE 19

ACKNOWLEDGMENTS

The authors would like to thank Yazd University’s computing & computer center for providing them with proper facilities used in this re-

search.

REFERENCES
[1] D.S. G. Coulouris, J. Dollimore, T. Kindberg and G. Blair, Distributed Systems: Concepts and Design, Fifth Edition, Addison Wesley, 2011.

[2] Sukumar Ghosh: Distributed Systems: An Algorithmic Approach, 2006 CRC Press (ISBN 1584885645)

[3] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
[4] M. S. Mohammadi, M. Rezaeian, “Towards Affordable Computing: SiftCU A Simple but Elegant GPU-Based Implementation Of SIFT,” International

Journal of Computer Applications, vol. 90, no. 7, pp. 30-37, 2014.

[5] A. R. Brodtkorba, T. R. Hagen, M. L. Satera, “Graphics processing unit (GPU) programming strategies and trends in GPU computing,” Jurnal of Parallel
and Distributed Computing, vol. 73, no. 1, pp. 4-13, 2013.

[6] A. Vedaldi, “siftpp,” 2006. [Online]. Available: http://www.vlfeat.org/~vedaldi/code/siftpp.html.

[7] Guiyuan Jiang, Guiling Zhang and Dakun Zhang, “A Distributed Dynamic Parallel Algorithm for SIFT Feature Extraction,” in 3rd International Symposi-
um on Parallel Architectures, Algorithms and Programming (PAAP), pp.381-385, 2010.

[8] Stanislav Bobovych, “Parallelizing Scale Invariant Feature Transform On A Distributed Memory Cluster”, inquiry, The University of Arkansas Under-

graduate Research Journal, vol. 12, pp. 42-48, 2011.

[9] Mingling Zheng, Zhenlong Song, Ke Xu, Hengzhu Liu, “Parallelization and Optimization of SIFT Feature Extraction on Cluster System.” In Conference

on World Academy of Science, Engineering and Technology,, pp. 273-277, 2012.

[10] H. Feng, E. Li, Y. Chen, and Y. Zhang, “Parallelization and characterization of sift on multi-core systems,” IEEE International Symposium on Workload
Characterization (IISWC’08), pp. 14–23, 2008.

[11] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu, “Sift implementation and optimization for multi-core systems,” IEEE International Symposium on Parallel and

Distributed Processing (IPDPS 2008), pp. 1–8, 2008.
[12] Seth Warn, Wesley Emeneker , Jackson Cothren,Amy Apon, “Accelerating SIFT on Parallel Architectures,” in IEEE International Conference on Cluster

Computing and Workshops (CLUSTER’09), pp.1-4. 2009.
[13] F. Remondino, “Detectors and descriptors for photogrammetric applications,” International Archives of the Photogrammetry, Remote Sensing and Spatial

Information Sciences, vol. 36, no. 4, pp. 49-54, 2006.

[14] Heymann, S., Muller, K., Smolic, A., Froehlich, B., Wiegand, T., “SIFT Implementation and Optimization for General-Purpose GPU,” In International
Conference in Central Europe on Computer Graphics, Visualization and Computer Vision (WSCG), Plzen, Czech Republic, 2007.

[15] Y. Huang, J. Liu, M. Tu, S. Li and J. Deng, “Research on CUDA-based SIFT Registration of SAR Image,” in Fourth International Symposium on Parallel

Architectures, Algorithms and Programming (PAAP), Tianjin, 2011.
[16] T. Yamazaki, T. Fujikawa and J. Katto, “Improving the performance of SIFT using Bilateral Filter and its application to generic object recognition,” in

2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Kyoto, 2012.

[17] Y. YANG and W. CHEN, “Parallel Algorithm for Moving Foreground Detection in Dynamic Background,” in Fifth International Symposium on Compu-
tational Intelligence and Design, Hangzhou, 2012.

[18] K.A. Peker, "Binary SIFT: Fast image retrieval using binary quantized SIFT features," in Content-Based Multimedia Indexing (CBMI), 2011 9th Interna-

tional Workshop on, Madrid, Spain, 2011.
[19] N. Zhen-Sheng, "Binary SIFT: Fast image retrieval using binary quantized SIFT features," in Digital Home (ICDH), 2012 Fourth International Conference

on, Guangzhou, China, 2012.

[20] C. Liang-Chi, C. Tian-Sheuan, C. Jiun-Yen, N.Y.C. Chang, "Fast SIFT Design for Real-Time Visual Feature Extraction," Image Processing, IEEE Trans-
actions on , vol. 22, no. 8, pp. 3158-3167, 2013.

[21] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” in OSDI'04: Sixth Symposium on Operating System Design and

Implementation, San Francisco, CA, 2004.
[22] The Apache Software Foundation, “Hadoop Home,” Available: http://hadoop.apache.org, Online, 2014.

[23] R. Power and J. Li, “Piccolo: Building Fast, Distributed Programs with Partitioned Tables,” in OSDI'10 Proceedings of the 9th USENIX conference on

Operating systems design and implementation, Berkeley, CA, USA, 2010.
[24] C. Mitchell, R. Power and J. Li, “Oolong: asynchronous distributed applications made easy,” in APSYS 12 Proceedings of the Asia-Pacific Workshop on

Systems, Seoul, South Korea, 2012.

[25] C. Mitchell, Y. Geng and J. Li, “Using One-Sided RDMA Reads to Build a Fast, CPU-Efficient Key-Value Store,” in USENIX ATC'13 Proceedings of the
2013 USENIX conference on Annual Technical Conference, Berkeley, CA, USA, 2013.

[26] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden and M. Stonebraker, "A comparison of approaches to large-scale data analysis," in

SIGMOD 09: Proceedings of the 35th SIGMOD international conference on Management of data, New York, NY, USA, 2009.
[27] IEEE standards association, “POSIX Home,” Available: http://standards.ieee.org/develop/wg/POSIX.html, Online, 2014.

[28] Hubble Site, “Hubble Image Ghallery,” [Online]. Available: http://hubblesite.org/newscenter/archive/releases/2014/05/image/b/. [Accessed 2014].

