Minimum Level Nonplanar Patterns for Trees

J. Joseph Fowler^ and Stephen G. Kobourov*
Department of Computer Science, University of Arizona
\{jfowler,kobourov\}@cs.arizona.edu

Abstract

We add two minimum level nonplanar (MLNP) patterns for trees to the previous set of tree patterns given by Healy et al. [3]. Neither of these patterns match any of the previous patterns. We show that this new set of patterns completely characterize level planar trees.

1 Introduction

Level graphs model hierarchical relationships. A level drawing has all vertices of the same level with the same y-coordinates and all edges strictly y-monotonic. Level planar graphs have level drawings without edge crossings. Hierarchies are special cases in which every vertex is reachable via a y-monotonic path from a source at the top level. Many natural hierarchies occur in the sciences including biological taxonomies, linguistic universal grammars, object-oriented design, multi-tiered social structures, and mathematical hierarchies.

Planar graphs are characterized by forbidden subdivisions of K_{5} and $K_{3,3}$ by Kuratowksi's Theorem [7]. The counterpart of this characterization for level planar graphs are the minimum level nonplanar (MLNP) patterns proposed by Healy, Kuusik, and Liepert [3]. A minimal obstructing subgraph with a set of level assignments forcing a crossing constitutes a MLNP pattern.

While Jünger et al. provide linear time recognition and embedding algorithms [5, 6] for level planar graphs, swapping the vertices between levels while maintaining planarity can be difficult. Heath and Rosenberg showed that deciding if a planar graph has a proper k-leveling is NP-hard [4]. Finding a matching subgraph of a MLNP pattern can provide a set of candidate vertices to reassign to different levels in order to achieve planarity. Such a method could improve existing hierarchical approaches to drawing directed acyclic graphs (DAGs), such as Sugiyama's algorithm [8] that greedily assigns vertices to levels.

Di Battista and Nardelli [1] provided three level nonplanar patterns for hierarchies (HLNP patterns); cf. Fig. 3. These patterns each consist of three (not necessary) disjoint paths linking a pair of levels that are joined by three pairwise disjoint bridges. If none of the linking paths cross, this condition forces a crossing between one or more bridges. Di Battista et al. showed these HLNP patterns were a necessary and sufficient condition for level nonplanar hierarchies. Since these patterns are sufficiently general, they can be extended to determine when level graphs are nonplanar. Healy et al. refined these HLNP patterns into a set of MLNP patterns for level graphs. However, the completeness of their characterization was based on the claim that all MLNP patterns must contain a HLNP pattern. This claim does not hold for the counterexample we provide.

[^0]

Fig. 1. Labelings preventing the forbidden ULP trees T_{8} and T_{9} from being level planar.
Estrella et al. [2] characterized the set of unlabeled level planar (ULP) trees on n vertices that are level planar over all possible n ! labelings of the vertices from 1 to n in terms of the forbidden trees T_{8} and T_{9} in Fig. 1. The given labelings were used to show that these trees are level nonplanar. Each vertex is assigned to its own level so that its y-coordinate is based on its level. The level nonplanar assignment for T_{9} can be shown not to match any of the three HLNP patterns. This forms the basis of our counterexample. For every set of three paths linking any pair of levels in T_{9}, two of the three linking paths always has a bridge that shares a vertex with the other path. This violates the condition that forces a crossing between the third linking path and the bridge. As a result, this level nonplanar tree does not match any of the MLNP patterns given by Healy et al.

Healy et al. provides two of the MLNP patterns, P_{1} and P_{2}, for trees that each contain a HLNP pattern; cf. Fig. 2(a) and (b). Both have three disjoint paths linking the top and bottom levels with the three pairwise bridges that form a subdivided $K_{1,3}$. We provide two more MLNP patterns, P_{3} and P_{4} for level nonplanar trees; cf. Fig. 2(c) and (d) based upon T_{9}. Both of these patterns consist of two paths that have a common vertex x or subpath $x \rightsquigarrow y$ that lies between two intermediate levels. A crossing is forced between the two paths since x or $x \rightsquigarrow y$ must lie between two different sections of path that they are on in order to avoid a self-crossing of that path.

Fig. 2. Four minimum level nonplanar (MLNP) patterns for level nonplanar trees.

2 Preliminaries

A k-level graph $G(V, E, \phi)$ on n vertices has leveling $\phi: V \rightarrow[1 . . k]$ where every $(u, v) \in E$ either has $\phi(u)<\phi(v)$ if G is directed or $\phi(u) \neq \phi(v)$ if G is undirected. This leveling partitions V into $V_{1} \cup V_{2} \cup \cdots \cup V_{k}$ where the level $V_{j}=\phi^{-1}(j)$ and $V_{i} \cap V_{j}=\varnothing$ if $i \neq j$. A proper level graph only has short edges in which $\phi(v)=\phi(u)+1$ for every $(u, v) \in E$. Edges spanning multiple levels are long. A hierarchy is a proper level graph in which every vertex $v \in V_{j}$ for $j>1$ has at least one incident edge $(u, v) \in E$ to a vertex $u \in V_{i}$ for some $i<j$.

A path p is a nonrepeating ordered sequence of vertices $\left(v_{1}, v_{2}, \ldots, v_{t}\right)$ for $t \geq 1$. Let $\min (p)=\min \{\phi(v): v \in p\}, \max (p)=\max \{\phi(v): v \in p\}$, and $\mathcal{P}(i, j)=\{p: p$ is a path where $i \leq \min (p)<\max (p) \leq j\}$ are the paths between levels V_{i} and V_{j}. A linking path, or link, $L \in \mathcal{L}(i, j)$ is a path $x \rightsquigarrow y$ in which $i=\min (L)=\phi(x)$ and $\max (L)=\phi(y)=j$, and $\mathcal{L}(i, j) \subseteq \mathcal{P}(i, j)$ are all paths linking the extreme levels V_{i} and V_{j}. A bridge b is a path $x \rightsquigarrow y$ in $\mathcal{P}(i, j)$ connecting links $L_{1}, L_{2} \in \mathcal{L}(i, j)$ in which $b \cap L_{1}=x$ and $b \cap L_{2}=y$.

Theorem 1 (Di Battista and Nardelli [1]) A hierarchy $G(V, E, \phi)$ on k levels is level planar if and only if there does not exist three paths $L_{1}, L_{2}, L_{3} \in \mathcal{L}(i, j)$ linking levels V_{i} and V_{j} for $1 \leq i<j \leq k$ where one of the following hold:
(a) Links L_{1}, L_{2}, and L_{3} are completely disjoint and pairwise connected by bridges b_{1} from L_{1} to L_{3}, b_{2} from L_{2} to L_{3}, and b_{3} from L_{2} to L_{3} such that $b_{1}, b_{2}, b_{3} \in \mathcal{P}(i, j)$ and $b_{1} \cap L_{2}=b_{2} \cap L_{1}=b_{3} \cap L_{1}=\varnothing$; cf. Fig. 3(a).
(b) Links L_{1} and L_{2} share a path $C=L_{1} \cap L_{2} \in \mathcal{P}(i, j)$ starting from endpoint p in V_{i} or V_{j} that is disjoint from $L_{3}, L_{1} \cap L_{3}=L_{2} \cap L_{3}=\varnothing$, connected by bridges b_{1} from L_{1} to L_{3} and b_{2} from L_{1} to L_{3} such that $b_{1}, b_{2} \in \mathcal{P}(i, j)$ and $b_{1} \cap L_{2}=b_{2} \cap L_{1}=\varnothing$; cf. Fig. 3(b).
(c) Links L_{1} and L_{2} share a path $C_{1}=L_{1} \cap L_{2} \in \mathcal{P}(i, j)$ starting from endpoint p in V_{i} and links L_{2} and L_{3} share a path $C_{2}=L_{2} \cap L_{3} \in \mathcal{P}(i, j)$ starting from endpoint q in V_{j} such that $C_{1} \cap C_{2}=\varnothing$. Links L_{1} and L_{3} are connected by bridge $b \in \mathcal{P}(i, j)$ such that $b \cap L_{2}=b \cap C_{1}=b \cap C_{2}=\varnothing$; cf. Fig. 3(c).

Fig. 3. The three patterns characterizing hierarchies. Patterns P_{B} and P_{C} are special cases of P_{A}. The dashed curves in (b) and (c) are extraneous paths highlighting the relationship P_{B} and P_{C} have with P_{A}. If the bridge b_{3} in (a) has no edges, then P_{A} contains P_{B} with the extra path $s \rightsquigarrow c$ in (b). Similarly, if both the bridges b_{2} and b_{3} in (c) have no edges, then P_{A} contains P_{C} with the two paths $s \rightsquigarrow c$ and $x \rightsquigarrow d$ in (c).

Any improper level graph can be made proper by subdividing all long edges into short edges. A level drawing of G has all of its level- j vertices in the $j^{\text {th }}$ level V_{j} placed along the track $\ell_{j}=\{(x, k-j) \mid x \in \mathbb{R}\}$, and each edge $(u, v) \in E$ is drawn as a continuous strictly y-monotonic sequence of line segments downwards. A level drawing drawn without edge crossings shows that G is level planar. Any level graph can be made into hierarchy by adding a new source with paths to all vertices unreachable via a y-monotonic path to a source. A pattern is a set of level nonplanar graphs sharing structural similarities. Each graph matching a level nonplanar (LNP) pattern P is level nonplanar. Removing any edge from the underlying graph of a minimum level nonplanar (MLNP) pattern gives a level planar graph. A HLNP pattern P is a LNP pattern in which every matching graph is a hierarchy. The previous theorem gave the set of three HLNP patterns.

3 MLNP Patterns for Trees

We begin by providing an extended set of MLNP patterns for trees.
Theorem $2 A$ level tree $T(V, E, \phi)$ on k levels is minimum level nonplanar if
(1) there are three disjoint paths $L_{1}, L_{2}, L_{3} \in \mathcal{L}(i, j)$ for $1 \leq i<j \leq k$ where P_{A} of Theorem 1 (a) applies and the union of the three bridges $b_{1} \cup b_{2} \cup b_{3}$ forms a subdivided $K_{1,3}$ subtree S with vertex c of degree 3 so that either
(a) c is in V_{i} and a leaf of S is in V_{j} as in Fig. 4(a) or c is in V_{j} and a leaf of S is in V_{i}, or
(b) one leaf of S is in V_{i} and another leaf of S is in V_{j} as in Fig. 4(b), or
(2) there are four paths $L_{1}, L_{2}, L_{3}, L_{4} \in \mathcal{L}(i, j)$ for $1 \leq i<j \leq k$ where L_{1} and L_{4} are disjoint, L_{1} and L_{2} join at a vertex in V_{j} to form a path with endpoints in V_{i}, L_{3} and L_{4} join at a vertex in V_{i} to form a path with endpoints in V_{j}, and there exist intermediate levels V_{l} and V_{m} for some $i<l<m<j$ in which either L_{2} or L_{3} consists of three subpaths C_{1}, C_{2}, and C_{3} such that $C_{1} \in \mathcal{L}(i, m)(d \rightsquigarrow e$ as in Fig. $4(c)), C_{2} \in \mathcal{L}(l, m)(e \rightsquigarrow f$ as in Fig. $4(c))$, and $C_{3} \in \mathcal{L}(l, j)(f \rightsquigarrow g$ as in Fig. $4(c))$, so that
(c) $L_{2} \cap L_{3}=x$ where $l \leq \phi(x) \leq m$ as in Fig. $4(c)$, or
(d) $L_{2} \cap L_{3}=p$ a path $x \rightsquigarrow y$ where $l \leq \phi(x)<\phi(y) \leq m$ as in Fig. 4(d).

Fig. 4. P_{1} of (a) and P_{2} of (b) are MLNP patterns $T 1$ and $T 2$ given by Healy et al. [3], respectively. P_{3} matches T_{9} in Fig. 1. P_{4} splits the degree 4 vertex x of P_{3} into path $x \rightsquigarrow y$.

Fig. 5. The various cases of deleting any edge from pattern P_{3} in (a). The dashed curves represent the removed edges.
Proof. The description of patterns P_{1} and P_{2} are more succinctly stated and more closely match notation used in Theorem 1 from [1] than the Healy et al. characterization of MLNP T1 and T2 tree patterns given in Section 3.1 of [3]; see the appendix for the original descriptions of T1 and T2.

To show that P_{1} and P_{2} match the patterns of T1 and T2 is simply a matter of verifying that P_{1} and P_{2} have the four common conditions listed for T1 and T2 and that the specific conditions for each one are satisfied, all of which is immediate from the definitions of P_{1} and P_{2}. To show that T1 and T2 match P_{1} and P_{2} requires applying Lemmas $8,9,10$ in the appendix from [3]. Given that the definitions are equivalent, we apply Theorem 7 in the appendix from [3] to see that P_{1} and P_{2} are indeed minimum level nonplanar.

We delete an edge from each linking path or bridge of P_{3} and P_{4} and show how to avoid a crossing in each case.
(i) If an edge is deleted along $a \rightsquigarrow b$ as in Fig. 5(b), then the remaining path can reside under the path $f \rightsquigarrow g \rightsquigarrow h$ where d is then moved left of b.
(ii) If an edge is deleted along $b \rightsquigarrow x$ as in Fig. 5(c), then the other path can take direct advantage of that gap.
(iii) If an edge is deleted along $d \rightsquigarrow e$ as in Fig. 5(d), then $a \rightsquigarrow b$ is drawn through the gap with d left of b.
(iv) If an edge is deleted along $x \rightsquigarrow c$ as in Fig. 5(e), then $d \rightsquigarrow e$ can be drawn right of $b \rightsquigarrow x$ whereas $f \rightsquigarrow g$ is drawn left.
(v) If an edge is deleted along $e \rightsquigarrow f$ as in Fig. 5(f), then $d \rightsquigarrow e$ is drawn left of $b \rightsquigarrow x$ using the gap to avoid a crossing.
(vi) If an edge is deleted along $f \rightsquigarrow g$ as in Fig. 5(g), then $d \rightsquigarrow e$ is drawn left of $b \rightsquigarrow c$ and $a \rightsquigarrow b$ is drawn through the gap of $f \rightsquigarrow g$.
(vii) If an edge is deleted along $g \rightsquigarrow h$ as in Fig. 5(h), then $d \rightsquigarrow e$ is drawn left of $b \rightsquigarrow c$ that is left of $f \rightsquigarrow g$ and $a \rightsquigarrow b$ drawn through the gap of $g \rightsquigarrow h$.

Fig. 6. P_{3} in (a) is augmented from the top in (b) and from the bottom in (c) to form hierarchies with subtrees matching P_{2} in both (b) and (c).

The argument used by Estrella et al. [2] to show T_{9} is level nonplanar easily generalizes for P_{3} and P_{4}. Finally, we observe that in the description of T1 and T2, that both trees have exactly one vertex of degree 3 . Since both P_{3} has a vertex of degree 4 and P_{4} has two vertices of degree 3 , neither can match P_{1} or P_{2}. Hence, all four MLNP patterns are distinct.

The distinctness of four MLNP patterns shows that P_{3} and P_{4} are counterexamples to the claim of Theorem 15 of Healy et al. [3] that all level nonplanar trees are matched by either T1 or T2. They contended that any level nonplanar graph augmented to form a hierarchy would match the same HLNP pattern before being augmented. We next show why this argument fails for P_{3}.
Lemma $3 P_{3}$ augmented to form a hierarchy has a subtree matching P_{2}.
Proof. Fig. 6 shows the highlighted subtrees that match P_{2} when P_{3} is augmented to form a hierarchy. However, P_{2} does not match P_{3} by Theorem 2.

The next lemma gives the minimal conditions for a MLNP tree pattern.
Lemma $4 A$ level nonplanar $T(V, E, \phi)$ on k levels must contain three disjoint links $L_{1}, L_{2}, L_{3} \in \mathcal{L}(i, j)$ linking levels V_{i} and V_{j} for $1 \leq i<j \leq k$ with bridges b_{1} from L_{1} to L_{2} and b_{2} from L_{2} to L_{3} with $b_{1}, b_{2} \in \mathcal{P}(i, j)$ with endpoints $x=b_{1} \cap L_{2}$ and $y=b_{1} \cap L_{2}$ so that (i) $x=y$, (ii) $\phi(x)>\phi(y)$, or (iii) $\phi(x)<\phi(y)$.

Fig. 7. The three minimal patterns that must be part of any MLNP pattern for trees.

Proof. We observe that these conditions fall short of P_{A} of Theorem 1(a) by only one bridge. By Lemma 10 of [3] in the appendix, P_{A} is the only HLNP pattern that can match a tree. Hence, so our assertion holds for P_{1} and P_{2}, equivalent to T1 and T2, that Lemmas $8,9,10$ of [3] show to be special cases of P_{A}.

Let us assume that we have a MLNP pattern P between levels V_{i} and V_{j} and $|i-j|$ is a minimum. Clearly, P must have three (not necessarily) disjoint paths $L_{1}, L_{2}, L_{3} \in \mathcal{L}(i, j)$ linking levels V_{i} and V_{j}. Otherwise, if there were just two linking paths L_{1} and L_{2}, then there can be no path in $\mathcal{P}(i, j)$ joining the two, since otherwise the path would be part of a third linking path. This implies L_{1} and L_{2} are in separate components contradicting the minimality of P.

At least one of the three paths, say it is L_{2}, must be joined to the other two paths L_{1} or L_{3}, or P would be disconnected again contradicting the minimality of P. If $b_{1} \cap b_{2}$ form a nonempty path, then $b_{1} \cup b_{2}$ would form a subtree homeomorphic to $K_{1,3}$, and either pattern P_{1} or P_{2} of Theorem 2 would result. Thus, b_{1} and b_{2} can share at most one vertex as in P_{α} of Fig. 7(a). Otherwise there must have endpoints $x=b_{1} \cup L_{2}$ and $y=b_{2} \cup L_{2}$ where either $\phi(x)>\phi(y)$ as in P_{β} of Fig. 7(b) or (iii) $\phi(x)<\phi(y)$ as in P_{γ} of Fig. 7(c). We observe that P_{α} matches P_{3} and P_{γ} matches P_{4}.

We next show that P_{4} is easily derived from P_{3}.
Lemma $5 P_{4}$ is only the distinct MLNP pattern for trees that be formed from P_{3} (by splitting the degree-4 vertex) not containing a subtree matching P_{2}.
Proof. Fig. 8 shows the three ways in which the degree- 4 vertex of P_{3} can be split into two degree-3 vertices. Two of the ways contain subtrees that match P_{2} for intermediate levels.

Applying definition of P_{3} given in Theorem 2, the links L_{2} and L_{3} share a common vertex x as in Fig. 8(a). If x is replaced by a path $x \rightsquigarrow y$, then there are three cases: (i) $L_{2} \cap L_{3}=\varnothing$, (ii) $L_{2} \cap L_{3}=x \rightsquigarrow y$ with $\phi(x)>\phi(y)$, and (iii) $L_{2} \cap L_{3}=x \rightsquigarrow y$ with $\phi(x)<\phi(y)$. For (i) and (ii), P_{2} matches a subtree between levels V_{l} and V_{m} as in Fig. 8(b) and between levels V_{i} and V_{j} as in Fig. 8(c). The final case (iii), which is P_{4}.

We conclude by showing the completeness of our characterization for level nonplanar trees.

Fig. 8. The three ways in which the degree- 4 vertex of P_{3} can be split into two vertices of degree 3, the last of which yields P_{4}. The other two match P_{2}.

Fig. 9. Examples of pattern P_{α} in (a) being augmented to form a hierarchy in (b) and (c).
Theorem 6 A level tree T is level nonplanar if and only if T has a subtree matching one of the minimum level nonplanar patterns P_{1}, P_{2}, P_{3}, or P_{4}.
Proof Sketch: We note as in the case of the proof of Lemma 3 in which P_{3} is augmented to form a hierarchy, one of the HLNP patterns must apply once the pattern has been augmented. Since this augmentation can always be done to avoid introducing a cycle between levels V_{i} and V_{j}, either pattern P_{1} or P_{2} must match a subtree of the augmented pattern by Lemma 10 of [3].

Assume there is a MLNP tree pattern P that matches P_{α} of Lemma 4 that does not match P_{1} or P_{2}. There are several cases to consider how the bridges of P_{α} in P could spans levels between V_{i} and V_{j}. For each case we augment P to form a hierarchy. We only give the simplest case to illustrate how either P must match P_{1} or P_{2} or contain a cycle preventing it from matching a tree. All the other cases are similar variants.

Suppose that neither bridge of the P_{α} in P is strictly y-monotonic. Then P has a bend at e in level V_{l} in one bridge and a bend at f in level V_{m} in the other as in Fig. 9(a) for some $i<l<m<j$. Each bend would require being augmented with a path from the source when forming a hierarchy from above or below as was the case of P_{3} being augmented in Fig. 6.

We augment P with a path $p \rightsquigarrow e$ from V_{i} to V_{l} to form P^{\prime}, a hierarchy, that must match P_{1} or P_{2}. We observe between levels V_{i} and V_{m}, we have four linking paths. A third bridge $u \rightsquigarrow v$ must be present in P^{\prime} that is part of a subtree S homeomorphic to $K_{1,3}$. Fig. 9(b) gives one such example. While P^{\prime} matches P_{2} between levels V_{i} and V_{m}, we see that between levels V_{i} and V_{j}, P must have had the cycle $u \rightsquigarrow v \rightsquigarrow e \rightsquigarrow b \rightsquigarrow u$, contradicting P being a tree pattern. By inspection, any other placement of $u \rightsquigarrow v$ to connect three of the four linking paths to form P_{1} or P_{2} similarly implies a cycle in P.

Hence, P cannot contain any more edges than those of P_{α} without matching P_{1} or P_{2}. We observe that P_{α} consists of two paths sharing a common vertex x. Given the minimality of P in minimizing $|i-j|$, one path has both endpoints in V_{i} with one one vertex in V_{j} that can be split into linking paths $L_{1}, L_{1} \in \mathcal{L}(i, j)$. Similarly, the other has both endpoints in V_{j} with one vertex in V_{i} that can also
be split into the linking paths $L_{3}, L_{4} \in \mathcal{L}(i, j)$. In P_{3} of Fig. 9(a), L_{1} is $a \rightsquigarrow b$, L_{2} is $b \rightsquigarrow d \rightsquigarrow x \rightsquigarrow c, L_{3}$ is $d \rightsquigarrow x \rightsquigarrow f \rightsquigarrow g$, and L_{4} is $g \rightsquigarrow h$.

For P to be level nonplanar, a crossing must be forced between these two paths. This can be accomplished by having L_{2} or L_{3} meet the condition of P_{3} of three subpaths $C_{1} \in \mathcal{L}(i, m)$ linking V_{i} to $V_{m}, C_{2} \in \mathcal{L}(l, m)$ linking V_{l} to V_{m}, and $C_{3} \in \mathcal{L}(l, j)$ linking V_{l} to V_{j}. This is not the case for the P_{α} in Fig. 9(a) since the $x \rightsquigarrow c$ portion of L_{2} does not reach level V_{m}, and the $x \rightsquigarrow d$ portion of L_{3} does not reach level V_{l}. So for P not to match P_{3}, at least one subpath of both L_{2} and L_{3} from x to V_{i} or V_{j} must strictly monotonic as was the case in Fig. 9(a). However, in this case P can always be drawn without crossings. This leaves P_{3} as the only possibility of a MLNP pattern matching P_{α} that does not P_{1} or P_{2}.

4 Conclusion and Future Work

The sufficiency argument of the MLNP patterns used by Healy et al. is flawed in its contention that all MLNP patterns contain a HLNP pattern. Given this flaw, there remains the very likely possibility of the characterization of Healy et al. omitting some MLNP patterns with cycles.

We provided two new MLNP patterns for trees and showed that the new set of four was sufficient. We presented a new approach for showing sufficiency based upon pattern augmentation to form HLNP patterns. However, our approach heavily relied on the underlying graph of the pattern forming a tree and avoiding cycles. For future work remains the open problem of finding the remaining set, if any, of MLNP patterns for graphs with cycles and proving they are sufficient to complete the characterization for all level planar graphs.

References

1. G. Di Battista and E. Nardelli. Hierarchies and planarity theory. IEEE Trans. Systems Man Cybernet., 18(6):1035-1046, 1988.
2. A. Estrella-Balderrama, J. J. Fowler, and S. G. Kobourov. Characterization of unlabeled level planar trees. In Kaufman and Wagner, editors, 14 th Symposium on Graph Drawing (GD), volume 4372 of $L N C S$, pages 367-369, 2006.
3. P. Healy, A. Kuusik, and S. Leipert. A characterization of level planar graphs. Discrete Math., 280(1-3):51-63, 2004.
4. L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM J. Comput., 21(5):927-958, 1992.
5. M. Jünger and S. Leipert. Level planar embedding in linear time. J. Graph Algorithms Appl., 6(1):67-113, 2002.
6. M. Jünger, S. Leipert, and P. Mutzel. Level planarity testing in linear time. In 6 th Symposium on Graph Drawing (GD), pages 224-237, 1998.
7. C. Kuratowski. Sur les problèmes des courbes gauches en Topologie. Fundamenta Mathematicae, 15:271-283, 1930.
8. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hierarchical system structures. IEEE Trans. Systems Man Cybernet., 11(2):109-125, 1981.

Appendix

Characterization of patterns T1 and T2 from Healy et al. in Section 3.1 of [3]:
"Let i and j be the extreme levels of a pattern and let x denote a root vertex with degree 3 that is located on one of the levels i, \ldots, j. From the root vertex emerge 3 subtrees that have the following common properties (see Fig. 2 for illustrations of two typical patterns):

- each subtree has at least one vertex on both extreme levels;
- a subtree is either a chain or it has two branches which are chains;
- all the leaf vertices of the subtrees are located on the extreme levels, and if there is a leaf vertex v of a subtree S on an extreme level $l \in\{i, j\}$ then v is the only vertex of S on the extreme level l;
- those subtrees which are chains have one or more non-leaf vertices on the extreme level opposite to the level of their leaf vertices.

The location of the root vertex distinguishes the two characterizations.
(T1) The root vertex x is on an extreme level $l \in\{i, j\}$ (see Fig. 2(a)):

- at least one of the subtrees is a chain starting from x, going to the opposite extreme level of x and finishing on x 's level;
(T2) The root vertex x is on one of the intermediate levels $l, i<l<j$ (see Fig. 2(b)):
- at least one of the subtrees is a chain that starts from the root vertex, goes to the extreme level i and finishes on the extreme level j; at least one of the subtrees is a chain that starts from the root vertex, goes to the extreme level j and finishes on the extreme level i."
Note that Fig. 2(a) and (b) of [3] correspond to our Figs. 2(a) and (b).
Next we state Theorem 2 and Lemmas 3, 4, and 5 of [3] with slight rewording to match our own terminology and previous theorems.

Theorem 7 (Healy et al. Theorem 2) A subgraph matching either of the two tree characterizations $T 1$ or $T 2$ is MLNP.

Lemma 8 (Healy et al. Lemma 3) If HLNP pattern P_{A} of Theorem 1(a) matches a tree then each one of the paths L_{1}, L_{2}, L_{3} contains only one vertex being the end vertex of a bridge.

Lemma 9 (Healy et al. Lemma 4) If HLNP pattern P_{A} of Theorem 1(a) matches a tree then its bridges must form a subgraph homeomorphic to $K_{1,3}$.

Lemma 10 (Healy et al. Lemma 5) The only HLNP pattern that can be matched to a tree is P_{A} of Theorem 1 .

[^0]: * This work is supported in part by NSF grants CCF-0545743 and ACR-0222920.

