Graphs admitting d-realizers: tree-decompositions and box-representations

William Evans*
Dept. of Computer Science
Univ. of British Columbia
Vancouver, B.C. V6T 1Z4 Canada

Stephen G. Kobourov†
Dept. of Computer Science
University of Arizona
Tucson, AZ, USA

Stefan Felsner‡
Institut für Mathematik
Technische Universität Berlin
D-10623 Berlin, Germany

Torsten Ueckerdt
Department of Mathematics
Karlsruhe Institute of Technology
D-76128 Karlsruhe, Germany

Abstract

A d-realizer is a collection $R = \{\pi_1, \ldots, \pi_d\}$ of d permutations of a set V representing an antichain in \mathbb{R}^d. We use R to define a graph G_R on the suspended set $V^+ = V \cup \{s_1, \ldots, s_d\}$. It turns out that G_R has $dn + \binom{d}{2}$ edges ($n = |V|$), among them the edges of the outer clique on $\{s_1, \ldots, s_d\}$. The inner edges of G_R can be partitioned into d trees such that T_i spans $V + s_i$. In the case $d = 3$ the graph G_R is a planar triangulation and T_1, T_2, T_3 is a Schnyder wood on G_R. The following two results show that d-realizers resemble Schnyder woods in several aspects:

- Complete point-face contact systems of homothetic simplices in \mathbb{R}^{d-1} induce a d-realizer.
- Any spanning subgraph of a graph G with a d-realizer has a d-dimensional proper touching box representation.

We think that d-realizers will prove to be valuable generalization of Schnyder woods to higher dimensions.

Mathematics Subject Classifications (2010) 05C10, 05C62, 06A07,

1 Introduction

We consider \mathbb{R}^d equipped with the dominance order, i.e., for $x, y \in \mathbb{R}^d$ we have $x \leq_{\text{dom}} y$ if and only if $x_i \leq y_i$ for $i = 1, \ldots, d$. A set $P \subset \mathbb{R}^d$ is in general position if no two points of P share a coordinate. If no two points of a set P are in the dominance relation \leq_{dom}, then we call P an antichain. If P is in general position, then the projection to the ith coordinate yields a permutation π_i of P. In compliance with the previous definition, we call a family of permutations π_1, \ldots, π_d of V an antichain if for all $x, y \in V$ there are indices i and j such that x precedes y in π_i and y precedes x in π_j. We use the notation $x \prec_i y$ to denote that x precedes y in π_i.

An antichain V in \mathbb{R}^d is suspended if V contains a suspension vertex for each i, i.e., a vertex $s_i = (0, \ldots, 0, M_i, 0, \ldots, 0)$ and $0 \leq v < M_i$ for all $v \in V \setminus s_i$. Similarly s_i is an i-suspension for π_1, \ldots, π_d if s_i is the last element of π_i and among the first $d-1$ elements in π_j for $j \neq i$. The family π_1, \ldots, π_d is suspended if it has an i-suspension for each $i \in [d]$.

Definition 1 A d-realizer is a suspended antichain π_1, \ldots, π_d of permutations of V^+ where $V^+ = V \cup S$ and $S = \{s_1, \ldots, s_d\}$ is the set of suspensions.

Definition 2 The graph of a d-realizer (π_1, \ldots, π_d) is the graph $G_R = (V^+, E^+)$ with $E^+ = E_R \cup E_S$ where E_S is the set of edges of a clique on S and pairs x, y are edges in E_R if they satisfy two properties:

- (x, y) is a candidate pair : for all $z \neq x, y$ there is an i with $z \prec_i x$ and $z \prec_i y$.

- (x, y) has the 1-of-d-property : there is a unique $i \in [d]$ with $x \prec_i y$, i.e., $y \prec_i x$ for all $j \neq i$.

The definition of Schnyder woods was originally motivated by the study of the order dimension of incidence posets of graphs. In this line of research the following definition was proposed in [5]:

The dimension of $G = (V, E)$ is at most k if there are permutations π_1, \ldots, π_k of V such that each edge $(x, y) \in E$ is a candidate pair.

If G is two-connected, then it follows that π_1, \ldots, π_k is an antichain. The following are known:

- $\dim(G) \leq 3$ iff G is planar (Schnyder [9]).
• $\dim(G) \leq 4 \implies G$ has at most $3/8n^2$ edges.
• Exact values of $\dim(K_n)$ are known for $n < 10^{40}$.

The 1-of-d-property naturally leads to a coloring and an orientation of the edges of G_R: The orientation is $x \to y$ if x precedes y only in a single π_i. The color of $x \to y$ is the index i with $x \prec_i y$. Let T_i be the set of edges of color i.

Note that in the case $d = 3$ the 1:2 property is fulfilled by all candidate edges; this is where Schnyder’s coloring and orientation of edges comes from. Schnyder found that for all i the following two properties hold:
(a) T_i is an in-arborescence with root s_i.
(b) $T_{i-1} + T_{i+1} + T_i^{-1}$ is acyclic.

Figure 1: An example of a 3-realizer and its graph.

In the next section we show that this also holds in the case of a d-realizer. In Section 3 we continue to show how d-realizer can be used to construct proper touching box representations; the $d = 3$ case of this result was obtained in [1]. In Section 4 we connect d-realizers to orthogonal surfaces and show how they arise from touching simplices. We conclude with examples and some open problems.

2 Tree-decompositions

Proposition 1 If G_R is defined by a d-realizer (π_1, \ldots, π_d) and T_i is the set of edges of color i, then T_i is an in-arborescence with root s_i.

Proof. We first show that each $v \in V$ has a unique out-edge in T_i.

Let $H_i(x)$ be the set of all y with $x \prec_i y$ and $y \prec_j x$ for all $j \neq i$, i.e., the set of all y such that (x, y) has the 1-of-d-property. Let $p_i(x)$ be the first element of $H_i(x)$ with respect to π_i, i.e., $p_i(x)$ is the least element of π_i such that $(x, p_i(x))$ has the 1-of-d-property.

Claim a. $(x, p_i(x))$ is a candidate.

Consider $z \neq x, p_i(x)$. Since a d-realizer is an antichain there is some j with $x \prec_j z$. If $j \neq i$, then $p_i(x) \prec_j x$ and by transitivity $p_i(x) \prec_j z$. If the only choice for j is i, then $z \in H_i(x)$ and $p_i(x) \prec_j z$ follows from the choice of $p_i(x)$.

From Claim a. it follows that $(x, p_i(x)) \in T_i$.

Claim b. If (x, y) is a candidate with $y \in H_i(x)$, then $y = p_i(x)$.

Indeed if $y \neq p_i(x)$ then there is no π_j where x and y precede $p_i(x)$. In π_i we have $x \prec_i p_i(x) \prec_i y$ and if $j \neq i$, then $p_i(x) \prec_j x$.

Hence $(x, p_i(x))$ is the only out-edge of x in T_i. Therefore the number of edges of T_i is $|V_i|$. Since T_i is spanning $V + s_i$ it only remains to show that T_i is connected. For $x \in V$ define $x_0 = x$ and for $k \geq 0$ let $x_{k+1} = p_i(x_k)$. This defines a path that moves to the right on π_i; hence it must reach s_i.

Corollary 1 A graph G_R defined by a d-realizer on a vertex set V^+ with $|V^+| = n + d$ has $dn + \binom{d}{2}$ edges.

Proposition 2 If G_R is defined by a d-realizer, then $T_i^{-1} + \sum_{j \neq i} T_j$ is acyclic.

Proof. From the 1-of-d-property it follows that directed edges from T_j with $j \neq i$ point to the left in the order of vertices given by π_i. The same is true if we revert the direction of the edges of T_i, i.e, for the directed edges of T_i^{-1}.

3 Box-representations

Theorem 1 Any spanning subgraph H of a graph G with a d-realizer has a d-dimensional proper touching box representation.

Proof. Let (π_1, \ldots, π_d) be the d-realizer for G. We assume that the order of the first $d - 1$ elements in π_i (these are suspensions) is $(s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_d)$. This has the advantage that for $i < j$ the pair (s_i, s_j) has the 1-of-d-property. The pair is a candidate so we can treat it as a regular edge in T_i.

With rank$_i(x)$ we denote the position of x in π_i, i.e., if we think of π_i as a bijective map $\pi_i : [n + d] \to V^+$, then rank$_i(x) = \pi_i^{-1}(x)$. For each x and i we need rank$_i(p_i(x))$. For a suspension s_i and all $j \leq i$ we assume the value $n + d + 1$ for the strictly speaking undefined expression rank$_i(p_i(s_i))$.

We first show how to represent G. The box for vertex x in G is $B(x) = \prod_{i=1}^{d} \{\text{rank}_i(x), \text{rank}_i(p_i(x))\}$.

We need to show proper contact between the box $B(x)$ and the box $B(p_i(x))$ for all i. Let $y = p_i(x)$. Since the projection to $B(x)$ and $B(y)$ to dimension i share the point rank$_i(y)$, it suffices to show that rank$_i(x) \in (\text{rank}_i(y), \text{rank}_i(p_i(y)))$ for all $j \neq i$. By the 1-of-d-property, rank$_i(x) < \text{rank}_i(x)$ for all $j \neq i$. So it suffices to check that rank$_i(x) < \text{rank}_i(p_i(y))$ for all $j \neq i$.

Let $z = p_j(y)$ and suppose $z \prec_j x$. By the 1-of-d-property, $z \prec_k y$ for all $k \neq j$. Since $y \prec_k x$ for all $k \neq i$ transitivity implies that $z \prec_k x$ for all $k \neq i, j$ and by supposition also for $k = j$. Since a d-realizer is an antichain we can conclude that $x \prec_i z$.
the order dimension of face lattices of 3-polytopes [2].
In fact the dominance order of critical points (max-
ima, minima, and saddle points) of a 3-dimensional
orthogonal surface that is generated by a suspended
antichain is the truncated face lattice of a 3-polytope
with one facet removed. The converse also holds: ev-
ery 3-polytope with a facet, selected for removal, has
a corresponding orthogonal surface.

The Brightwell-Trotter theorem is an important
generalization of Schnyder’s dimension theorem.
Since orthogonal surfaces can be considered in arbi-
trary dimensions they provide a direction for general-
izing Schnyder structures to higher dimensions. This
approach has been taken in [4]. The strongest result in
the area is a theorem of Scarf [8] that can be restated
as follows: the dominance order of critical points of
a d-dimensional orthogonal surface that is generated
by a suspended antichain in general position is the
truncated face lattice of a simplicial d-polytope with
one facet removed. However, the general situation is
not nearly as nice as in 3-dimensions. There are sim-
plicial d-polytopes that do not have a corresponding
orthogonal surface and if we allow general position
the dominance order of critical points need not even be a
truncated lattice [4].

The orthogonal surface view for graphs given by a
d-realizer R is as follows: Embed vertex v at the point
p_v whose coordinates are the ranks of v in the realizer.
The out-neighbor of v in color i is the vertex w whose
cone C(p_w) is first hit by the ray leaving p_v in the i-th
coordinate direction.

In the 3-dimensional case we can embed every tri-
angulation (graph with a 3-realizer) on an orthogonal
surface S_V with a coplanar V, i.e., all p ∈ V lie in
a plane h with normal \(\mathbf{f} = (1, 1, 1) \). Identifying h
with \(\mathbb{R}^3 \) we can find the three edges of a vertex v by
growing homothetic equilateral triangles with a cor-
ner in v until they hit another vertex; Fig. 4 shows an
example.

4 Orthogonal surfaces and simplizes

In this section we take a more geometric look at the
graphs of d-realizers.

With a point \(p \in \mathbb{R}^d \) we associate its cone
\(C(p) = \{ q \in \mathbb{R}^d : p \leq_{\text{dom}} q \} \). The filter \(\langle V \rangle \) generated by V is
the union of all cones \(C(v) \) for \(v \in V \). The orthogonal
surface \(S_V \) generated by V is the boundary of \(\langle V \rangle \). A
point \(p \in \mathbb{R}^d \) belongs to \(S_V \) if and only if \(p \) shares a
coordinate with all \(v \leq_{\text{dom}} p, v \in V \). The generating
set \(V \) is an antichain if and only if all elements of \(V \)
appear as minima on \(S_V \).

Miller [7] observed the connection between Schny-
der woods and orthogonal surfaces in \(\mathbb{R}^3 \). He and sub-
sequently others [3, 6] used orthogonal surfaces to give
new proofs for the Brightwell-Trotter theorem about

Figure 2: The proper touching box representation of
the graph from Fig. 1 obtained with our method.

It now happens that \((x, z)\) and \((x, y)\) both have the
1-of-d-property and \(x \prec_i z \prec_i y \). This however con-
tradicts the choice of \(y = p_i(x) \) as the least element of
\(\pi_i \), such that \((x, y)\) has the 1-of-d-property. Therefore
\(x \prec_i z \) as needed for the box contact.

To represent a subgraph of \(G \), remove unneced
boxes and edges from the box representation. To get
rid of an edge \((x, p_i(x))\) change the extent of \(B(x) \) in
dimension \(i \) to \([\text{rank}_i(x), \text{rank}_i(p_i(x)) - \varepsilon]\).

Figure 3: Two orthogonal surfaces in \(\mathbb{R}^3 \): the left one
is generated by a suspended antichain in general posi-
tion; the antichain generating the right one is neither
suspended nor in general position.

Figure 4: The graph from Fig. 1 on a coplanar orthog-
nal surface and a sketch illustrating how to recover
the out-edges of a vertex from the generating set of
points in the plane.

In the same way we may use a set of points in \(d \)-
space and the homothets of a \(d \)-simplex to build a
graph from the class defined by \((d+1)\)-realizers. The
details are as follows: Let \(\Delta \) be a fixed \(d \)-simplex in \(\mathbb{R}^d \)
and let P be a set of points such that no hyperplane parallel to a facet of Δ contains more than one point (this is the appropriate general position assumption). Let S be the set of corners of a homothet of the dual of Δ that contains P, this is the set of suspensions. Now, for each point $p \in P$ and each corner x of Δ find the unique point q such that there is a homothety that maps Δ to Δ' such that (1) Δ' has no point of P in the interior (2) x is mapped to p and (3) q is on the boundary of Δ'. This condition characterizes the edges $x \rightarrow y$ of color x in the graph $G_{\Delta}(P)$.

Problem 1 Let G be the graph of a d-realizer. Is it always possible to find a point set P in \mathbb{R}^{d-1} such that $G = G_{\Delta}(P)$?

There is one class of graphs where we know that the answer to the problem is yes. These are the skeleton graphs of d-dimensional stacked polytopes, also known as simple d-trees. For these graphs the point set P can be constructed along the stacking (construction) sequence.

In fact, besides this class we know only a few examples of graphs that have a d-realizer with $d > 3$. We know that unlike in the $d = 3$ case we also have non-simple d-trees in the class: Consider a simple d-tree with realizer (π_1, \ldots, π_d) and let x be vertex with $\deg(x) = d$, for example the last vertex of the construction sequence has this property. Add a new vertex x' by placing it immediately before x in π_1 and π_2 and immediately after x in all the other π_j. It is easily seen that x and x' have the same neighbors in the same colors, in particular they are stacked over the same clique.

Problem 2 Characterize the d-trees that have a d-realizer.

Problem 3 Find meaningful examples and families of graphs that have a d-realizer.

Regarding the recognition of graphs that have a d-realizer, we have the criterion that to qualify, a graph G must contain a d-clique of suspensions such that there is an orientation of the edges of G with $\text{out-deg}(x) = d$ for all non-suspensions x.

Problem 4 Find additional obstructions against having a d-realizer.

Another situation where induced subgraphs of graphs with a d-realizer appear is given by families of interiorly disjoint pairwise homothetic d-simplices in d-space with vertex-facet incidences. To produce a d-realizer for a supergraph add a small tetrahedron over each vertex that does not take part in a vertex-facet contact and then use the directions of outward pointing normals of the facets to list the tetrahedra.

Problem 5 Is it possible to realize every simple d-tree as vertex-facet contact graph of homothetic simplices in \mathbb{R}^d?

Acknowledgments

We started the research reported in this paper during the Bertinoro Workshop on Graph Drawing 2013.

References

