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1 Introduction24

A plane graph is a planar graph together with a crossing-free drawing. Let G25

be a plane graph and let F ′ be its set of inner faces. An area assignment is an26

assignment of a non-negative real number to every face f ∈ F ′, i.e., a function27

A : F ′ → R+
0 . A (potentially degenerate) planar straight-line drawing D of G28

realizes the area assignment A if for every f ∈ F ′ the area of f in D is A(f).29

A plane graph G is area-universal if it has a realizing drawing for every area30

assignment A.31

Ringel [18] considered straight-line drawings of plane graphs such that all32

faces have the same area. He gave an example of a plane triangulation that33

has no equiareal drawing, hence, a triangulation which is not area-universal.34

Thomassen [19] proved that plane cubic graphs are area-universal. Biedl and35

Velázquez [3] showed area-universality for the class of plane 3-trees, also known36

as stacked triangulations and Apollonian networks. Concerning counter exam-37

ples, Kleist [12, 13] introduced a simple counting argument to show that no38

Eulerian triangulation is area-universal. Moreover, she showed that every plane39

graph is area-universal in the class of drawings where one bend per edge is40

allowed. For triangulations with special vertex orders, Kleist [14] presented a41

sufficient criterion for their area-universality that only requires the investiga-42

tion of one area assignment. Interestingly, if the sufficient criterion applies to43

one plane triangulation, then all embeddings of the underlying planar graph are44

also area-universal. Dobbins et al. [6] investigated the complexity of deciding45

whether a given graph is area-universal and several related problems. They46

conjecture that the problem is complete for the complexity class ∀∃R.47

In this paper, we focus on plane bipartite graphs. Because the property of48

area-universality is preserved under edge-deletions (see also Observation 1), we49

consider edge-maximal plane bipartite graphs known as quadrangulations. Re-50

garding the area-universality of quadrangulations little is known. Evans et al. [9]51

showed that the m×n grid is area-universal for all m,n ≥ 2, even with the addi-52

tional requirement that the outer face of the drawing is a rectangle. Kleist [12]53

showed that 2-degenerate quadrangulations are area-universal and that in the54

class of drawings where one bend per edge is allowed all quadrangulations have55

realizing drawings for all area assignments where only half of the edges have a56

bend.57

The study of drawings in various drawing modes with prescribed face areas58

is summarized under the name cartograms. Cartograms date back to at least59

1934 when Raisz [17] studied rectangular population cartograms, where the US60

population was visualized by representing the states with areas proportional to61

their population. This kind of visualization is particularly useful when showing62

geo-referenced statistical data in order to provide insight into patterns, trends63

and outliers in the world around us [22]. Cartograms have been intensely studied64

for duals of triangulations and rectilinear drawings with bends. The number of65

sides of the polygons representing a face has been improved in a series of papers66

from 40 sides [5], to 34 sides [11], to 12 sides [2]. Finally, Alam et al. [1] showed67

how to construct drawings with 8-sided faces, which is known to be optimal.68
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Chang and Yen [4] studied contact representations of 2-connected outerplaner69

graphs and construct contact representations with 4-gons of prescribed area.70

Note that in the cartogram literature the problem is usually treated in the71

dual setting, i.e., weights are assigned to the vertices. We refer to Nusrat and72

Kobourov [16] for a survey of the cartogram literature.73

Area-universality has also been studied in the context of rectangular layouts,74

these are dissections of a rectangle into rectangles with prescribed contacts be-75

tween the rectangles of the dissection. Eppstein et al. [8] showed that a rectan-76

gular layout is area-universal if and only if it is one-sided. The key ingredient77

in their proof is that the weak equivalence class of any rectangular layout is78

area-universal. The weak equivalence class is obtained by prescribing the con-79

tacts between the segments. The area-universality of the weak equivalence class80

has been shown by different techniques [7, 10, 21]. This area-universality re-81

sult is very special because, up to affine transformations, the rectangular layout82

realizing a given area assignment is actually unique.83

The class of drawings: We study area-universality of plane quadrangula-84

tions. To realize non-negative face areas, we extend the set of planar straight-line85

drawings of a plane quadrangulation by all drawings which can be obtained as86

the limit of a sequence of planar straight-line drawings (e.g. specified by the co-87

ordinates of the vertices). In particular, we allow degenerate drawings in which88

vertices and edges sharing a face may (partially) coincide; if two edges partially89

coincide their union forms a segment.90

In various cases, considering this enriched set of drawings allows for simpler91

proofs [9, 13, 19]. For example, the counting argument by Kleist [13] greatly92

benefits from allowing face area 0 and degenerate drawings. In the case of tri-93

angulations, degeneracies occur if and only if some face has area 0 and the set94

of realizable area assignments is closed [13, Lemma 4], i.e., allowing or disal-95

lowing face area 0 and degenerate drawings does not influence whether or not96

all considered area assignments are realizable. For examples of how to obtain97

non-degenerate realizing drawings from degenerate drawings, we refer to 1-bend98

drawings of plane graphs [13, Theorem 3 & Theorem 6] and table cartograms [9,99

Theorem 2].100

Outline of this paper: In Section 2, we investigate operations that pre-101

serve area-universality. In Section 3, we use one of these operations, the edge102

contraction, to show area-universality of grids and large classes of angle graphs.103

In particular, we consider angle graphs of triangulations that are close to be-104

ing area-universal. In Section 4, we study strong area-universality, i.e., area-105

universality within a prescribed outer face. Strong area-universal graphs may106

serve as building blocks for constructing area-universal quadrangulations. We107

show that not every plane bipartite graph is strongly area-universal and present108

families of strongly area-universal graphs. Shape restrictions are also the sub-109

ject of Section 5 where we study convex drawings. We present both a large110

family of quadrangulations that are not convex area-universal and examples of111

strongly convex area-universal graphs. In Section 6, we use our tools to show112

area-universality of all quadrangulations with at most 13 vertices. In some113
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cases the argument relies on the known area-universality of the class of double114

stacking graphs.115

2 Area-Universality Preserving Operations116

We begin with an easy observation which can also be found in [3] and [13].117

Observation 1 A subgraph of an area-universal plane graph is area-universal.118

Therefore, a proof for the area-universality of plane quadrangulations, i.e.,119

maximal plane bipartite graphs, would imply area-universality of all plane bipar-120

tite graphs. The following lemma extends Observation 1 with a new operation.121

A set of edge contractions in a plane graph G is face-maintaining if the con-122

tractions do not change the number of faces in G, i.e., for a face of degree d at123

most d− 3 edges are contracted.124

Lemma 1 Let G be a plane graph that can be transformed into an area-universal125

plane graph G′ by inserting vertices, inserting edges, and performing face-main-126

taining edge contractions. Then G is area-universal.127

Proof: Let A denote an area assignment of G. A face f in G corresponds to a128

(non-empty) collection of faces Cf in G′. We define A′ such that for each inner129

face f of G it holds that A(f) =
∑

f ′∈Cf
A′(f ′). Since G′ is area-universal, there130

exists an A′-realizing drawing D′ of G′. Simply deleting all vertices and edges131

of G′ which are not in G yields a (degenerate) drawing D of G. By definition132

of A′, D is A-realizing. �133

There exists a further operation that preserves area-universality and is based134

on decomposition. For an illustration consider Figure 1. From a plane graph G135

with a simple cycle C, we obtain two plane graphs Gi and Ge by decomposing136

along C: Gi is the subgraph of G consisting of C and its interior, while Ge137

is the subgraph of G consisting of C and its exterior. Reversely, we obtain G138

from Gi and Ge by identifying the outer face of Gi with the inner face of Ge139

whose boundary is C.140

+

Ge
Gi

G

C

C

C

Figure 1: Decomposing G along C yields two plane graphs Ge and Gi. If Ge is
area-universal and Gi strongly area-universal, then G is area-universal.
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A plane graphG is strongly area-universal if for every area assignmentA ofG141

and every fixed polygonal placement of the outer face of area ΣA, there exists142

a realizing straight-line drawing of G within the prescribed outer face. Here we143

have used ΣA to denote the sum of all assigned areas, i.e., ΣA :=
∑

f∈F ′ A(f).144

Since all triangles are affine equivalent, a plane graph with a triangular outer145

face has a realizing drawing (if it exists) within every triangle of correct area [13].146

It follows that:147

Observation 2 Plane graphs with triangular outer faces (e.g. triangulations)148

are area-universal if and only if they are strongly area-universal.149

A similar result for quadrangulations would be a pleasant surprise.150

Lemma 2 Let G be a plane graph with a simple cycle C, and Gi and Ge ob-151

tained by decomposing G along C. If Ge is area-universal and Gi is strongly152

area-universal, then G is area-universal.153

Moreover, if Ge is strongly area-universal, then G is also strongly area-universal.154

Proof: Let A be an area assignment of G. For i ∈ {i,e}, Ai denotes the155

induced area assignment of Gi. Note that the interior of C is a face f of Ge. In156

particular, it holds that Ae(f) = ΣAi. Since Ge is area-universal, there exists157

an Ae-realizing drawing De of Ge. Since Gi is strongly area-universal, we find158

an Ai-realizing drawing Di of Gi whose outer face is the polygon representing C159

in De. Thus, identifying De and Di along C yields an A-realizing drawing of G.160

�161

The ideas of this lemma have been used in [13] to show the strong area-162

universality of 2-degenerate quadrangulations. Recall that a graph is k-degen-163

erate if and only if every subgraph contains a vertex of degree at most k.164

Proposition 3 (Kleist [13], Proposition 15) Every 2-degenerate quadran-165

gulation is strongly area-universal.166

It is easy to see that K4 is area-universal, i.e., a vertex of degree 3 can be167

inserted into a triangle so that the three small triangles partition the big triangle168

in any prescribed ratio. This yields the following:169

Lemma 4 Let T be a plane graph and T+ the plane graph where a vertex of170

degree 3 is inserted (stacked) into a triangle of T . Then T is area-universal if171

and only if T+ is area-universal.172

Since a plane 3-tree is obtained from a triangle by iteratively stacking vertices173

into faces, Lemma 4 yields the result from [3]: Plane 3-trees are area-universal.174

3 Area-Universality via Edge Contractions175

In this section, we discuss some implications of the edge contractions of Lemma 1.176

Firstly, we show an alternative proof for the area-universality of grid graphs.177
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The grid G(m,n) is the Cartesian product Pm × Pn of paths Pm and Pn on m178

and n vertices, respectively. Figure 2(a) illustrates G(9, 6). Area-universality of179

grid graphs was first proved in the context of table cartograms where addition-180

ally the outer face is required to be a rectangle [9]. Our new proof does not yield181

a rectangular outer face; however, it is straight-forward and very simple. The182

reader is invited to check that Proposition 3 does not imply the area-universality183

of grid graphs, because G(m,n) is not a subgraph of a 2-degenerate quadran-184

gulation if n,m ≥ 3.185

m

n

(a)

A B

C

1 2 3 4

(b)

Figure 2: Illustration of Proposition 5 and its proof. (a) The grid graph G(m,n)
and (b) an area-universal triangulation ‘containing’ it.

Proposition 5 Every grid is area-universal.186

Proof: The idea of this proof is easy to convey by picture; see Figure 2. Con-187

tract the edges of every second column of G(m,n) to super vertices that are188

labeled by 1, . . . , k from left to right. Then, we add vertices and edges to en-189

hance the resulting graph to a triangulation G as depicted in Figure 2(b). The190

graph G is a stacked triangulation since the interior of each triangle (i, i+ 1, C)191

with 1 ≤ i ≤ k − 1, and the graph induced by A,B,C, 1, . . . , k is a stacked192

triangulation. Thus, G is area-universal. Therefore, every grid graph can be193

transformed into a subgraph of an area-universal graph using face-maintaining194

edge contractions. Hence, by Lemma 1, grids are area-universal. �195

The angle graph of a plane graphG is the graphQG with vertex set consisting196

of the vertices and faces of G and edges corresponding to face-vertex incidences.197

If G is 2-connected, then QG is a quadrangulation. Clearly, an angle graph is198

bipartite where the two bipartition classes are the vertices V and the faces F199

of G. In the following we consider angle graphs of triangulations. For a plane200

graph G and its angle graph Q, their union (graph) G + Q, consists of the201

union of the vertex and edge sets of G and Q. Note that the union is again a202

plane graph: Indeed, the vertex set of G+Q coincides with the vertex set of Q.203

Hence, G + Q can be understood as the quadrangulation Q together with the204

edges between the vertices of one bipartition class, namely V .205
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Proposition 6 The angle graph Q of an area-universal triangulation T is area-206

universal.207

Proof: The graph T +Q can be seen as T where a vertex of degree 3 is inserted208

in every face. By Lemma 4, T +Q is area-universal. Thus, Observation 1 implies209

that Q is area-universal. �210

Note that the same approach shows that angle graphs of equiareal triangu-211

lations are equiareal. Moreover, a straightforward consequence of Proposition 6212

is that angle graphs of stacked triangulations are area-universal.213

In order for its angle graph to be area-universal, it suffices for a triangulation214

to be close to area-universal. As shown in [12], every plane graph has an area-215

universal subdivision. The subdivision number s(G) of a plane graph G is the216

minimum number of subdivision vertices to be inserted into G such that it217

becomes area-universal. If G is area-universal, then clearly s(G) = 0. To218

generalize Proposition 6, we introduce the notion of a refined area assignment.219

If G1 is a subgraph of G2, then every face f of G1 corresponds to a collection of220

faces Cf inG2. An area assignmentA1 ofG1 is refined by an area assignmentA2221

of G2 if A1(f) =
∑

s∈Cf
A2(s). We also say A2 refines A1.222

Theorem 7 The angle graph Q of a plane triangulation T with s(T ) ≤ 1 is223

area-universal.224

Proof: Figure 3(a) illustrates the proof. Let e be an edge of T such that225

subdividing e yields the area-universal graph T◦. The strategy is as follows:226

For an area assignment A of Q, we define a refining area assignment A′ of the227

union U := Q + T◦. Let A◦ be the unique area assignment of T◦ such that A′228

refines A◦. The drawing of T◦ realizing A◦ yields an A′-realizing drawing of U .229

U := Q+T◦
qe

f1

f2

(a) The graph U := Q+T◦ where
T is the octahedron graph.

0 0

00

A(q1) A(q2)

A(q4) A(q3)

q1 q2

q4 q3
qe qe

A(q1) A(q2)

A(q4) A(q3)

q1 q2

q4 q3

(b) Faces in the neighborhood of the subdivided
edge e.

Figure 3: Illustration of Theorem 7 and its proof.

For the definition of A′, note that every face f of Q corresponds to two230

faces in U . Let qe denote the face of Q that is split by the subdivided edge e231

in U . We arbitrarily partition the area A(q) assigned to face q between the two232

corresponding faces in U , for all faces q in Q except the four faces q1, q2, q3,233

and q4 sharing a boundary edge with qe. Let f1 and f2 denote the two faces234
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adjacent to e in T . For qi, 1 ≤ i ≤ 4, assign area A(qi) to the triangular face235

from U which is neither incident to f1 nor to f2 in U ; assign an area of 0 to the236

triangular faces incident to f1 or f2. This defines the area assignment A′ and237

A◦ is the area assignment of T◦ that is refined by A′ of U .238

Let D◦ be an A◦-realizing drawing of T◦. Since each vertex f ∈ F −{f1, f2}239

of U acts as a vertex of degree 3 stacked into a face of T◦, we can insert f240

in D◦ by Lemma 4 such that the areas of A′ are realized. To obtain an A′-241

realizing drawing of U , it remains to insert f1 and f2. We call the highlighted242

(thick, red) edges in Figure 3(b) incident to f1 and f2, the red edges of f1243

and f2, respectively. By definition of A′, the red edges must be contracted in244

every A′-realizing drawing of U . Consequently, given a drawing T◦, we easily245

insert f1 and f2 at the same location as the already placed vertex of the red246

edges, respectively. This yields an A′-realizing drawing of U . Since A′ refines A,247

deleting the edges of T◦ yields an A-realizing drawing of Q. �248

This ties in with a result based on an operation called diamond addition.249

Let G be a plane graph and e an edge incident to two triangular faces consisting250

of e and the vertices u1 and u2, respectively. Applying a diamond addition of251

order k on edge e of G results in a graph G′ in which the edge e is subdivided252

by vertices v1, . . . , vk which are also adjacent to u1 and u2, as illustrated in253

Figure 4.254

u1

e

u2

v1 v2 v3

G G′

u1

u2

Figure 4: A diamond addition on edge e.

Two diamond additions are disjoint if the partitioned triangles are different.255

For instance, in the left graph of Figure 5, diamond additions on the edges Au256

and vw are disjoint, while diamond additions on the edges Au and uv are not.257

Together with Theorem 7, the following theorem implies that the angle graphs258

of area-universal triangulations on which one diamond addition has been applied259

are area-universal.260

Theorem 8 (Kleist [15], Theorem 33) Let G be a graph obtained from an261

area-universal graph G′ by (multiple disjoint) diamond addition(s) adding k262

vertices in total. Then, s(G) ≤ k.263

As a special case of graphs obtained by diamond additions, Kleist [14] studied264

double stacking graphs H`,k that can be obtained from the plane octahedron265

graph. Labeling the octahedron as in Figure 5, H`,k is obtained by applying266
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v

1 2...`

1′
2′

...

k′

C

A B

v

C

A B

u w

Figure 5: A double stacking graph H`,k.

one diamond addition of order `− 1 on Au and one diamond addition of order267

k − 1 on vw. The octahedron graph is the smallest graph of this class and has268

parameters ` = k = 1.269

In the following we use ideas similar to those used in the proof of Theorem 7,270

to show the area-universality of angle graphs obtained from area-universal tri-271

angulations on which several diamond additions have been applied. We start by272

considering a special configuration that appears in the neighborhood of an edge273

on which a diamond addition has been performed. A tent graph Tk is a plane274

graph with the outer face v, x0, x1, x2, . . . , xk+1 and inner vertices y0, y1, . . . , yk275

where yi is incident to xi, xi+1 and v. Figure 6(a) depicts the tent graph T3.276

v

x0 xk+1x1 x2 . . .

y0 y1 yk. . .

(a) A tent graph Tk.

v

. . .b0 b1 bk

. . .a0 a1 ak+1

`

(b) An A-realizing drawing of Tk.

Figure 6: Illustration of Lemma 9 and its proof.

Lemma 9 Every area assignment A of a tent graph Tk has an A-realizing draw-277

ing within each triangle that has area ΣA and corners v, x0, xk+1. Moreover,278

the length of every segment xixi+1 can be made proportional to the area of the279

incident triangle.280

Proof: We denoted the assigned areas of Tk by ai and bi as depicted in Fig-281

ure 6(b). We position xi on the segment x0xk+1 such that282

‖xi+1 − xi‖ =
bi∑
j bj
‖xk+1 − x0‖.283
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Then, in a realizing drawing the vertices yi lie on a line ` parallel to the seg-284

ment x0xk+1 such that for each point x on ` the triangle x0xk+1x has area285 ∑
i bi. Note that, by the placement of xi, each position of yi on ` realizes bi.286

Thus, we may use the freedom to realizing ai when placing yi on ` with the287

following procedure: Defining y−1 as the intersection of the segment vx0 with288

the line `, we suppose that yi−1 is placed already when we consider yi for i ≥ 0.289

Move yi rightwards on the line ` starting at yi−1 and observe the area of the face290

vyi−1xiyi. Clearly, it starts at 0 and increases continuously. The intermediate291

value theorem guarantees a position, where the area equals ai. We place yi at292

the corresponding position and continue with yi+1. Due to the correct total293

area, the area of ak+1 is realized if all other face areas are correct. Thus, we294

obtain an A-realizing drawing of Tk. �295

In the following theorem, we not only consider several disjoint diamond296

additions, but also groups of non-disjoint diamond additions that are far apart.297

A set of edges of a plane triangulation T is called far apart if the subgraph of the298

dual graph induced by the duals of these edges and their vertices is a collection299

of stars; see Figure 7(a) for an example.300

(a) The set of thick edges is far apart. (b) A set of subdivided edges that is
far apart.

Figure 7: Illustration of (subdivided) edges that are far apart.

Theorem 10 The angle graph Q of a plane triangulation T is area-universal if301

one of the following holds:302

(i) T is obtained from an area-universal triangulation T ′ by several disjoint303

diamond additions of an arbitrary order.304

(ii) T has a set of edges that is far apart such that subdividing each of them305

at most once yields an area-universal subdivision T◦.306

Proof: To prove (i), we consider a diamond addition of order k applied on an307

edge (u,w) of T ′. Let T ′◦ denote the graph obtained from the triangulation T ′308

by subdividing the edge (u,w) with k additional vertices as in T ; in other words309

the edge (u,w) is replaced by a path P with k + 1 edges. Let A and B denote310

the two common neighbors of u and w in T ′ such that Auw and Buw are faces311
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in T ′. Recall that Q is the angle graph of T and consider the union U := Q+T ′◦.312

Define H as the restriction of U to the interior of AuBw. Figure 8 depicts H313

for a diamond addition of order 3.314

u wu w
1
2c1

1
2c2

1
2c3

1
2c4

1
2c1

1
2c2

1
2c3

1
2c4

B

A

Figure 8: The graph H for a diamond addition of order 3; together with AH .

Given an area assignment A of Q, we construct an area assignment A′ of T ′315

and an area assignment AU of U that refines both A and A′. Observe that316

every face q of Q is either a face of U or corresponds to two faces of U .317

In the latter case, we partition the prescribed area of q equally between318

its two faces in U and obtain the area assignment AU of U . The restriction319

of AU to H is denoted AH . We define A′ of T ′ as the area assignment refined320

by AU , where we identify the path P and the edge (u,w). From an A′-realizing321

drawing D′ of T ′, we construct an AU -realizing drawing of U as follows: First,322

we add all face vertices not adjacent to P using Lemma 4; recall that they act323

as vertex of degree 3 in a triangle.324

Observe that splitting H along P results in two tent graphs Tk. Conse-325

quently, we may use Lemma 9 to reinsert each of the two tent graphs of H.326

By definition of AH , the subdivision vertices on (u,w) are placed consistently327

when applying Lemma 9 to the two tent graphs when splitting H along P . Here328

we use the fact that the assigned areas of Q were split equally into two when329

defining AU . Since AU refines A, we obtain an A-realizing drawing of Q by330

deleting the edges of T ′◦. This proves (i).331

Now, we show (ii). First, we consider the case when the set of subdivided332

edges of T forms only one dual star, i.e. T has a face f◦ such that subdividing333

each edge incident to f◦ (at most once) yields an area-universal graph T◦. The-334

orem 7 shows the claim if exactly one edge of f◦ is subdivided. In the following,335

we show how to deal with the case of three subdivision vertices. The case of two336

subdivision vertices can be handled by a slight modification which is explained337

afterwards.338

We denote the three faces incident to subdivision vertices in T◦ by f◦, f1, f2,339

and f3 as illustrated in Figure 9; the corresponding vertices in Q are denoted340



JGAA, 0(0) 0–0 (0) 11

f1

f◦

f2f3

w3 v3 w2

v2v1

w1

(a) Neighborhood of f◦ in T◦.

fv
1

fv
◦

fv
2fv

3

w3 v3 w2

v2v1

w1

(b) Neighborhood of fv
◦ in U , where T◦

is depicted in black and Q in gray.

Figure 9: Illustration of the notation for the proof of Theorem 10(ii).

by fv
◦ , fv

1 , fv
2 , fv

3 . Moreover, we let v1, v2, v3 be the vertices of f◦ and let wi be341

the third vertex of fi as depicted.342

Note that two of the w-vertices may coincide implying that a v-vertex has343

degree 3. However, at most one v-vertex has degree 3; otherwise T is the344

complete graph on four vertices which is area-universal. Therefore, it remains345

to consider two cases: One v vertex has degree 3 and none v-vertex has degree 3.346

We first consider the case that v3 has degree 3. Figure 10(a) illustrates347

the neighborhood of f◦ in this case. Our strategy is as follows: For an area348

assignment A of Q, we define an area assignment AU of the union U := Q+T◦.349

This yields a unique area assignment A◦ of T◦ such that AU of U refines A◦350

of T◦. From anA◦-realizing drawing of T◦, we construct anAU -realizing drawing351

of U . Deleting the edges of T◦ results in an A-realizing drawing of Q.352

w3 = w2

v3

v2v1

w1

(a) Neighborhood of f◦ in
T◦ when v3 has degree 3.

fv
1

fv
◦

fv
2fv

3

w3 = w2

v3

v2v1

w1

0 0

0 0

(b) Neighborhood of fv
◦ in

U ; AU is given in orange.

fv
◦

v1 v2

fv
3 fv

2v3

w3 = w2

(c) The graph G.

Figure 10: Illustration of the proof of Theorem 10(ii) for three subdivision
vertices if there exists a vertex of degree 3.
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For a given area assignment A of Q, we construct an area assignment AU353

of U such that the area of every face q of Q is partitioned between the two354

faces of T◦. Let B denote the edges of T◦ bounding the region formed by the355

faces f1, f2, f3, f◦ in T◦; note that B has four edges since the common vertex356

of f◦, f2, f3 has degree 3. The edges of B divide four faces of Q in U . For all357

faces outside B (and not incident to B), the face areas of Q are partitioned358

arbitrarily between the two faces of U . The area of each of the four faces of Q359

divided by B is assigned to the subface outside B as indicated in Figure 10(b).360

We define A◦ of T◦ as the unique area assignment refining AU .361

Given an A◦-realizing drawing of T◦, note that every vertex of Q outside B362

is of degree 3 and can be inserted with Lemma 4. We will redraw all vertices363

inside B. By definition of AU , two incident triangular faces of fv
1 are supposed364

to be 0. Hence, we must place fv
1 at the same location as w1. Then, we place365

the vertex fv
◦ as a vertex of degree 2 in the quadrangle v1f

v
1 v2w2 such that the366

area of the quadrangle v1f
v
1 v2f

v
◦ is correct, this is possible by Proposition 3. It367

remains to realize the graph G illustrated in Figure 10(c). We later show that368

every area assignment of G is realizable within any fixed outer face of correct369

total area: This follows from Lemma 13 and the fact that G is the core of c(S3).370

Now, we turn to the case that no vi has degree 3. This implies that all wi are371

distinct. The resulting neighborhood of fv
◦ is illustrated in Figure 11(a). Let A372

be an area assignment of Q. In a first step, we define an area assignment AU373

of the union Q + T◦ =: U . Note that every face of Q corresponds to two faces374

in U . Except for the faces incident to fv
◦ , f

v
1 , f

v
2 , f

v
3 , we arbitrarily partition the375

area A(q) of a face q of Q between its two faces in U . For the faces incident to376

fv
◦ , f

v
1 , f

v
2 , f

v
3 , we assign their area as depicted in Figure 11(b).377

f1

f◦

f2f3
a b

c

0

A◦

w3 w2

w1

(a) Neighborhood of f◦ in T◦ and A◦.

0 0

0
0 0

0
0 0

0

a b

c

A′

fv
1

fv
◦

fv
2fv

3

w3 w2

v2v1

w1

(b) Neighborhood of f◦ in Q+T◦ and AU .

Figure 11: Illustration of the proof of Theorem 10(ii) for three subdivision
vertices of high degree.

Let A◦ be the area assignment of T◦ refining AU . Since T◦ is area-universal378

there exists an A◦-realizing drawing D◦ of T◦. Most face-vertices of Q act as379

vertices of degree 3 stacked into triangles of T◦. Hence, by Lemma 4 and we can380

insert them in D◦ such that they realize the area of AU . It remains to insert the381

vertices fv
1 , f

v
2 , f

v
3 and fv

◦ . By definition of AU , we must place fv
i as to coincide382
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with wi, i.e., such that the edge fv
i wi is contracted. To place fv

◦ in D◦, we need383

some geometric considerations.384

The area of f◦ in D◦ is 0, therfore at each vi the two boundary edges of f◦ are385

collinear. If the slopes of the 3 supporting lines are pairwise different, then the386

triangle formed by the three lines is in f◦, whence the triangle has area 0 which387

means that the three lines intersect in a point p. This point is the position of388

the three subdivision vertices in the drawing D◦ and can be used for fv
◦ . If two389

of the lines have the same slope, then because they share one of the subdivision390

vertices they coincide. If the third line has a different slope, then the intersection391

point of the lines is a good position for fv
◦ . If all three lines coincide there are392

many different foldings of the boundary of f◦, we leave it as an exercise to show393

that in each case there is a position for fv
◦ such that the edges to v1, v2, v3 can394

be drawn ‘inside’ f◦.395

If there are two subdivision vertices on the boundary of f◦ we use the area396

assignment AU and the corresponding A◦ as in the previous case. In the draw-397

ing D◦ we pretend that the third edge of f◦. The considerations for the case of398

three subdivided edges show that there is a good position for fv
◦ .399

Since the set of subdivided edges is far apart, every subdivided edge belongs400

to a star. We handle each star separately as described above; in particular,401

the star consists of one, two or three edges since T is a triangulation. By the402

independence, for every two stars, the edges of T surrounding the regions of the403

stars are disjoint; these edges form a so-called boundary cycle of a star. For an404

example consider Figure 7(b).405

Note that in all cases, when defining AU from A, only the areas inside and406

adjacent to the boundary cycle are affected. Since these sets of faces in U are407

disjoint, the subdivision vertices can be handled independently. This finishes408

the proof. �409

The results of Proposition 6 and Theorems 7, 8 and 10 imply the area-univer-410

sality of several classes of angle graphs.411

Corollary 11 The angle graph of a plane triangulation T is area-universal if412

• T is a stacked triangulation,413

• T is 4-connected and has at most ten vertices, or414

• any (possibly a different) embedding of T is a double stacking graph H`,k.415

Proof: Stacked triangulations are area-universal, hence Proposition 6 implies416

the area-universality of its angle graphs. Theorem 8 can be used to show that417

triangulations with at most nine vertices and all embeddings of `k-double stack-418

ing graphs have subdivision number at most 1 [15]. Consequently, Theorem 7419

implies that their angle graphs are area-universal. Moreover, 4-connected plane420

triangulations on ten vertices can be obtained from area-universal triangulations421

by at most two disjoint diamond additions. Thus, their area-universality follows422

from Theorem 10(i). �423
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4 Strongly Area-Universal Quadrangulations424

In this section, we study strongly area-universal quadrangulations. Recall that425

a quadrangulation is strongly area-universal if it is area-universal within every426

fixed outer face of the correct total area. A nice property of this class is that we427

can stack any strongly area-universal into a face of an (strongly) area-universal428

quadrangulation to obtain an (strongly) area-universal quadrangulation. There-429

fore, few small strongly area-universal quadrangulations can serve as building430

blocks in order to construct infinite and rich families of area-universal quadran-431

gulations.432

Note that for n > k, the area of a convex n-gon strictly exceeds the area of433

any contained k-gon. Therefore, we immediately obtain that the plane bipartite434

graph depicted in Figure 12(a) is not strongly area-universal: Fixing the outer435

face as a regular hexagon, there exists no drawing in which the inner 4-face436

covers more than 2/3 of the area.437

Observation 3 Not all plane bipartite graphs are strongly area-universal.438

(a) A plane bipartite graph that is not
strongly area-universal.

G GG

(b) Illustration of the proof of Propo-
sition 12.

Figure 12

In contrast, we do not know of a quadrangulation that is not strongly area-439

universal. Neither do we know of an area assignment that requires a convex440

outer face. In fact these two questions are closely related.441

Proposition 12 If there exists a plane quadrangulation G and an area assign-442

ment A such that every realizing drawing has a convex outer face, then there443

exists a plane quadrangulation H that is not area-universal. Moreover, if G is444

3-connected, we can ensure that H is 3-connected.445

Proof: Suppose we are given a quadrangulation G and an area assignment A446

with the described properties. Let H0 denote the plane graph of K2,4, i.e.,447

H0 has three bounded faces each being a quadrangle. For each bounded face448

of H0, we take a copy of G and identify the outer 4-cycle of the copy of G with449

the boundary of the face. This yields the quadrangulation H as schematically450

illustrated in Figure 12(b). If G is 3-connected, then H is also 3-connected.451
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Assigning A to each copy of G, we claim that H has no realizing drawing.452

Suppose, by contradiction, that there exists a realizing drawing D. Due to the453

positive total area of the central copy of G, either the right or the left copy454

of G has a non-convex boundary cycle in D. Consequently, this copy induces455

an A-realizing drawing of G where the outer face is not convex and thus, we456

obtain a contradiction. �457

Now, we present a family of plane graphs that have the property of being458

strongly area-universal. The family consists of the angle graphs of wheels, which459

are also known as pseudo-double wheels. The pseudo-double wheel Sk has 2k +460

2 vertices and consists of a cycle with vertices v1, v2, . . . , v2k and a vertex v461

adjacent to all vertices on the cycle with odd index and a vertex w adjacent to462

all vertices on the cycle with even index, see Figure 13(a). Up to the labeling,463

the plane embedding of Sk is unique.464

v4

v1

v2k

v

w

v6

v3 v5 v7 . . .
v8

v2

(a) Pseudo-double wheel Sk.

v

w

A B
b1 b2 bk. . .

a1 ak−1. . .

(b) The core c(Sk) of Sk with an area
assignment.

Figure 13

The smallest pseudo-double wheel S3 is also known as the cube graph. In this465

section, we show that the cube graph – and more generally, all pseudo-double466

wheels – are strongly area-universal.467

We first study a subgraph of Sk, namely the plane graph c(Sk), called the468

core, which is obtained by deleting v1. Figure 13(b) illustrates the core of S5.469

Lemma 13 Let c(Sk) be the core of a plane pseudo-double wheel with an area470

assignment A. Let q be a quadrangle of area ΣA containing the diagonal AB471

and whose corners are identified with the vertices A,w,B, v. Then, c(Sk) has a472

A-realizing drawing within q.473

Proof: We distinguish two cases. We call the faces of c(Sk) incident to w the474

bottom faces and the faces incident to v the top faces of c(Sk). For simplicity,475

we denote the vertices v2 and v2k by A and B, respectively, and the face areas476

by ai for the top and by bi for the bottom faces. Consider also Figure 13(b).477
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Case (i): If
∑

i bi > area(4AwB), we position the even vertices on the478

segment AB as illustrated in Figure 14(a). Note that adding the edges of con-479

secutive even vertices and Av and Bv (and deleting w) results in a tent graph.480

We partition the face area bi of each bottom face into b1i and b2i such that the481

ratio b1i/b2i coincides for all i and
∑

i b
2
i = area(4AwB). By Lemma 9, the tent482

graph has a realizing drawing within the triangle vAB. Due to the same ratio,483

the vertex placement on AB also realizes the area for triangles incident to w.484

Figure 14(a) visualizes the realizing drawing of c(Sk).485

w

0 0

b11
b21

b11
b21

=
b1i
b2
i

b12
b22

b1k
b2k. . .

. . .

v

(a) The layout in case (i).

a21

w

a11 a12

a22

. . .

. . .

v

a1k−1

a1
1

a2
1
=

a1
i

a2
i

(b) The layout in case (ii).

Figure 14: Illustration of the proof of Lemma 13. The gray disks indicate that
the contained vertices are placed at the same position, the center of the disk.

Case (ii): If
∑

i ai > area(4vAB), we position the odd vertices on the486

segment AB as illustrated in Figure 14(b). Note that the graph in the bottom487

triangle is a tent graph. Therefore, we partition the area ai of a top faces into a1i488

and a2i such that the ratio a1
i/a2

i coincides for all i and
∑

i a
1
i = area(4vAB).489

As in case (i), we use Lemma 9 to find a realizing drawing of the tent graph.490

Figure 14(b) visualizes the realizing drawing of c(Sk). �491

This lemma helps us to settle three out of four cases of Theorem 14.492

Theorem 14 The pseudo-double wheel Sk, k ≥ 3, is strongly area-universal.493

Proof: For an area assignment A of Sk, we consider an arbitrary but fixed494

quadrangle q of area ΣA whose corners are identified with v1v2wv2k. We distin-495

guish two cases depending on the shape of q. Note that q can be triangulated496

by the segment v2v2k or v1w (or both).497

In case 1, the segment v2v2k lies inside q. We distinguish two subcases based498

on the assigned areas a and b of the faces incident to v1 relative to the area of499

the triangle v1v2v2k.500

Case 1(i): a+ b ≤ area(v1v2v2k). We can position v such that the triangles501

v1v2v and v1vv2k realize a and b, respectively. The remaining graph corre-502

sponds to the core Sk which we realize in the quadrangle vv2wv2k containing503

the segment v2v2k by applying Lemma 13. Figure 15(a) visualizes the resulting504

layout.505
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v1

v2k

v

w

v2

v3 v2k−1
a b

(a) Case 1(i)

v1

v

w

v3
v2k−1

a b

v2kv2

(b) Case 1(ii)

Figure 15: Illustration of case 1 in the proof of Theorem 14 in which the segment
v2v2k is contained in q. In case 1(i) the face areas incident to v1 are small; in
case 1(ii) the face areas incident to v1 are big. Both cases reduce to Lemma 13.

Case 1(ii): a+ b > area(v1v2v2k). We position v on the segment v2v2k such506

that v3 and v2k−1 are forced to be on a line parallel to the segment v2v2k, i.e., v507

partitions v2v2k according to the ratio of a and b. The positions of v3 and v2k−1508

on the line are such that the areas of the triangles v2wv3 and v2k−1wv2k realize509

b1 and bk. The graph induced by the vertices in the interior of vv3wv2k−1 is510

the core of a smaller pseudo-double wheel and contains the diagonal v3, v2k−1.511

Consequently, Lemma 13 yields a realizing drawing, see Figure 15(b).512

In case 2, the segment v1w lies inside q. We call the faces incident to v2 the513

left faces and the faces incident to v2k the right faces. We say the left (right)514

faces are small if their assigned area is at most the area of the triangle v1, v2, w515

(v1, w, v2k). Otherwise, we call the left (right) faces big. Note that the left or516

right faces must be small. By symmetry, we assume without loss of generality,517

that the left faces are small. Then we can realize the left faces by triangular518

faces, by positioning v3 accordingly.519

Case 2(i): the right faces are small as well; this case is illustrated in Fig-520

ure 16(a). We reduce this case to subgraphs of two stacked triangulations. To521

do so, we contract the edge vv1 and realize the right faces by triangular faces522

with corner v2k−1. Denote the areas of the inner faces by xi as illustrated in523

Figure 16(a). There exists an i with 4 ≤ i ≤ 2k − 1 such that524

a + c +

i−1∑
j=4

xj ≤ area(4v1v2w) and
2k−1∑
j=i+1

xj + b + d ≤ area(4v1wv2k).525

The exact layout depends on whether xi is the area of a top or bottom face of526

the core. If it is a top face, then its unique vertex with odd index is placed at w.527

If xi belongs to a bottom face, then the unique vertex with even index is placed528

at v. Afterwards we insert the remaining vertices. For j < i, we iteratively529

insert vj such that it realizes the face area xj by triangular face with a flat530
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v3

w

a

c d

b

x4 x6 x8

x5 x7

v2kv2

w

v
v1

(a) Case 2(i)

d

a

c

b

v

v2k−1
v3 v2kv2

w

v1

(b) Case 2(ii)

Figure 16: Illustration of case 2 in the proof of Theorem 14, in which the segment
v1w is contained in q. In case 2(i), the left and right faces are small; in case
2(ii), the left faces are small and the right faces are big.

angle at vj+1 from left to right. For j > i, we follow the same strategy but in531

decreasing order.532

Case 2(ii): the right faces are big. Figure 16(b) depicts this case. Recall533

that v3 has been fixed already. Place v2k−1 on v1w such that the area of the534

quadrangle v1v3v2k−1v2k exceeds b but is not enough to also realize all top faces535

of the core, i.e., the striped faces incident to v in Figure 16(b). The remaining536

graph can be handled by Lemma 13: To do so, we choose vv3wv2k−1 as the537

outer face and insert an artificial vertex on wv2k−1. �538

We can combine Lemma 2 and Theorem 14 in order to construct further539

strongly area-universal graphs. A graph is a stacked pseudo-double wheel if540

there exists a set of cycles such that decomposition along these cycles yields541

several pseudo-double wheels. A generalized stacked pseudo-double wheel can542

be decomposed into pseudo-double wheels and copies of the unique plane quad-543

rangulation Q5 on five vertices. Note that Q5 is the plane graph that can be544

obtained by starting with a plane C4, inserting an edge between two non-incident545

vertices and then subdividing this new edge. It is easy to see that Q5 is strongly546

area-universal [12]. Together with Lemma 2 and Theorem 14, it follows that547

Corollary 15 Generalized stacked pseudo-double wheels are strongly area-uni-548

versal.549

5 Quadrangulations and Convexity550

A drawing of a planar graph is convex if each face is bounded by the boundary551

of a convex polygon. Convexity is a visually appealing property of drawings of552

planar graphs which has therefore been studied extensively in graph drawing.553

For example, Tutte’s spring embeddings [20] guarantee convex drawings for554

every 3-connected planar graph. In this section, we aim for convex realizing555
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drawings, i.e., given an area assignment A of a quadrangulation Q, we want556

to find an A-realizing drawing of Q which is also convex. A planar graph is557

convex area-universal if for every area assignment there exists a convex realizing558

drawing. Although convex area-universality seems to be a very strong property,559

there are examples of convex area-universal graphs, such as the cube graph.560

Proposition (Kleist [12], Proposition 2) The cube graph is convex area-561

universal.562

Indeed, this result can be generalized in two directions. First, the cube graph563

is convex area-universal for every convex outer face. Second, this holds not only564

for the cube graph but also for all pseudo-double wheels. We say a graph is565

strongly convex area-universal if for every area assignment A and every convex566

drawing of the outer face with total area ΣA, there exists a realizing drawing.567

Theorem 16 The pseudo-double wheel Sk, k ≥ 3, is strongly convex area-568

universal.569

In Theorem 14 we have shown that pseudo-double wheels are area-universal.570

The proof made ample use of Lemma 13. Since drawings obtained by using571

this lemma may contain non-convex faces we need an independent proof for572

Theorem 16; consider Figures 14(a) and 14(b) for an illustration of the possible573

appearance of non-convex faces.574

Proof: Let A be a given area assignment of Sk. We denote the areas assigned575

to the inner faces adjacent to the outer edges by a, b, c, d and the remaining576

areas by x4, x5, . . . , x2k−1 where x2k−1 = c as depicted in Figure 17.577

v4

v1

v2k

v

w

v6

v3 v5 v7 . . .
v8

v2

x4 x6 x8

a d

b cx5 x7

Figure 17: A pseudo-double wheel Sk with a given area assignment.

Let q be a convex quadrangle of area ΣA with corners A,B,C,D which are578

identified with the outer vertices v1, v2, w, v2k of Sk, respectively. Considering579

the diagonal AC, shows that at least one of the two following inequalities hold:580

a+b ≤ area(4ABC) or c+d ≤ area(4ACD). By symmetry, we may assume581

that the first inequality holds. Hence, we may place v3 in the triangle ABC582

such that the areas a and b are realized by the triangular faces ABv3 and BCv3583
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where v and v4 are placed on Av3 and Cv3, respectively. Now we distinguish584

two cases.585

Case 1: d ≤ area(4Av3D). By placing v on the segment Av3 we realize586

area d by a triangular face. Split the quadrangle vv3CD into two parts by the587

diagonal vC and determine i ∈ [4, 2k − 1] such that588

i−1∑
j=4

xj ≤ area(4v3Cv) and
2k−1∑
j=i+1

xj ≤ area(4vCD).589

For all j < i, we realize the area xj by a triangle, (namely uvj−1vj for u = v590

if j is even and u = w if j is odd), by placing vj accordingly. Likewise for all591

j > i, we realize the area xj by a triangle, (namely uvjvj+1 for u = v if j is592

even and u = w if j is odd), by placing vj accordingly. Finally, by placing vi593

at v if i is odd and at w if i is even we the area xi with the convex quadrangle594

vvi−1wvi+1. Figure 18(a) visualizes the resulting drawing.595

v

v3

v4

v8

v7

v6

v5
v9

v1

v2k

w

v2

(a) Case 1

v
v3

v9

v8
v6

v4

v7v5

v1

v2k

w

v2

(b) Case 2

Figure 18: Illustration of convex realizing drawings in the proof of Theorem 16.

Case 2: d > area(4Av3D). In this case we place v at v3 and v4 at w. We596

place v2k−1 such that the area c and d are realized. In decreasing order, we597

place vi such that xi is realized by the triangle uvivi+1 with u = v if i is even598

and u = w if i is odd. This yields a realizing drawing within every convex outer599

face, see Figure 18(b). �600

5.1 Not all Quadrangulations are Convex Area-Universal601

Plane drawings of K2,n have non-convex faces when n ≥ 4. Tutte’s spring602

embedding theorem [20], however, warrants that 3-connected quadrangulations603

have convex drawings. In [12], it was asked whether all 3-connected quadrangu-604

lations are convex area-universal. Here we answer this question in the negative.605

Theorem 17 There is a 3-connected quadrangulation that is not convex area-606

universal.607
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(a) The octahedron graph G. There
exists no drawing of G in which each
white face has area 0 and each gray
face has area 1 [13, Theorem 1].

(b) The quadrangulation Q and its black
subgraph Q′. There exists no convex
drawing of Q in which each white face has
area 0 and each gray face has area 1/3.

Figure 19: Illustration of Theorem 17 and its proof.

Proof: We show that the 3-connected quadrangulation Q, depicted in Fig-608

ure 19(b), has an area assignment which does not allow for a convex drawing in609

any (even non-convex) outer face. The construction is based on a non-realizable610

area assignment A of the octahedron graph G.611

Theorem (Kleist [13], Theorem 1) For small enough ε > 0, the octahedron612

graph (with a white/gray-coloring of its faces as illustrated in Figure 19(a)) has613

no drawing where the white faces have area of at most ε and the gray faces have614

area of at least 1.615

We show that a convex drawing of Q induces an A-realizing drawing of G,616

yielding a contradiction. Let Q′ be the subgraph of Q which is induced by the617

black vertices in Figure 19(b). Note that Q′ contains a 1-subdivision of the618

octahedron. We call the two bipartition classes of Q′ the squared and circled619

vertices.620

For the purpose of a contradiction, suppose that for every ε > 0, Q has a621

convex drawing in which each white face has area ε/3 and each gray face area 1/3.622

Then the induced drawing of Q′ has the following properties: the white faces623

have area ε, the gray faces have area 1, and each segment between two squared624

vertices is contained in some white face. In the remainder, we show that for625

small enough ε > 0, no such drawing of Q′ exists.626

Suppose that Q′ has such a drawing D. Because each segment between two627

squared vertices is contained in some white face, these segments together with628

the squared vertices form a straight-line drawing D′ of G where the white faces629

have area at most ε and the gray faces have area of at least 1. The red dotted630

graph in Figure 19(b) illustrates D′. The properties of D′ contradict the above631

stated theorem. Consequently, Q is not convex area-universal. �632

Remark. Because we did not use the shape of the outer face in the proof of633
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Theorem 17, the quadrangulation Q does not even have an A-realizing drawing634

where we only require that each inner face is convex.635

Remark. The construction of Q in the proof of Theorem 17 is based on636

a non-realizable area assignment of the octahedron graph. More generally,637

a white/gray-coloring of the faces of any Eulerian triangulation yields non-638

realizable area assignment [13, Theorem 1]. This fact allows the construction of639

a large family of quadrangulations that are not convex area-universal.640

6 Small Quadrangulations641

In this section we show that our methods are strong enough to prove area-642

universality for quadrangulations with up to 13 vertices via reductions to know643

area-universal graphs.644

Theorem 18 Every quadrangulation on at most 13 vertices is area-universal.645

Proof: First, it follows from Lemma 2 and Proposition 3 that a minimal non-646

area-universal quadrangulation has minimum degree 3. Thus, the smallest quad-647

rangulation of interest is the cube graph on eight vertices. Figure 20 displays648

all quadrangulations on up to 13 vertices with minimum degree 3. We denote649

them by Q1, . . . , Q9 as illustrated.650

Since all embeddings of a pseudo-double wheel Sk are equivalent, Theorem 16651

proves the (strong) area-universality of pseudo-double wheels. Specifically, this652

shows the (strong) area-universality of Q1 = S3, Q2 = S4 and Q4 = S5. More-653

over, Q5 is a stacked cube graph andQ9 is obtained from the cube by first adding654

a subdivided diagonal to a face and then stacking a cube graph in one of the two655

new faces. Since the cube graph is the double wheel S3, both quadrangulations656

are area-universal by Corollary 15.657

We reduce all remaining quadrangulations to area-universal triangulations.658

The quadrangulation Q3 on eleven vertices is a subgraph of a stacked triangu-659

lation T , for which every embedding of T is area-universal. In Figure 20, the660

vertices and edges of the stacked triangulation are highlighted in red.661

The three remaining quadrangulations are subgraphs of an area-universal662

graph family which was shown to be area-universal by Kleist [14].663

Theorem (Kleist [14], Theorem 3) Any (embedding of a) double stacking664

graph H`,k is area-universal if and only if ` · k is even.665

More precisely, Q6, Q7, Q8 are subgraphs of an area-universal double stack-666

ing graph with some additional vertices of degree 3 stacked into triangular faces.667

Thus, their area-universality follows from Observation 1 and [14, Theorem 3]. In668

Figure 20 the vertices which remain after iterative removal of degree-3 vertices669

are highlighted in red. The quadrangulation Q6 on twelve vertices reduces to670

the double stacking graph H2,2; the quadrangulations Q7 and Q8 on 13 vertices671

reduce to the double stacking graph H2,1. The vertices in the interior of red672

dotted curves in Figure 20 are added by diamond additions on the respective673

edge. �674
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n = 13

n = 8 n = 10 n = 11

n = 12

Q1 Q2

Q4

Q3

Q5 Q6

Q7 Q8 Q9

Figure 20: The planar quadrangulations on up to 13 vertices with min-degree 3.
A single (double) checkmark indicates (strong) area-universality for all embed-
dings. The red edges form auxiliary area-universal triangulations.

7 Conclusions and Future Work675

In this paper we develop several useful tools for the study of area-universality676

of plane quadrangulations. With the help of these tools we prove the area-677

universality of several non-trivial graph classes, including grid graphs, tent678

graphs, some types of angle graphs of plane triangulations, pseudo-double wheels679

and their generalization. We also prove that all quadrangulations with at most680

13 vertices are area-universal. Interestingly, pseudo-double wheels are also681

strongly area-universal and convex area-universal, i.e., the outer face of the real-682

izing drawings can be prescribed or asked to have convex faces. However, these683

properties do not hold for all quadrangulations: We present examples of quad-684
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rangulations and area assignments that admit no realizing drawings with convex685

faces or a prescribed outer face, respectively. The natural question, whether all686

quadrangulations are area-universal remains an interesting open problem.687
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