
Online Facility Assignment

Abu Reyan Ahmed1, Md. Saidur Rahman2 and Stephen Kobourov1

1Dept. of Computer Science, University of Arizona,
{abureyanahmed@email,kobourov@cs}.arizona.edu

2Dept. of Computer Science and Engineering, Bangladesh University of Engineering
and Technology, saidurrahman@cse.buet.ac.bd

Abstract. We consider the online facility assignment problem, with a set
of facilities F of equal capacity l in metric space and customers arriving one
by one in an online manner. We must assign customer ci to facility fj before
the next customer ci+1 arrives. The cost of this assignment is the distance
between ci and fj . The total number of customers is at most |F |l and
each customer must be assigned to a facility. The objective is to minimize
the sum of all assignment costs. We first consider the case where facilities
are placed on a line so that the distance between adjacent facilities is the
same and customers appear anywhere on the line. We describe a greedy
algorithm with competitive ratio 4|F | and another one with competitive
ratio |F |. Finally, we consider a variant in which the facilities are placed
on the vertices of a graph and two algorithms in that setting.

1 Introduction

Let F = {f1, f2, · · · , f|F |} be a set of facilities, each with capacity l. We first con-
sider the case when facilities are placed on line L, such that the distance between
every pair of adjacent facilities is d, where d is a constant. An input sequence
I = {c1, c2, · · · , cn} is a set of n customers who arrive one at a time in an online
manner, with ci corresponding to the location of customer i on the line L. The
distance between a customer ci and a facility fj is the Euclidean distance between
ci and fj . We later consider the case in which the facilities are located on the
vertices of a graph G = (V,E) and customers appear on the vertices of G. In that
case, the distance between a customer ci and a facility fj is equal to the number
of edges in the shortest path between ci and fj .

Any algorithm for this problem must assign a customer ci to a facility fj before
the next customer ci+1 arrives, where the cost of that assignment is the distance
between ci and fj . The total number of customers is at most |F |l as every facility
can serve at most l customers and each customer must be assigned to a facility.
The objective is to minimize the total cost of all assignments. We call this problem
the online facility assignment problem. This problem arises naturally in different
practical applications, such handling online orders for a restaurant with multiple
locations, and handling network packets in network with multiple routers.

1Work on this project was funded in part by NSF grant CCF-AF 1712119.

2 Abu Reyan Ahmed, Md. Saidur Rahman, Stephen Kobourov

1.1 Related Work

In the classical facility location problem, customer locations are known ahead of
time and the objective is to compute locations for a set of facilities that can handle
all the customers. The Fermat-Weber problem is considered the first facility loca-
tion problem, studied as early as in the 17th century; see the survey of Drezner [9]
and the textbook by Drezner and Hamacher [10]. A recently proposed facility lo-
cation variant is the r-gathering problem. An r-gathering of a set of customers
C for a set of facilities F is an assignment of C to open facilities F ′ ⊂ F such
that r or more customers are assigned to each open facility. Armon [3] describes a
simple 3-approximation algorithm for this problem. Akagi and Nakano [1] provide
an O((|C| + |F |) log |C|+ |F |) time algorithm to solve the r-gathering problem
when all customers in C and facilities in F are on the real line.

The online facility assignment problem is also related to the k-server problem
proposed by Manasse et al. [16], which requires scheduling the movement of a set
of k servers, represented as points in a metric space, in order to handle requests
that are also in the form of points in the space. For each request, the algorithm
must determine which server to move to the requested point, with the goal of mini-
mizing the total distance covered by all servers. This problem has been extensively
studied [14, 18, 7, 8, 5, 6, 15].

Despite similarities, the k-server problem and the online facility assignment
problem are different. The servers in the k-server problem are movable, whereas the
positions of facilities are fixed in the online facility assignment problem. Therefore,
a customer placed very close to a previous customer is easily served in the server
problem which is not true for the facility assignment problem.

The facility assignment problem is also related to the matching problem [17],
which is one of the fundamental and well-studied optimization problems. The fa-
cility assignment problem can be seen as a generalization of the matching problem,
where each facility has capacity l ≥ 1. Online variants of matching have been ex-
tensively studied [11, 13, 12, 4, 2]. Kao et al. [12] provide a randomized lower bound
of 4.5911 for online matching on a line. We provide a randomized algorithm, which
is 9

2 -competitive for a class of input sequences. Antoniadis et al. [2] describe an
o(n)-competitive deterministic algorithm for online matching on a line.

1.2 Our Contributions

We first consider the case where both the facilities F and the customers C are on
a line. We propose Algorithm Greedy and show that it has competitive ratio 4|F |.
Introducing randomization in Algorithm Greedy leads to an improved performance
of 9/2 for a special class of input instances. We then describe Algorithm Optimal-
Fill and show it has competitive ratio |F |.

We next consider the case where both the facilities F and the customers C
are located on the vertices of an unweighted graph G = (V,E). We show that
Algorithm Greedy has competitive ratio 2|E(G)| and Algorithm Optimal-Fill has
competitive ratio |E(G)||F |/r, where r is the radius of G. Finally, we consider the
case where a customer leaves after receiving service at a facility. We define service
time as the amount of service time needed, and study the facility assignment
problem with limited service time.

Online Facility Assignment 3

The rest of this paper is organized as follows. In Section 2 we provide basic
definitions. In Section 3 we study the online facility assignment problem on a line.
In Section 4 we study the graph version of the problem. In Section 5 we introduce
a service time parameter t in our model and show that no deterministic algorithm
is competitive when t = 2.

2 Preliminaries

A graph G = (V,E) consists of a finite set V of vertices and a finite set E of edges;
each edge is an unordered pair of vertices. We often denote the set of vertices G
by V (G) and the set of edges by E(G). We say G is unweighted if every edge of
G has equal weight. Let u and v be two vertices of G. If G has a u, v-path, then
the distance from u to v is the length of a shortest u, v-path, denoted by dG(u, v)
or simply by d(u, v). If G has no u, v-path then d(u, v) = ∞. The eccentricity of
a vertex u in G is maxv∈V (G)d(u, v) and denoted by ε(u). The radius r of G is
minu∈V (G)ε(u) and the diameter of G is maxu∈V (G)ε(u). The center of G is the
subgraph of G induced by vertices of minimum eccentricity.

In the online facility assignment problem, we are given a set of facilities F =
{f1, f2, · · · , f|F |} of equal capacity l in a metric space, and an input sequence of
customers I = {c1, c2, · · · , cn} which is a set of n customers who arrive one at
a time in an online manner, with ci corresponding to the location of customer i
in the given space. We say an input I is well distributed if there is at least one
customer between any two adjacent facilities. The capacity of a facility is reduced
by one when a customer is assigned to it. We denote the current capacity of facility
fi by capacityi. A facility fi is called free if capacityi > 0. Any algorithm ALG for
this problem must assign a customer ci to a free facility fj before a new customer
ci+1 arrives. The cost of this assignment is the distance between ci and fj , which
is denoted by distance(fj , ci). The total number of customers is, at most, |F |l and
each customer must be assigned to a facility. For any input sequence of customers
I, Cost ALG(I) is defined as the total cost of all assignments made by ALG. The
objective is to minimize Cost ALG(I).

We say an algorithm is optimal if, for any input sequence of customers, the
total cost of the assignment it provides is the minimum possible. We denote an
optimal algorithm by OPT. An online algorithm ALG is c-competitive if there is
a constant α such that, for all finite input sequences I,

Cost ALG(I) ≤ c.Cost OPT(I) + α.

The factor c is called the competitive ratio of ALG. When the additive constant α
is less than or equal to zero (i.e., Cost ALG(I) ≤ c.Cost OPT(I)), we may say, for
emphasis, that ALG is strictly c-competitive. An algorithm is called competitive
if it attains a constant competitive ratio c. Although c may be a function of the
problem parameters, it must be independent of the input I. The infimum over the
set of all values c such that ALG is c-competitive is called the competitive ratio of
ALG and is denoted by R(ALG).

4 Abu Reyan Ahmed, Md. Saidur Rahman, Stephen Kobourov

3 Facility Assignment on a Line

Let F = {f1, f2, · · · , f|F |} be a set of facilities placed on a line, such that the
distance between every pair of adjacent facilities is d, where d is a constant. An
input sequence I = {c1, c2, · · · , cn} is a set of n customers who arrive one at a
time in an online manner, with ci corresponding to the location of customer i on
the line. In Section 3.1 we describe Algorithm Greedy with competitive ratio 4|F |.
In Section 3.2 we introduce randomization to Algorithm Greedy and show that it
is 9

2 -competitive for a special class of input sequences. In Section 3.3 we describe
Algorithm Optimal-Fill and show it has competitive ratio |F |.

3.1 Algorithm Greedy

Here we describe and analyze the natural greedy algorithm, which assigns each
customer to the nearest free facility.

Algorithm Greedy

Input: Customers I = {c1, · · · , cn}, facilities F = {f1, · · · , f|F |}, capacity l
Output: An assignment of C to F and the total cost of that assignment
sum← 0;
for i← 1 to |F | do

capacityi = l;

for i← 1 to n do
min←∞;
index← −1;
for j ← 1 to f do

if capacityj > 0 and distance(fj , ci) < min then
min← distance(fj , ci);
index← j;

assign ci to findex;
capacityindex ← capacityindex − 1;
sum← sum+min;

Result: sum is the total cost

We can analyze the online algorithm in the context of a game between an online
player and a malicious adversary. The online player runs the online algorithm on
an input created by the adversary. The adversary, based on the knowledge of the
online algorithm, constructs the worst possible input (i.e., one that maximizes the
competitive ratio). Consider Algorithm Greedy above and the adversary strategy
of making an instance very costly for Algorithm Greedy but, at the same time,
inexpensive for OPT. The following lemma gives a lower bound for OPT’s cost.

Lemma 1. Let d be the distance between all adjacent facilities. If the assignments
of OPT and Algorithm Greedy are not the same, then OPT’s cost is at least d

2 .

Proof. Let cx be the first customer for which the assignments of OPT and Algo-
rithm Greedy differ. The optimal cost for assigning cx is at least d

2 . Hence the

total optimal cost is at least d
2 . ut

Online Facility Assignment 5

The following theorem determines the worst input sequence an adversary can
construct for Algorithm Greedy and provides a competitive ratio.

Theorem 1. Let F = {f1, f2, · · · , f|F |} be a set of facilities placed on the line,
such that the distance between every pair of adjacent facilities is d, where d is a
constant. Then R(Algorithm Greedy) ≤ 4|F |.

Proof. Recall the definition of a well distributed input sequence, namely that there
is at least one customer between any two adjacent facilities. When the metric space
is a line, all customers have cost less than d in the optimum assignment of a well
distributed input sequence. However, if the input sequence is not well distributed,
there are some customers with assignment cost greater than d. We consider these
two cases separately. For both cases, assume now that the facilities have unit
capacity. Later we will also deal with the case for capacity l, where l > 1.

Let fl is the leftmost facility and fr be the rightmost facility. Consider a
customer c who appears to the left of fl. The distance between c and fl is
distance(fl, c). Both Cost Algorithm Greedy(I) and Cost OPT(I) must pay the
amount distance(fl, c). The ratio of Cost Algorithm Greedy(I) to Cost OPT(I)
increases when distance(fl, c) decreases. The case when c appears to the right of
fr is analogous. Now consider the case where customers appear between fl and fr,
since the ratio does not increase if customers appear outside of this range (because
both OPT and Algorithm Greedy have to consider the region outside this range).

We first consider the case when all customers have costs less than d in the
optimum assignment. In the worst case, the adversary places all the customers very
close to the facilities except the first customer c1 as illustrated in Figure 1. The
total cost of Algorithm Greedy is no more than 2|F |d. In the optimum assignment
all customers ci have cost εi except c1. The cost of the first customer c1 is γ, where

γ > d
2 (Lemma 1). Then Cost Algorithm Greedy(I)

Cost OPT(I) ≤ 2|F |d
d
2

= 4|F |.

f1f2f3f4f5c5

Greedy OPT

ε5 ε4 ε3 ε2 γ

c4 c3 c2 c1

Fig. 1. The configurations of Algorithm Greedy and OPT

In the second case, k customers have costs greater than d in the optimum
assignment. Hence, the total cost of the optimum assignment is at least kd. We
have assumed that the customers at distance less than d are assigned with cost zero
by the optimal algorithm and there are |F | − k such customers. In the assignment
created by Algorithm Greedy, each of these customers would have cost at most d.
Note that if any of these customers have cost greater than d, then that assignment
A can be easily transformed to an equivalent assignment B with total cost equal to
that of the original assignment A and so that |F |−k customers have cost no more
than d. The transformation goes one step at a time, as follows. If a customer c1

6 Abu Reyan Ahmed, Md. Saidur Rahman, Stephen Kobourov

assigned to a facility f1 by OPT has cost less than or equal to d and c1 is assigned
to a facility f2 in A and has cost greater than d, then we get a new assignment A′

by assigning c1 to f1 and c2 to f2, where c2 was the customer assigned to f1 in
A. Similarly, we can swap the next pair to get assignment A′′, and continue this
process until we get the equivalent assignment B. There are |F | − k customers in
B with cost at most d and each of the remaining k customers have a cost at most

(|F | − 1)d. Then Cost Algorithm Greedy(I)
Cost OPT(I) ≤ (|F |−1)dk+(|F |−k)d

kd = (k+1)|F |
k − 2.

In the analysis above we assumed unit capacity; now let each facility have
capacity l, where l > 1. Suppose that there exists an input sequence of customers
I for which the ratio is greater than 4|F |. We can partition I into I1, I2, · · · , Il in
such a way that the following conditions hold:

– Ii ∩ Ij = ∅ for 1 ≤ i, j ≤ l and i 6= j.
– I1 ∪ I2 ∪ · · · ∪ Il = I.
– Exactly one customer from Ii is assigned to a facility fj for 1 ≤ i ≤ l and

1 ≤ j ≤ |F |.
Then there exists a set Imax ∈ {I1, I2, · · · , Il} such that the ratio of the corre-

sponding cost of Algorithm Greedy to the cost of OPT is greater than 4|F |. If we
take a set of facilities with unit capacities and place the customers of Imax in the
same order as they appear in I, the ratio would be greater than 4|F | which is a
contradiction to the bound of unit capacity. ut

Note that this algorithm does not generalize to non-equidistant facilities. In
particular, if the distances between adjacent facilities increase exponentially, this
algorithm can be forced to pay a factor of O(2|F |) more than OPT.

3.2 Algorithm σ-Randomized-Greedy

In this section we introduce randomness to the greedy method of the previous
section and show that better competitive ratios can be obtained.With deter-
ministic online algorithms, the adversary knows the full strategy and can se-
lect the worst input sequence. This is not possible if ALG is a randomized al-
gorithm. An oblivious adversary must choose a finite input sequence I in ad-
vance. ALG is c-competitive against an oblivious adversary if for every such I,
E[Cost ALG(I)] ≤ c.Cost OPT(I) + α where α is a constant independent of I,
and E[.] is the mathematical expectation operator taken with respect to the ran-
dom choices made by ALG. Since the offline player does not know the outcomes
of the random choices made by the online player, Cost OPT(I) is not a random
variable and there is no need to take its expectation.

We introduce randomness in Algorithm Greedy, described in the previous sec-
tion, and call the new method Algorithm σ-Randomized-Greedy. Let fx be the
facility which is nearest to customer cy and let σ be a real number. Then σ-
Randomized-Greedy checks whether the distance between cy and fx is less than σ
and if so then cy is assigned to fx. Otherwise, σ-Randomized-Greedy tosses a fair
coin before assigning a customer to a facility, choosing the nearest free facility to
the right (left) if the coin comes heads (tails).

We will next show that Algorithm σ-Randomized-Greedy performs better than
Algorithm Greedy.

Online Facility Assignment 7

Algorithm σ-Randomized-Greedy

Input: Customers I = {c1, · · · , cn}, facilities F = {f1, · · · , f|F |}, capacity l
Output: An assignment of C to F and the total cost of that assignment
sum← 0;
for i← 1 to |F | do

capacityi = l;

for i← 1 to n do
min←∞;
index← −1;
for j ← 1 to |F | do

if capacityj > 0 and distance(fj , ci) < min then
min← distance(fj , ci);
index← j;

if min ≥ σ then
randomly select the nearest free facility fk to the left or right;
min← distance(fk, ci);
index← k;

assign ci to findex;
capacityindex ← capacityindex − 1;
sum← sum+min;

Result: sum is the total cost

Theorem 2. Let I be a well distributed request sequence for Algorithm Greedy.
Let γ be the optimal cost for the first customer and εi be the optimal cost for ith

customer where i > 1. If σ > εi for all i and σ ≤ γ then Algorithm σ-Randomized-
Greedy is 9

2 -competitive for I.

Proof. Let F = {f1, f2, · · · , f|F |} be a set of facilities, such that the distance
between every pair of adjacent facilities is d, where d is a constant. Recall that if
an input I of customers has the property that all assignments cost less than d in the
optimum solution, then I is well distributed. The first customer c1 is placed closer
to f2 (Figure 1) in order to fool Algorithm Greedy. Algorithm Greedy assigns c1 to
f2. Except the first customer c1, the adversary places every customer ck very close
to facility fk. Since Algorithm Greedy has already assigned c1 to f2, it can not
assign c2 to the same facility. Similarly, for every customer ck, Algorithm Greedy
assigns it to fk+1 although it is very close to fk. Algorithm σ-Randomized-Greedy
overcomes this situation by using randomness. Consider the first customer c1 who
is close to f2. Algorithm σ-Randomized-Greedy chooses either f1 or f2 with equal
probability 1

2 . Similarly for every customer ck, Algorithm σ-Randomized-Greedy
chooses either fk+1 or fk with equal probability 1

2 . Then

E[Cost σ-Randomized-Greedy(I)] = d
4 +

∑|F |−2
i=1 {

1
2i+1 (2id− d

2)}
+ 1

2|F |−1 {2(|F | − 1)d− d
2}

< d
4 + d

∑|F |−2
i=1

i
2i

< d
4 + 2d

= 9d
4

8 Abu Reyan Ahmed, Md. Saidur Rahman, Stephen Kobourov

Since the optimum cost is at least d/2, Algorithm σ-Randomized-Greedy is
9
2 -competitive for I. ut

This shows that Algorithm σ-Randomized-Greedy can obtain better (expected)
competitive ratios than Algorithm Greedy, for appropriate values of σ. In the
theorem above the value of σ is very small compared to d. If a customer ci is
placed beside a facility fj such that the distance between ci and fj is less than σ,
then it is assumed that there is no harm to assign ci to fj .

3.3 Competitive Analysis of Algorithm Optimal-Fill

In Section 3.1, we showed that Algorithm Greedy can be easily fooled by placing
all the customers very close to the facilities except for the first customer. We next
describe Algorithm Optimal-Fill, which is more efficient than Algorithm Greedy.
The idea is that when a new customer ci arrives, Algorithm Optimal-Fill finds out
facility fj that would be selected by an optimal assignment of all the customers
c1, c2, · · · , ci. Algorithm Optimal-Fill then assigns ci to fj .

Algorithm Optimal-Fill

Input: Customers I = {c1, · · · , cn}, facilities F = {f1, · · · , f|F |}, capacity l
Output: An assignment of C to F and the total cost of that assignment
sum← 0;
for i← 1 to n do

let fj be the new facility chosen by an optimal assignment of customers
c1, c2, · · · , ci;
assign ci to fj ;
sum← sum+ distance(fj , ci);

Result: sum is the total cost

The following theorem shows that Algorithm Optimal-Fill performs better than
deterministic greedy method.

Theorem 3. Let F = {f1, f2, · · · , f|F |} be a set of facilities placed on the line,
such that the distance between every pair of adjacent facilities is d, where d is a
constant. Then R(Algorithm Optimal-Fill) ≤ |F |.

Proof. In the worst case, the adversary can place each customer except the first
one on top of a facility, so the cost is zero, while Algorithm Optimal-Fill has to
pay for each of these customers. The adversary pays only for the first customer
and all others are free, because they are placed on top of their facilities. However,
Algorithm Optimal-Fill has to pay at least d for each of them. The two algorithms
(OPT and Optimal-Fill) are illustrated with an example with 5 facilities and 5
customers in Figure 2.

Then Cost Algorithm Optimal-Fill(I)
Cost OPT(I) =

d+2d+···+(|F |−1)d+ d
2

|F |d
2

< |F | ut

Note that R(Algorithm Optimal-Fill) is not affected when the distances be-
tween adjacent facilities are different.

Online Facility Assignment 9

c4

Optimal-Fill OPT

f1 f2 c2 f3 c1 c3 f4 c5 f5

Fig. 2. The adversary places the first customer c1 between f3 and f4. Algorithm Optimal-
Fill assigns c1 to f3 because it is a little bit closer compared to f4. The adversary now
places c2 exactly on f3. Algorithm Optimal-Fill assigns c2 to f4 because f3 and f4 are
chosen by an optimal assignment for customers c1 and c2. The adversary then places
c3 exactly on f4. Algorithm Optimal-Fill assigns c3 to f2 because f2 is the new facility
chosen by an optimal assignment for customers c1, c2 and c3.

4 Facility Assignment on Connected Unweighted Graphs

We now consider the case where the facilities F are placed on the vertices of a con-
nected unweighted graph G = (V,E) and customers arrive one by one in an online
manner at vertices of G. We show that Algorithm Greedy has competitive ratio
2|E(G)| and Algorithm Optimal-Fill has competitive ratio |E(G)||F |/r, where r
is the radius of G.

4.1 Competitive Analysis of Algorithm Greedy

In Section 3.1 we analyzed Algorithm Greedy on a line. The following theorem
describes the performance of Algorithm Greedy in the graph setting.

Theorem 4. LetM be a connected unweighted graph. Then R(Algorithm Greedy) ≤
2|E(M)|.

Proof. We assume that the facilities have unit capacity since the analysis is similar
for capacity l, where l > 1. Two facilities fi and fj are adjacent if there exists a
path P from fi to fj such that no other facilities are situated on P . Recall the
definition of a well distributed input sequence: an input I is well distributed if
there is at least one customer between any two adjacent facilities. We first prove
the claim for an input I which is well distributed. Then we show how to transform
I to I ′ such that I ′ is well distributed and the competitive ratios of I and I ′ are
the same.

We consider two cases;M is a tree andM contains at least one cycle. IfM is
a tree, we assume that every leaf contains a facility, since R(Algorithm Greedy)
does not increase in the other case. In the worst case Cost Greedy(I) is less than
2|E(M)| and Cost OPT(I) is equal to one as shown in Figure 3. A square box
represents a facility and the input customers are shown by their sequence numbers.
In this case competitive ratio is 2|E(M)|.

IfM contains a cycle, R(Algorithm Greedy) does not increase. Consider a set
of facilities F placed situated on a cycle. In the worst case Cost Greedy(I) is less
than |E(M)| and Cost OPT(I) is equal to one, as shown in Figure 3. In this case
the competitive ratio is |E(M)|.

10 Abu Reyan Ahmed, Md. Saidur Rahman, Stephen Kobourov

b

b

b

b

b

b

b

1

2 3

4

56

Greedy OPT

b

Greedy OPT

b

b

b

b

b
1

2

3

45

6

Fig. 3. The configurations of Algorithm Greedy and OPT for a tree and a cycle.

Now suppose the input sequence I is not well distributed. Let M′ be the
minimum subgraph of M so that all customers are situated on M′. Consider the
set of facilities situated on M′. In the worst case the customers assigned to those
facilities by Algorithm Greedy incur total cost less than 2|E(M′)| and OPT incurs
only unit cost. If OPT incurs cost x to assign a customer to a remaining facility,
then Algorithm Greedy incurs at most x + |E(M′)| cost to assign a customer
to that facility. Hence, Cost Greedy(I) ≤ Cost OPT(I)− 1 + |E(M′)|(|E(M)| −
|E(M′)|)+2|E(M′)|. It follows that if |E(M′)| is small then Algorithm Greedy will
perform similar to OPT. The larger the value of |E(M′)| the more well distributed
the input I becomes. Hence R(Algorithm Greedy) ≤ 2|E(M)|. ut

Theorem 4 immediately yields the following corollary.

Corollary 1. Let M be a connected unweighted graph and a set of facilities F
is placed on the vertices of M so that distance between two adjacent facilities is
equal. Then R(Algorithm Greedy) ≤ 4|F |.

4.2 Competitive Analysis of Algorithm Optimal-Fill

In Section 3.3 we showed that Algorithm Optimal-Fill was more efficient than Al-
gorithm Greedy, when the metric space was a line. In the case of a connected
unweighted graph, it is not straight-forward to determine whether Algorithm
Optimal-Fill is better than Algorithm Greedy. The answer depends on the number
of edges, facilities and the radius of the graph. The following theorem describes
the performance of Algorithm Optimal-Fill.

Theorem 5. Let M be a connected unweighted graph and a set of facilities F is

placed on the vertices of M. Then R(Algorithm Optimal-Fill) ≤ |E(M)||F |
r .

Proof. The proof is similar to the analysis of Theorem 4. It is sufficient to consider
the case whenM is a tree and I is well distributed. Let x be a vertex in the center
of M which is not a facility. If no such vertex exists, the first customer c1 is
placed on a vertex which is not a facility and the distance from the center ofM is
minimum. Otherwise, c1 is placed on x. In the worst case, Algorithm Optimal-Fill
pays a cost equal to the distance between two facilities for each customer, except
the first one (see Figure 4). The adversary pays a cost which is no more than
radius only for the first customer. Algorithm Optimal-Fill traverses an edge no

more than |F | times. Hence, R(Algorithm Optimal-Fill) is at most |E(M)||F |
r . ut

Online Facility Assignment 11

5 Facility Assignment with a Finite Service Time

b
1

2 3

456

Optimal-Fill OPT

Fig. 4. Worst case of Algorithm
Optimal-Fill

Until now we have assumed that if a customer
ci is assigned to a facility fj , then ci remains
there forever. In other words, the service time
of an assignment is infinite. Hence a facility
with capacity l can provide service to at most
l customers. If there are |F | facilities, the total
number of customers is limited to |F |l. In this
section we study the facility assignment prob-
lem with a finite service time t. We assume
a unit time interval between arrivals of cus-
tomers. When t = 1, the service time is unit.
Let cw be assigned to fx. and let us consider
the case where all facilities have unit capacities
(l = 1). If cy is next to cw then we can also as-
sign cy to fx although cw was assigned to fx.
For unit service time, both Algorithm Greedy
and Algorithm Optimal-Fill provide the opti-
mal solution. When the service time is two (t = 2), we can not assign cy to fx.
However, if cz arrives just after cy, then we can assign cz to fx.

Theorem 6. Let t be the time needed to provide service to a assigned customer.
No deterministic algorithm ALG is competitive for t = 2.

Proof. Let I = (c1, c2, · · · , cn) be the input sequence. The adversary places the
first customer c1 between any two adjacent facilities fi and fi+1. Suppose ALG has
assigned c1 to fi. The adversary now places c2, c3, · · · , cn exactly on the facilities
assigned for c1, c2, · · · , cn−1. The adversary runs the optimal algorithm. It assigns
c1 to fi+1, which incurs cost less than d, the distance between fi and fi+1. The
adversary does not pay any cost for the later assignments, because each customer
is placed exactly on a facility. However, ALG pays at least d for each assignment
except the first one. ut

6 Conclusion

We considered the online facility assignment problem and analyzed several al-
gorithms: Algorithm Greedy, Algorithm σ-Randomized-Greedy and Algorithm
Optimal-Fill. We analyzed the performance of these algorithms in two metric
spaces: the 1-dimensional line and a simple, connected, unweighted graph. On
the line, we made another strong assumption: that the distance between any two
adjacent facilities is the same. The algorithms we describe do not generalize to the
case when these distances are arbitrary. In Theorem 2, we further assumed that
the input sequence of customers is also well distributed. It would be interesting to
find out what happens one or both of these assumptions are dropped. In the graph
setting we do not make any assumptions about how the facilities are distributed
among the vertices, or about how customers are distributed among the vertices.
However, our results in this setting are weaker, in the sense that they depend on

12 Abu Reyan Ahmed, Md. Saidur Rahman, Stephen Kobourov

parameters such as the number of edges in the graph and its radius. A natural
question to ask is whether stronger results exist in the graph setting, as well as in
other metric spaces.

References

1. Akagi, T., Nakano, S.i.: On r-gatherings on the line. In: Wang, J., Yap, C. (eds.)
Frontiers in Algorithmics, Lecture Notes in Computer Science, vol. 9130, pp. 25–32.
Springer International Publishing (2015)

2. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: Approxima-
tion and Online Algorithms: 12th International Workshop, WAOA 2014, Wroc law,
Poland, September 11-12, 2014, Revised Selected Papers, chap. A o(n)-Competitive
Deterministic Algorithm for Online Matching on a Line, pp. 11–22. Springer Inter-
national Publishing, Cham (2015)

3. Armon, A.: On min-max r-gatherings. Theoretical Computer Science 412(7), 573–582
(2011)

4. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: An O(log2 k)-competitive algo-
rithm for metric bipartite matching. Algorithmica 68(2), 390–403 (2012)

5. Bartal, Y., Koutsoupias, E.: On the competitive ratio of the work function algorithm
for the k-server problem. Theoretical Computer Science 324(23), 337 – 345 (2004)

6. Bein, W.W., Chrobak, M., Larmore, L.L.: The 3-server problem in the plane. Theo-
retical Computer Science 289(1), 335 – 354 (2002)

7. Chrobak, M., Karloff, H., Payne, T., Vishwanathan, S.: New results on server prob-
lems. In: SIAM Journal on Discrete Mathematics. pp. 291–300 (1990)

8. Chrobak, M., Larmore, L.L.: An optimal on-line algorithm for k-servers on trees.
SIAM Journal on Computing 20(1), 144–148 (Feb 1991)

9. Drezner, Z.: Facility Location: A Survey of Applications and Methods. springer (1995)
10. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory. springer

(2004)
11. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. Journal of Algorithms

14(3), 478 – 488 (1993)
12. Kao, M.Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An opti-

mal randomized algorithm for the cow-path problem. Information and Computation
131(1), 63 – 79 (1996)

13. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite
matching and stable marriages. Theoretical Computer Science 127(2), 255 – 267
(1994)

14. Kleinberg, J.M.: A lower bound for two-server balancing algorithms. Information
Processing Letters 52(1), 39 – 43 (1994)

15. Koutsoupias, E., Papadimitriou, C.: The 2-evader problem. In: Information Process-
ing Letters. pp. 473–482 (1996)

16. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server
problems. Journal of Algorithms 11(2), 208–230 (May 1990)

17. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency, Algorithms and
Combinatorics, vol. 24. Springer, Berlin (2003)

18. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (Feb 1985)

