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Abstract

In this paper we study threshold-coloring of graphs, where the vertex colors repre-
sented by integers are used to describe any spanning subgraph of the given graph as
follows. A pair of vertices with a small difference in their colors implies that the edge
between them is present, while a pair of vertices with a big color difference implies
that the edge is absent. Not all planar graphs are threshold-colorable, but several sub-
classes, such as trees, some planar grids, and planar graphs with no short cycles can
always be threshold-colored. Using these results we obtain unit-cube contact repre-
sentation of several subclasses of planar graphs. Variants of the threshold-coloring
problem are related to well-known graph coloring and other graph-theoretic problems.
Using these relations we show the NP-completeness for two of these variants, and de-
scribe a polynomial-time algorithm for another.
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1. Introduction

Graph coloring is among the fundamental problems in graph theory. Typical ap-
plications of the problem and its generalizations are in job scheduling, channel as-
signments in wireless networks, register allocation in compiler optimization and many
others [1]. In this paper1 we consider a new graph coloring problem in which we assign
colors (integers) to the vertices of a graph G in order to define a spanning subgraph H
of G. In particular, we color the vertices of G so that for each edge of H , the two end-
points are near, that is, their difference is at most a given “threshold”, and for each edge

1A part of the results of this paper was presented at the 39th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG’13) [2] and 7th International Conference on Fun With Algorithms
(FUN’14) [3].
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of G \ H , the endpoints are far, that is, their difference is greater than the threshold;
see Figure 1.

The motivation of the problem is severalfold. First, such coloring arises in the
context of the geometric problem of unit-cube contact representation of planar graphs.
In such a representation of a graph, each vertex is represented by a unit-size cube and
each edge is realized by a common boundary with non-zero area between the two corre-
sponding cubes. Finding classes of planar graphs with unit-cube contact representation
was recently posed as an open question by Bremner et al. [4]. In this paper we partially
address this problem as an application of our coloring problem in the following way.
Suppose a planar graph G has a unit-cube contact representation where one face of
each cube is co-planar; see Figure 1(a). Assume that we can define a spanning sub-
graph H of G by our particular vertex coloring. We show that it is possible to compute
a unit-cube contact representation of H by lifting the cube for each vertex v by the
amount equal to the color of v (where the size or side-length of the cubes are roughly
equal to the threshold); see Figure 1(b).

Another motivation for the threshold-coloring comes from the notion of adjacency
labeling scheme [5, 6]. The idea is to label (color) vertices of a graph in a way that will
allow one to infer the adjacency of two vertices directly from their labels without using
additional information. Clearly labels of unrestricted size can be used to encode any de-
sired information. However, for practical considerations, it is important to keep labels
relatively short and allow efficient information deduction. Threshold-coloring makes it
possible to determine the adjacency between two vertices of a graph in constant time.
Finally, such coloring can be used for the Frequency Assignment Problem [7], which
asks for assigning frequencies to transmitters in radio networks so that only specified
pairs of transmitters can communicate with each other.

1.1. Problem Definition
An edge-labeling of graph G = (V,E) is a mapping ` : E → {N,F} assigning

labels N or F to each edge of the graph; we informally name edges labeled with N
as the near edges, and edges labeled with F as the far edges. Note that such an edge-
labeling of G defines a partition of the edges E into near and far edges. By abuse of
notation the pair {N,F} also denotes this partition.

Let r ≥ 1 and t ≥ 0 be two integers and let [1 . . . r] denote a set of r consecutive
integers. For a graph G = (V,E) and an edge-labeling ` : E → {N,F} of G, an
(r, t)-threshold-coloring of G with respect to ` is a coloring c : V → [1 . . . r] such that
for each edge e = (u, v) ∈ E, if (u, v) ∈ N then |c(u) − c(v)| ≤ t and if (u, v) ∈ F
then |c(u) − c(v)| > t. We call r and t the range and the threshold, respectively.
Note that the set of near edges defines a spanning subgraph H = (V,N) of G, where
H is a spanning subgraph of graph G if it contains all vertices of G. We can thus
redefine threshold-coloring for a pair (G,H) of a graph G = (V,EG) and a spanning
subgraph H = (V,EH) of G: an (r, t)-threshold-coloring for (G,H) is the one for
G with respect to the labeling ` : EG → {N,F}, where `(e) = N if e ∈ H and
`(e) = F if e /∈ H . The graph H is a threshold-subgraph of G if there exists an
(r, t)-threshold-coloring for (G,H) for some integers r, t.

A graph G is (r, t)-total-threshold-colorable for some r ≥ 1, t ≥ 0, if for every
edge-labeling ` of G there exists an (r, t)-threshold-coloring of G with respect to `.
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Figure 1: (a) A planar graph G = (V,EG) and a corresponding unit-cube contact representation
where the bottom faces of all cubes are co-planar, (b) a spanning subgraph H = (V,EH) of G
with a (4, 1)-threshold-coloring for (G,H) and a corresponding unit-cube contact representa-
tion. The edges in EG \EH (far edges) are shown dashed, and the edges in EH (near edges) are
shown solid.

Informally speaking, for every partition of edges of G into near and far edges, we can
produce vertex colors so that endpoints of near edges receive near colors, and endpoints
of far edges receive colors that are far apart. A graph G is total-threshold-colorable if
it is (r, t)-total-threshold-colorable for some range r ≥ 1 and threshold t ≥ 0. In this
paper we focus on the following problem variants.

Total-Threshold-Coloring: Given a graph G, is G total-threshold-colorable, that
is, is every spanning subgraph of G a threshold subgraph of G?

The problem is closely related to the question about whether a particular spanning
graph H of G is threshold-colorable.

Threshold-Coloring: Given a graph G and a spanning subgraph H , is H a thresh-
old subgraph of G for some integers r ≥ 1, t ≥ 0?

Another interesting variant of the threshold-coloring is the one in which we specify
that the graph G is the complete graph. In this case we call H an exact-threshold graph
if H is a threshold subgraph of the complete graph G for some integers r ≥ 1, t ≥ 0.

Exact-Threshold-Coloring: Given a graph H , is H an exact-threshold graph?

In the final variant of the problem we assume that the threshold and the range are
the part of the input.

Fixed-Threshold-Coloring: Given a graph G, a spanning subgraph H , and inte-
gers r ≥ 1, t ≥ 0, is H (r, t)-threshold-colorable?
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1.2. Related Work

Many problems in graph theory deal with coloring or assigning labels to the ver-
tices of a graph [1]; many graph classes are defined based on such coloring and la-
beling; see [8] for an excellent survey. To the best of our knowledge, total-threshold-
colorability defines a new class of graphs. Here we mention two closely related classes:
threshold graphs and difference graphs. Threshold graphs are ones for which there is
a real number S and for every vertex v there is a real weight av such that (v, w) is an
edge if and only if av + aw ≥ S [9]. A graph is a difference graph if there is a real
number S and for every vertex v there is a real weight av such that |av| < S and (v, w)
is an edge if and only if |av − aw| ≥ S [10]. Note that for both classes the thresh-
old (real number S) defines edges between all pairs of vertices, while in our setting
the threshold defines only the edges of a graph G, which is not necessarily a complete
graph. Both threshold and difference graphs can be characterized in terms of forbidden
induced subgraphs. For our problem such a characterization is unknown. For details
on threshold and difference graphs, see [9].

Threshold-colorability is related to the integer distance graph representation [11,
12]. An integer distance graph is a graph with the set of integers as vertex set and
with an edge joining two vertices u and v if and only if |u − v| ∈ D, where D is a
subset of the positive integers. Clearly, an integer distance graph is an exact-threshold
graph if the set D is a set of consecutive integers. Another related graph coloring
problem is the distance constrained graph labeling. Here the goal is to find a so-called
L(p1, . . . , pk)-labeling of the vertices of a graph which means that for every pair of
vertices at distance at most i ≤ k we have that the difference of their labels is at least
pi. The most studied variant is an L(2, 1)-labeling [13, 14]. Minimizing the number of
labels in L(2, 1)-labeling is NP-complete, even for graphs with diameter 2 [13]. It is
also NP-complete to determine whether an L(2, 1)-labeling exists with at most k labels
for every fixed integer k ≥ 4 [15]. Exact exponential algorithms for L(2, 1)-labeling
are described in [16].

A threshold-coloring of a planar graph can be used to find a contact representa-
tion of the graph with cuboids (axis aligned boxes) in 3D. Thomassen [17] shows that
any planar graph has a proper contact representation by cuboids in 3D. In a contact
representation of a graph, the vertices are represented by interior-disjoint cuboids (or
other polygonal shapes) and the edges are realized by a common boundary of the two
corresponding cuboids. A contact representation is proper if for each edge the corre-
sponding common boundary has non-zero area. Felsner and Francis [18] prove that
any planar graph has a (non-proper) contact representation by cubes. Bremner et al. [4]
proves that the same result does not hold when using only unit cubes. Our results on
threshold-coloring of planar graphs translates to results on classes of planar graphs that
can be represented by contact of unit cubes.

1.3. Our Contribution

First we study the relation of the various threshold-coloring problems with other
graph-theoretic problems. Specifically, we show that Threshold-Coloring and Exact-
Threshold-Coloring are NP-complete by reductions from a graph sandwich problem
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Graph
Class

trees,
cycles∗,
fans

square
grid

hexagonal,
octagonal-
square
grids

triangle-
dodec.,
square-
hexagon-
dodec.
grids

triangular,
square-
triangle
Grids

girth-10
planar
graphs

threshold
coloring

r = 5,
t = 1

Open,
r = O(n)

r = 5,
t = 1

r = 9,
t = 2

No r = 8,
t = 2

unit-cube
contact

No [4]∗ Yes [2] Yes Yes Open No [4]

Table 1: Results on Total-Threshold-Coloring problem. “No” entries in the last row follow [4]
from the fact that graphs with high-degree (e.g.,> 14) vertices have no unit-cube representation.
∗ Cycles have unit-cube contact representations.

and the classical vertex coloring problem, respectively. We also show that Fixed-
Threshold-Coloring can be solved in linear time since it is equivalent to the proper
interval graph recognition problem.

We then investigate the Total-Threshold-Coloring problem for various subclasses
of graphs. In particular, we show that trees, cycles, fans, and planar graphs with girth
(length of shortest cycle) at least 10 are always total-threshold-colorable. On the other
hand, we provide several examples of planar graphs having an edge-labeling admitting
no threshold-coloring. Then we study the problem for regular planar grids. We prove
that some of them are total-threshold-colorable (e.g., hexagonal, octagonal-square),
while the triangular and square-triangle grids are not. Finally, for the square grid, no
constant range of colors suffices. Our results are summarized in Table 1.

As an application of the threshold-coloring problem, we address the problem of
contact representation of planar graphs with unit cubes. Given a planar graph, we
investigate whether each of its subgraphs has such a representation. We show how
we can use the threshold-coloring for computing unit-cube contact representations for
some subclasses of planar graphs. Thus we answer some of the open problems from [4]
for the subclasses of planar graphs. The last row of Table 1 summarizes these results.

2. Threshold-Coloring and Other Graph Problems

We begin by showing the connections between threshold-colorability and some
classical graph-theoretical and graph coloring problems.

5



2.1. Vertex Coloring Problem

Let G = (V,E) be a graph. We call G k-vertex-colorable if there exists a coloring
c : V → [1 . . . k] such that for any edge (u, v) ∈ E, c(u) 6= c(v), that is, u and v
have different colors. Given an input graph G and an integer k > 0, the vertex coloring
problem asks whether there exists a k-vertex-coloring of G.

Observation 1. Let G = (V,E) be a graph and let k be a positive integer. Define an
edge-labeling ` : E → {N,F} that assigns each edge the label F , that is, for each
edge e ∈ E, `(e) = F . Then G has a k-vertex-coloring if and only if there exists a
(k, 0)-threshold-coloring of G with respect to `.

PROOF. Let c : V → [1 . . . k] define a mapping of the vertices of G to the colors
[1 . . . k]. Then c is a k-vertex-coloring ofG if and only if for each edge e = (u, v) ∈ E,
c(u) 6= c(v). This is equivalent to saying |c(u) − c(v)| > 0, or in other words c is a
(k, 0)-threshold-coloring of G with respect to `.

2.2. Proper Interval Representation Problem

An interval representation [8] for a graph G = (V,E) is one where each vertex
v of G is represented by an interval I(v) of R such that for any pair u, v ∈ V , the
intervals I(u) and I(v) have a non-empty intersection, that is, I(u) ∩ I(v) 6= ∅ if
(u, v) ∈ E; otherwise I(u) and I(v) are disjoint, that is, I(u) ∩ I(v) = ∅. A proper
interval representation [8] for G is an interval representation of G where no interval
properly contains another. A proper interval graph is one that has a proper interval
representation. Equivalently, a proper interval graph is one that has an interval repre-
sentation with unit intervals [19]. The problem of proper interval representation for a
graph G asks whether G has a proper interval representation. The problem has been
studied extensively [19–21], and it still attracts attention [22].

Lemma 1. A graph is an exact-threshold graph if and only if it is a proper interval
graph.

PROOF. Let graphH = (V,E) be an exact-threshold graph. This implies that there are
integers r ≥ 1, t ≥ 0 and a mapping c : V → [1 . . . r] such that for any pair u, v ∈ V ,
(u, v) ∈ E ⇔ |c(u) − c(v)| ≤ t. We can rephrase this as the equivalent statement
|c(u)− c(v)| < t+ ε for some 0 < ε < 1. We can find an interval representation of H
with unit intervals as follows. Choose an arbitrary ε such that 0 < ε < 1. Define for
each vertex v of H an interval I(v) of unit length where the left-end has x-coordinate
c(v)/(t + ε). Then for any two vertices u and v of H , I(u) and I(v) has a non-
empty intersection if and only if | c(u)t+ε −

c(v)
t+ε | ≤ 1, which is equivalent to saying that

|c(u)− c(v)| ≤ t+ ε. But c(u), c(v) are integers so we have |c(u)− c(v)| ≤ t. Then
I(u) and I(v) has non-empty intersection if and only if (u, v) is an edge of H . Thus
these intervals yield an interval representation of H .

Conversely if H is a proper interval graph, then there is an interval representation
Γ for H with unit intervals such that the endpoints of each interval in Γ are at rational
coordinates [23]. We can then find an exact (r, t)-threshold-coloring of H for some
integers r ≥ 1, t ≥ 0. Scale Γ by a sufficiently large factor t such that each end-point
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of some interval in Γ has a positive integer x-coordinate (after possible translation
in the positive x direction). Let r be the x-coordinate of the right end-point of the
rightmost interval in this scaled representation. Define a coloring c : V → [1 . . . r]
where for each vertex v of H , c(v) equals the x-coordinate of the left end-point of the
interval for v. Also define the threshold as the scaling factor t. It is easy to verify that
c is indeed an (r, t)-threshold-coloring.

2.3. Graph Sandwich Problem
The graph sandwich problem is defined in [24] as follows. Given two graphs G1 =

(V,E1) and G2 = (V,E2) on the same vertex set V , where E2 ⊆ E1, and a property
Π, does there exist a graphH = (V,E) on the same vertex set such that E2 ⊆ E ⊆ E1

and H satisfies property Π?
Here E1 and E2 can be thought of as universal and mandatory sets of edges, with

E sandwiched between the two sets. We are interested in a particular property for the
graph sandwich problem: “proper interval representability”. A graph satisfies proper
interval representability if it admits a proper interval representation [24].

Lemma 2. Let G = (V,EG) and H = (V,EH) be two graphs on the same vertex set
V such that EH ⊆ EG. Then the threshold-coloring problem for G with respect to the
edge partition {EH , EG − EH} is equivalent to the graph sandwich problem for the
vertex set V , mandatory edge set EH , universal edge set EH ∪ (V × V − EG) and
proper interval representability property.

PROOF. Let EU denote the universal edge set EH ∪ (V × V − EG) for the graph
sandwich problem. Suppose there exists a graph H∗ = (V,E∗) such that EH ⊆ E∗ ⊆
EU and H∗ has a proper interval representation. Then by Lemma 1, there exist two
integers r ≥ 0 and t ≥ 0 and a coloring c : V → [1 . . . r] such that for any pair
u, v ∈ V , |c(u) − c(v)| ≤ t if and only if (u, v) ∈ E∗. We now show that c is in fact
a desired threshold-coloring for G. Consider an edge e = (u, v) ∈ EG. If e ∈ EH
then e ∈ E∗ since EH ⊆ E∗ and hence |c(u) − c(v)| ≤ t. On the other hand if
e ∈ (EG − EH), e /∈ EU = EH ∪ (V × V − EG) and therefore e /∈ E∗ since
E∗ ⊆ EU . Hence |c(u)− c(v)| > t.

Conversely, if there exist integers r ≥ 1 and t ≥ 0 such that there is an (r, t)-
threshold-coloring c : V → [1 . . . r] ofG with respect to the edge partition {EH , EG−
EH}, then define an edge set E∗ as follows. For any pair u, v ∈ V , (u, v) ∈ E∗ if
and only if |c(u) − c(v)| ≤ t. Clearly the graph H∗ = (V,E∗) has an exact (r, t)-
threshold-coloring and hence by Lemma 1, H∗ has a proper interval representation.
Furthermore for any edge e = (u, v) ∈ EH , |c(u) − c(v)| ≤ t and hence e ∈ E∗.
Thus EH ⊆ E∗. Again if e ∈ E∗ then |c(u) − c(v)| ≤ t. Therefore either e ∈ EH
or e /∈ EG ⇒ e ∈ (V × V − EG). Hence e ∈ (EH ∪ (V × V − EG)) = EU . Thus
E∗ ⊆ EU . Therefore E∗ is sandwiched between the mandatory and the universal set
of edges and H∗ has a proper interval representation.

The following theorem follows from Observation 1, Lemmas 1 and 2 since the ver-
tex coloring and the graph sandwich problems for proper interval representability are
NP-complete [25] and the proper interval recognition can be solved in linear time [20–
22].
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Theorem 1. The Threshold-Coloring and Fixed-Threshold-Coloring problems are
NP-complete, while the Exact-Threshold-Coloring problem can be solved in linear
time.

3. Total-Threshold-Coloring of Graphs

In this section we address the Total-Threshold-Coloring problem: can every span-
ning subgraph of a graphG be represented by appropriately coloring the vertices ofG?

First note that not every graph (not even every planar graph) is total-threshold-
colorable. Suppose that G = K4, and we would like to represent a subgraph where
four of the edges remain and span a 4-cycle, while the other two edges are removed.
Assume that there exists an (r, t)-threshold-coloring with colors c1, c2, c3, c4 for ver-
tices v1, v2, v3, v4 respectively. Without loss of generality assume c4 is the highest
color and (v1, v4) ∈ F , hence also (v2, v3) ∈ F . Also assume c3 ≥ c2 and conse-
quently c4 − c2 ≥ c3 − c2. The left side of the inequality should be at most t, and the
right side strictly greater than t, which cannot be accomplished by any choice of the
range and the threshold.

On the other hand, for paths and trees there is a simple threshold-coloring with
t = 0 and two colors. Choose an arbitrary vertex as the root and color it 0. Color 1 all
vertices with an odd number of far edges on the shortest path to the root. Color 0 all
vertices with an even number of far edges to the root. Then all vertices connected by
a near edge of G get the same color, and vertices connected by a far edge get different
colors. We thus have the following lemma.

Lemma 3. Paths and trees are (2, 0)-total-threshold-colorable.

Next we present a generic algorithm for finding a threshold-coloring of certain
graphs; a similar proof is used in [26] in the context of the unit interval representa-
tion problem. A 2-independent set is an independent set I such that the shortest path
between any 2 vertices of I has length at least 3.

Lemma 4. Suppose G = (I ∪ T,E) is a graph such that I is 2-independent, the
subgraph induced by T is a forest, and I and T are disjoint. Then G is (5, 1)-total-
threshold-colorable.

PROOF. Suppose ` : E → {N,F} is an edge-labeling. Let GT be the forest induced
by T . For each v ∈ I , set c(v) = 0. Each vertex in T is assigned a color from
{−2,−1, 1, 2} as follows. Choose a component T ′ of GT , and select a root vertex w
of T ′. If w is far from a neighbour in I , set c(w) = 2. Otherwise, c(w) = 1. Now
we conduct breadth first search on T ′, coloring each vertex as it is traversed. When we
traverse to a vertex u 6= w, it has one neighbour x ∈ T ′ which has been colored, and
at most one neighbour v ∈ I . If v exists, we choose the color c(u) = 1 if `(u, v) = N ,
and c(u) = 2 otherwise. Then, if the edge (u, x) is not satisfied, we multiply c(u)
by −1. If v does not exist, we choose c(u) = 1 or −1 to satisfy the edge (u, x). By
repeating the procedure on each component of GT , we construct a (5, 1)-threshold-
coloring of G with respect to the labeling `.
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There is a trivial decomposition into a 2-independent set and a forest of a cycle and
a fan (a graph obtained from a path by adding a new vertex connected to all vertices of
the path). Thus, by Lemma 4 we have

Theorem 2. Paths, cycles, trees, and fans are (5, 1)-total-threshold-colorable.

We notice that all our examples of non-threshold-colorable graphs (e.g., K4) have
short cycles, which can be used to force groups of vertices to be simultaneously near
and far. Next we show that planar graphs without short cycles are always total-threshold-
colorable.

Theorem 3. Let G be a planar graph without cycles of length less than or equal to 9.
Then G is (8, 2)-total-threshold-colorable.

The outline of our proof for Theorem 3 is as follows. We first find some small tree
structures T that are “reducible”, in the sense that for any edge-labeling of T and any
given fixed coloring of the leaves of T to the colors {0, 1, . . . , 7}, there is an (8, 2)-
threshold-coloring of T . For a contradiction assume that there is a planar graph with
girth at least 10 having no (8, 2)-threshold-coloring. We consider a minimal such graph
G, and by a discharging argument prove that G contains at least one of these reducible
tree structures. This contradicts the minimality of G. We start with some technical
lemmas.

Extending a coloring. Let Pn be a path with vertices v0, . . . , vn. Given an edge-
labeling of Pn and the color c0 of v0 we call a color cn legal if there exists a (8, 2)-
threshold-coloring c of Pn, so that c(v0) = c0 and c(vn) = cn.

Lemma 5. Let P1 be a path of length 1. Then at least one of the colors 1 or 6 is legal
(irrespective of the edge label and the color c0).

PROOF. One only needs to observe that color 1 is close to 0, 1, 2, 3, and is far from
4, 5, 6, 7, that is, the distance between colors is at most 2 or strictly more than 2, re-
spectively. The result follows by symmetry.

Lemma 6. Let P2 be a path of length 2. Then 3 is legal unless c0 = 3 and {N,F} =
{{e1}, {e2}}, that is, the edges e1 and e2 are labeled differently. Symmetrically, 4 is
legal unless c0 = 4 and {N,F} = {{e1}, {e2}}.

PROOF. By symmetry we only give the proof for the case c2 = 3. IfN = {e1, e2} then
we choose c(v1) to be the average of c0 and c2, rounding if necessary. If F = {e1, e2},
then one of 0 or 7 is a good choice for c(v1), as both 0,7 are far from c2 = 3, and at
least one is far from c0. In the remaining case we may assume that c0 6= 3. If c0 < 3,
then set c(v1) = 0 or c(v1) = 5 in case e2 ∈ F or e2 ∈ N , respectively. If c0 > 3,
then set c(v1) = 6 or c(v1) = 1 in case e2 ∈ F or e2 ∈ N , respectively.

Lemma 7. Let P3 be a path of length 3. Then 1, 3, 4, and 6 are all legal (irrespective
of the edge label and the color c0).

9



PROOF. By symmetry it is enough to find appropriate coloring extensions for which
c(v3) = 1 and c(v3) = 3. For the latter, choose c1 = c(v1) 6= 3, according to c0 and
the label of e1. Now by Lemma 6 this choice of c1 can be extended to the remaining
part of P3, so that c(v3) = 3. The goal c(v3) = 1 splits into two subcases. If c0 6= 3, 4,
then by Lemma 6 both 3 and 4 are possible color choices for c(v2). One is close and
the other is far from 1. In case c0 is either 3 or 4, then again by Lemma 6 both 1 and 6
are possible choices for c(v2). Again, the former is close and the latter is far from 1.

We call the graph K1,n, n ≥ 3 a star. A spider is any subdivision2 of a star, and
its center is the single vertex with degree greater than 2. Let T be a spider. A prong of
T is a path from a leaf to the center of T . We call a prong with k edges a k-prong, and
we say that it has length k.

Lemma 8. Let T be a subdivision of K1,3 with prongs of length 1, 2, and 3, respec-
tively. Assume that the leaves of T are assigned colors, so that the leaf u on the 1-prong
is colored with either 1 or 6. Then we can extend this partial coloring to all of T .

PROOF. Let v be the center of T . Given c(u), we can choose c(v) ∈ {3, 4} so that
the labeling condition on the 1-prong is satisfied. If this choice cannot be extended to
the longer prongs, then the leaf of the 2-prong is also colored with either 3 or 4, see
Lemma 6. But then the choice c(v) ∈ {1, 6} which satisfies the labeling condition on
the 1-prong can be extended to the remaining prongs.

Reducible configurations. A configuration is a tree T , and is reducible if every as-
signment of colors to the leaves of T can be, for every possible edge-labeling of T ,
extended to a (8, 2)-threshold-coloring c of the whole T .

Lemma 9. A path P4 of length 4 is a reducible configuration.

PROOF. Let v be a neighbor of a leaf in P4. By Lemmas 5 and 7 either c(v) = 1 or
c(v) = 6 extends to the remaining uncolored vertices.

Now Lemma 9 implies that longer paths are reducible as well. Let us turn our
attention to spiders.

Lemma 10. (A) Let T be a spider with at most 1 prong of length 1 and the remaining
prongs have length 3. Then T is reducible.

(B) Let T be a spider with at most 3 prongs of length 2 and the remaining prongs
have length 3. Then T is reducible.

PROOF. In both cases let v denote the center of the spider. In order to establish (A)
let c(v) be either 1 or 6, which is appropriate for the 1-prong (such a choice exists by
Lemma 5). By Lemma 7 the coloring c(v) can be extended to the remaining 3-prongs.

2In a subdivision of an edge (u, v) in a graph G the edge (u, v) is replaced with a path ux1x2 . . . xpv,
where each xi, i ∈ {1, 2, . . . , p} has degree 2. A subdivision of a graph G is another graph obtained by
subdividing some edges of G.
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e x ya b e x ya b

c

v v

Figure 2: Additional types of reducible configurations, T1, T2, T3, and T4 from top left to
bottom right.

For (B) we may assume that neither 3 nor 4 can be extended to all three 2-prongs. By
Lemma 6 both colors 3 and 4 are used at leaves of the 2-prongs. Now, by Lemma 5 at
least one of c(v) = 1 or c(v) = 6 extends to the third 2-prong, and hence also to the
remaining 2- and 3-prongs, by Lemmas 6 and 7.

Two configurations T1 and T2 are shown in the top row of Figure 2. Each is
composed of a path P = (a, x, y, z, b). In T1, deleting the vertices of P other than
x (respectively, y) causes x (y) to become the center of a spider whose prongs are of
length 3. T2 differs only in that the spider with center y has an additional prong of
length 2. In the figure, a circle vertex has only those edges shown, while a square
vertex may have edges connecting it to the other vertices of G.

Lemma 11. T1 and T2 are reducible configurations.

PROOF. Let us first consider the T1 configuration. By Lemma 5 one of 1,6 is appro-
priate for the color of x, with respect to color c(a) and type of edge e. If c(b) ∈ {3, 4},
then choose c(y) from 1, 6, and if c(b) 6∈ {3, 4} then choose c(y) from {3, 4}. By
Lemma 6 this works.

Let us now turn to T2. If e is a near edge, we might as well contract e (which
implies both x and y will receive the same color), and reduce to Lemma 10(B).

Hence we shall assume e is a far edge. By Lemma 7, coloring x with 1 or 6 extends
to the 3-prongs of x. We consider only the case c(x) = 1; the case that c(x) = 6 is
symmetric. If c(x) = 1 and c(y) = 4 does not extend to the right 2-prongs at y, we
may assume c(b) = 4. If c(x) = 6 and c(y) = 3 does not extend to the right 2-prongs
at y, we may assume c(c) = 3. In this case setting c(x) = 1 and c(y) = 6 extends to
the right.

11



degree deg(v) 2 3 4 5 6 7 · · ·
initial charge γ0(v) −2 2 6 10 14 18 · · ·

Table 2: Initial charges of vertices by degree in the proof of Theorem 3.

Two more reducible configurations T3 and T4 are shown in the bottom roll of
Figure 2.

Lemma 12. The T3 and T4 are reducible configurations.

PROOF. By Lemma 8, assigning c(v) either 1 or 6 extends to the remaining vertices of
T3. For T4, the again assiging c(v) either 1 or 6 extends to the remaining vertices by
Lemma 5 and Lemma 8.

Discharging. A minimal counterexample is a smallest possible (in terms of order) pla-
nar graph G without cycles of length less than or equal to 9 which is not (8, 2)-total-
threshold-colorable. A minimal counterexample G cannot contain reducible configu-
rations. Further G is connected and has no vertices of degree 1. G is also not a cycle
(such a cycle should be of length at least 10 and should not contain a P4), and is there-
fore a minor of a graph H of minimal degree at least 3 (since for any vertex of degree
2 in H , one of its incident edges can be contracted to form a another graph H ′ which
has fewer degree-2 vertices and has G as a minor).

Let us fix its planar embedding determining its set of faces F (G). Let us define
initial charges: initial charge of a vertex v, γ0(v), is equal to 4 deg(v) − 10, and the
initial charge of a face f , γ0(f), is equal to deg(f)−10. A routine application of Euler
formula shows that the total initial charge is −20.

As all faces have length at least 10, every face is initially non-negatively charged.
We shall not alter the charges of faces.

Table 2 shows the initial charges of vertices according to their degree:
The discharging procedure will run in two phases, by γi(v) we shall denote the

charge of vertex v after Phase i of discharging. Informally, Phase 1 shall see that
vertices of degree 2 do not have negative charges, and Phase 2 will leave only vertices
of degree 3 with a possible negative charge.

Let u, v be vertices of G. We say that u and v are 2-adjacent, if G contains a u− v-
path whose (possible) internal vertices all have degree 2. In Phase 1 we redistribute
charge according to the following rule:

Rule 1: Every vertex v of degree at least 3 sends charge 1 to every vertex u of degree
2, for which v and u are 2-adjacent.

In Phase 2 we shall apply the following rule:

Rule 2: If u and v are adjacent with γ1(u) > 0, γ1(v) < 0 then u sends charge 1 to v.

As every vertex u of degree 2 (we also call them 2-vertices) is 2-adjacent to exactly
two vertices of bigger degree, we have γ1(u) = 0 in this case. For a vertex v of
degree at least 3, the discharging in Phase 1 decreases the charge of v by the number
of 2-vertices which are 2-adjacent to v.

12



v v v

Figure 3: Negatively charged vertex v after both phases induces a reducible configuration.

Let v be a vertex of degree at least 3. A prong at v is a v − x-path whose other
end-vertex x is of degree at least 3 and has internal vertices of degree 2.

Lemma 13. Let v be a vertex of degree at least 3. Then the number of 2-vertices that
are 2-adjacent to v is at most 2 · deg(v)− 3.

PROOF. By Lemma 9 each prong at v contains at most two vertices of degree 2. If the
shortest prong at v has length 1, then Lemma 10 implies that at least one other prong
has length ≤ 2. If the shortest prong at v has length 2, then by Lemma 10 we have at
least four prongs that are of length ≤ 2, and the result follows.

Now Lemma 13 serves as the lower bound for vertex charges after Phase 1, and in
turn prepares us for the Phase 2 of discharging.

Lemma 14. (A) Let v be a vertex of degree 3. If γ1(v) < 0, then γ1(v) = −1 and
the prongs at v have lengths 1, 2 and 3, respectively.

(B) Let v be a vertex of degree 3. If γ1(v) = 0, then the prongs at v have either
lengths 1, 1, 3 or 1, 2, 2.

(C) Let v be a vertex of degree 3 with its prongs of length 1, 1, and 2. Then γ1(v) = 1.
(D) Let v be a vertex of degree 3 with all 3 prongs of length 1. Then γ1(v) = 2.
(E) If v is a vertex of degree at least 4, then γ2(v) ≥ 0, and also γ2(v) is not smaller

than the number of 1-prongs at v.

PROOF. Let us first prove (E). Choose a vertex v with deg(v) ≥ 4. For every prong
of length 3, v sends 2 units of charge in Phase 1. For every shorter prong v sends
at most 1 unit of charge in either Phase 1 or Phase 2. The total charge sent out of v
in both of the phases is by Lemma 10 and Lemma 13 at most 2 deg(v) − 2. Hence
γ2(v) ≥ (4 deg(v)− 10)− (2 deg(v)− 2) = 2 deg(v)− 8 ≥ 0.

The other cases merely stratify vertices of degree 3 according to the number of their
2-neighbors of degree 2.

Lemma 14(E) states that every vertex v of degree at least 4 satisfies γ2(v) ≥ 0.
Similarly, if a 3-vertex u is adjacent to a vertex v whose degree is at least 4, then also
γ2(u) ≥ 0. This fact follows from either Lemma 14(A) and (E) (in case γ1(u) < 0), or
from either Lemma 14(C) or (D) (if γ1(v) > 0) as in this case u cannot send excessive
charge in Phase 2.

Lemma 15. No vertex v has γ2(v) < 0 and γ1(v) < 0.

13
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u1 v2 u0

v0 v1

u2

(c)

yu2

u1 x
v1

v2

u0 v0

(d)

Figure 4: The (a) triangular and (b) square-triangle grids. (c-d) Graphs which are not total-
threshold-colorable. Dashed edges are labeled F.

PROOF. Let v be a vertex satisfying both γ2(v) < 0 and γ1(v) < 0. By Lemma 14
deg(v) = 3 and v has prongs of length 1, 2, 3. Let u be the only neighbor of v of
degree not equal to 2. Since v has received no charge from u in Phase 2 we have both
deg(u) = 3 and γ1(u) ≤ 0. By Lemma 14 the prongs of u are of lengths 1, 2, 3 or
1, 1, 3 or 1, 2, 2. Hence G contains one of configurations shown in Figure 3. Now
observe that these are reducible, as each matches one of T1 or T2 types of reducible
configurations Lemma 11.

Lemma 16. No vertex v has γ2(v) < 0 and γ1(v) ≥ 0.

PROOF. If γ1(v) = 0, then also γ2(v) = 0, as Rule 2 does not reduce charge of a
discharged vertex. By Lemma 14(E) vertices of degree at least 4 do not have negative
charge after Phase 2.

Hence we may assume that v has degree 3, γ1(v) > 0, and γ2(v) < 0. By
Lemma 14(C) and (D) every neighbor u of v satisfies either deg(u) = 2 or deg(u) = 3
and γ1(u) < 0. The only two possible cases are T3 and T4, which are reducible by
Lemma 12.

Lemmas 15 and 16 imply that no vertex has negative charge after Phase 2 of the
discharging procedure. As the total charge remains negative and the faces cannot have
negative charges, we have a contradiction, which completes the proof of Theorem 3.

4. Total-Threshold-Coloring of Regular Graphs

In this section, we consider total-threshold-colorability of regular graphs. We
prove that some of them are total-threshold-colorable, some are non-total-threshold-
colorable, and for the square grid, no constant range of colors suffices.

4.1. Non-Total-Threshold-Colorable Grids

We first show that 2 infinite grids, the triangular and square-triangle grids, are non-
total-threshold-colorable; see Figure 4(a)-(b) for an example of each grid.

14



(a) (b)

Figure 5: Decomposition of the (a) hexagonal grid and (b) octagonal-square grid into a 2-
independent set (white vertices) and forest (black vertices).

Triangular Grid. In a triangular grid (planar weak dual of a hexagonal grid) all faces
are triangles and internal vertices have degree 6. It is easy to show that a triangular grid
is not total-threshold-colorable. Consider the graph with vertices v0, v1, v2, u0, u1, u2,
where each vertex ui is adjacent to vi+1 and vi+2 (indices modulo 3); see Figure 4(c).
Let F = {(v0, v1), (v1, v2), (v2, v0)}, and let N contain the remaining 6 edges. As-
sume that there exists an (r, t)-threshold-coloring c. Without loss of generality, let
c(v0) < c(v1) < c(v2). Now on one hand c(v2) − c(v0) > 2t and on the other
c(v2)− c(v0) ≤ |c(v2)− c(u1)|+ |c(u1)− c(v0)| ≤ 2t, which is impossible. This also
proves that outerplanar graphs are not total-threshold-colorable in general.

Square-Triangle Grid. We prove that the graph in Figure 4(d) is not total-threshold-
colorable. Assume to the contrary that c is an (r, t)-threshold-coloring. Without loss of
generality let c(v0) < c(u0). Since (v1, u0) is a far edge and (v0, x), (u0, x) are near
we have c(v0) < c(x) < c(u0). Similar argument shows that c(v1) < c(v0) < c(x) <
c(u0) < c(u1). Then if x < y, we have c(v1) + t < c(x) and c(x) + t < c(y), which
implies c(v1) + 2t < c(y). This makes it impossible to find a color for v2 near to both
v1 and y. Similarly if x > y then it is impossible to color u2.

Theorem 4 summarizes the results.

Theorem 4. The triangle grid and triangle-square grid are not total-threshold-colorable.

4.2. Total-Threshold-Colorable Grids

Hexagonal and Octagonal-Square Grids. In the hexagonal grid (planar weak dual
of the triangular grid) all faces are 6-sided and internal vertices have degree 3. The
octagonal-square grid contains 8-sided and 4-sided faces and internal vertices of de-
gree 3. It is easy to see that the grids admit a decomposition into a 2-independent set
and a forest; see Figure 5. Hence, the grids are colorable by Lemma 4.

Theorem 5. Any hexagonal grid and octagonal-square grid is (5, 1)-total-threshold-
colorable.
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(a) (b)

Figure 6: Threshold-coloring of the triangle-dodecagon grid: (a) one patch has been colored,
shown inside the oval; (b) coloring an entire row.

Triangle-Dodecagon and Square-Hexagon-Dodecagon Grids. In order to color the
graphs, we use t = 2 and r = 9 colors such as {0,±1,±2,±3,±4}. This color-space
has the following properties.

Lemma 17. Consider a path with 3 vertices (v0, v1, v2), such that v0,v2 have colors
c(v0) in {0,±1} and c(v2) in {±1,±2,±3,±4}. For threshold 2 and any edge label-
ing,

(a) If c(v0) = 0, and c(v2) ∈ {±1,±2,±3,±4}, then we can choose c(v1) in
{±2,±3}.

(b) If c(v0) = 0 and c(v2) ∈ {±2,±3,±4}, then we can choose c(v1) in {±2,±4}.
(c) If c(v0) = ±1, and c(v2) ∈ {±2,±3}, then we can choose c(v1) in {±1,±4}.

PROOF. (a) First, we choose c(v1) = ±2 if v1 is near to v0, and ±3 otherwise.
Then, if v1 is near to v2, choose the sign of c(v1) to agree with c(v2). Otherwise
choose the sign of c(v1) to be opposite c(v2).

(b) Choose c(v1) = ±2 if v1 is near to v0, and ±4 otherwise. Then, choose the sign
of c(v1) as before.

(c) Choose c(v1) = ±1 if v1 is near to v0, and c(v1) = ±4 otherwise. Then, choose
the sign of c(v1) as before.

On a high level, our algorithms for both grids, are very similar to each other: we
identify small “patches”, and then assemble them into the grid; see Figures 7-6. We
first show how to color a patch for the triangle-dodecagon grid.

Lemma 18. Let G be the graph shown in Figure 7(a). Suppose c(u0) = c(u1) = 0
and c(v0) = ±1. Then for any edge-labeling, this coloring can be extended to a (9, 2)-
threshold-coloring of G such that v5 is colored 1 or −1.
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Figure 7: Illustration of Lemma 18 and 19. (a) A subgraph of the triangle-dodecagon grid. (b) A
subgraph of the square-hexagon-dodecagon grid. Square vertices are colored 0.

PROOF. Assume c(v0) = 1. We apply Lemma 17(a) to the path (u0, v1, v0) to choose
a color for v1 in {±2,±3}, then apply part (c) of the lemma to the path (v0, v2, v1)
to choose c(v2) ∈ {±1,±4}. Then c(v3) is chosen in {±2,±3} using part (a) of the
lemma on the path (u1, v3, v2), and finally c(v4) ∈ {±2,±3} is chosen using part (a)
on the path (u1, v4, v3). Then we may choose c(v5) = 1 or −1 so that it is near or far
from c(v4).

A similar lemma applies to the square-hexagon-dodecagon grid.

Lemma 19. LetG be the graph shown in Figure 7(b), and consider any edge-labeling.
Suppose that c(ui) = 0, for i = 0, . . . , 4, and c(v0) is a fixed color in {±2,±4} that
satisfies the label of (v0, u0). Then we can extend this partial coloring to a coloring c of
all of G, so that c is a (9, 2)-threshold-coloring of G with respect to the edge-labeling,
and c(v10) is in {±2,±4}.

PROOF. Let ` be an edge-labeling of G. We consider only the case where c(v0) ∈
{2, 4} as the other case is symmetric. First, let c(v6) = 1. Using Lemma 17, we color
v5, v4, and v3 so that c(v3) is in {±1,±4}. Consider Table 3, where we list valid colors
of v1 in {±2,±4} according to edge-labeling and c(v3). An “x” indicates no color can
be chosen, but in these cells we multiply c(v3) by −1 to obtain a color for v1, and we
multiply c(v4), c(v5), and c(v6) by −1 so that this is consistent. Use Lemma 17 to
choose colors for v2, v8, v7, v9, and v10 so that v10 ∈ {±2,±4}.

Theorem 6. The triangle-dodecagon and square-hexagon-dodecagon grids are (9, 2)-
total-threshold-colorable.

PROOF. We prove the lemma for the triangle-dodecagon grid. First, we join several
copies of the graph G in Lemma 18. Let G1, . . . , Gn be copies of G. Let us call ui,k
and vj,k the vertices in Gk, corresponding to ui, vj (i = 0 or 1, 0 ≤ j ≤ 5). For 1 ≤
k < n, we set v5,k = v0,k+1. This defines a single row of the triangle-dodecagon grid.
We can construct a (9, 2)-threshold-coloring of this chain of G1, . . . , Gn by giving the
vertex v0,1 the color 1 and repeatedly applying Lemma 18.
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`(v0, v1) = N `(v0, v1) = N `(v0, v1) = F `(v0, v1) = F
`(v1, v3) = F `(v1, v3) = N `(v1, v3) = N `(v1, v3) = F

c(v3) = 1 4 2 × -4,-2
c(v3) = −1 2,4 × -2 -4
c(v3) = 4 × 2,4 × -4,-2
c(v3) = −4 2,4 × -4,-2 ×

Table 3: Possible colors for v1, given the labeling of (v0, v1) and (v1, v3) in the proof of
Lemma 19. A × indicates no color can be chosen.

(a) (b)

Figure 8: Threshold-coloring of the square-hexagon-dodecagon grid with the patches from
Lemma 19. Observe that there are alternating “rows” separated by square vertices. (a) One
patch has been colored, shown inside the oval. (b) Extending the coloring to an entire row.

To construct the next row, we add a copy of G connected to Gi and Gi+2 for each
odd i with 1 ≤ i ≤ k − 2, by identifying u1,i = u0 and u0,i+2 = u1. We then join
the copies of G added above the first row in the same way that the copies G1, . . . , Gn
were joined. By repeatedly adding new rows, we complete the construction of the
triangle-dodecagon grid. We can threshold-color each row, and since the rows are con-
nected only by vertices colored 0, the entire graph is (9, 2)-total-threshold-colorable;
see Figure 6.

The proof of the other grid is identical, and is illustrated in Figure 8.

4.3. The Square Grid
Whether every subgraph of the square grid is total-threshold-colorable is an open

question. Here we show that arbitrarily large square grids will require an arbitrarily
large range of colors to threshold-color. First, a technical lemma.

Lemma 20. Consider a 4-cycle (v0, v1, v2, v3, v0) with edge-labeling ` and an (r, t)-
threshold-coloring c.

1. Suppose `(v0, v3) = `(v2, v3) = F and `(v0, v1) = `(v1, v2) = N . Then
c(v0) < c(v3) if and only if c(v1) < c(v3) and c(v2) < c(v3).

2. Suppose `(v0, v1) = `(v2, v3) = F and `(v0, v3) = `(v1, v2) = N . Then
c(u0) < c(u1) if and only if both of c(v0), c(v3) are less than both of c(v1), c(v2).
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Figure 9: An example of a square grid requiring a large number of colors. Dashed edges are far.

PROOF. In both cases, we prove the implication in only one direction, since the other
direction is symmetric, by considering> instead of< (since the edges are F , we cannot
have equality in any of the considered cases).

1. Suppose that c(v0) < c(v3) but c(v1) ≥ c(v3) or c(v2) ≥ c(v3). Then c(v0) <
c(v3)−t and |c(v0)−c(v1)| ≤ t, so c(v1) < c(v3). Therefore c(v2) < c(v3)+t,
so c(v2) must be less than c(u3) since |c(u2)− c(u3)| > t.

2. Suppose that c(v0) < c(v1). Then c(v0) < c(v1) − t, c(v2) ≥ c(v1) − t,
and so c(v1) < c(v2). We have c(v3) < c(v1) since |c(v0) − c(v3)| ≤ t. If
c(v3) > c(v2), then c(v1)− t ≤ c(v2) < c(v3) < c(v1), so |c(v2)− c(v3)| ≤ t,
a contradiction.

Theorem 7. For every r > 0, there exist finite subgraphs of the square grid, which are
not (r, t)-total-threshold-colorable for any t ≥ 0.

PROOF. Let S be the infinite square grid, drawn as in Figure 9. A vertex v in S has
north, east, south, and west neighbors. If P = (v1, . . . , vj) is a path in S, we call P a
north path if vi+1 is the north neighbour of vi for all 1 ≤ i < j. East, south, and west
paths are defined similarly and these paths are uniquely defined for a given start vi and
number of vertices j.

For each odd n > 0, we define a path Sn = (v1, . . . , vn2) in S. Let S1 be the
path consisting of a single chosen vertex v1 of S. Let k = n + 2, and recursively
construct Sk from Sn by first adding the east neighbour vn2+1 of vn2 to Sn. Then, we
add the north path (vn2+1, . . . , vn2+k), the west path (vn2+k, . . . , vn2+2k), the south
path (vn2+2k, . . . , vn2+3k), and the east path (vn2+3k, . . . , vn2+4k); see Figure 9.

With Sn defined for every odd n, let Gn = (Vn, En) be the subgraph of S in-
duced by the vertices of Sn, and let `n : En → {N,F} be an edge-labeling such
that `n(e) = N if and only if e is in Sn. The graph G7 is shown in Figure 9.
We now prove that Gn requires at least n colors to threshold-color, for any thresh-
old t > 0. W.l.o.g. suppose that c is a threshold-coloring such that c(v4) > c(v1).
Note that the cycles (v4, v5, v6, v1), (v6, v7, v8, v1), and (v8, v9, v2, v1) match the cy-
cles in Lemma 20, implying that c(v6), c(v8) and c(v9) are greater than c(v1). This
serves as the basis for induction. Suppose that for some odd k > 1, the vertex
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Figure 10: Unit-cube contact representations for hexagonal, octagonal-square, square-hexagon-
dodecagon, and triangle-dodecagon grids. Corners are rounded to emphasize proper contact.

c(vk2) > c(v(k−2)2) for any assignment c of colors to the vertices of Gn, so long
as c(v4) > c(v1) and c is an (r, t)-threshold-coloring for some r > 0. Then we
consider the color c(vi), for k2 < i ≤ (k + 2)2. There are three cases. In the
first, vi is the interior vertex of a north, east, west, or south path in Sk+2. Then vi
is on a cycle (vi−1, vi, vj , vj−1), j ≤ k2, with `n(vi, vi−1) = `n(vj , vj−1) = N
and `n(vi, vj) = `n(vi−1, vj−1) = F . By Lemma 20, we have c(vi) > c(vj) and
c(vi) > c(vj−1) so long as c(vi−1) > c(vj−1). In the second case, vi is part of a 4-
cycle (vi−1, vi, vi+1, vj), j ≤ k2, with `n(vi−1, vi) = `n(vi, vi+1) = N , and the other
edges labeled F . Again by Lemma 20, we have c(vi) > c(vj) and c(vi+1) > c(vj) so
long as c(vi−1) > c(vj). The third case is the same, except vi is in the place of vi+1.

Given these three cases and the assumption that c(vk2) > c(v(k−2)2), we conclude
that c(v(k+2)2) > c(vk2) for each odd k > 1. Therefore, the graph Gn, with edge-
labeling `n, requires a distinct color for each of c(v1), c(v32), . . . , c(vn2).

5. Unit-Cube Contact Representations of Graphs

Lemma 21. If G has a unit-cube contact representation Γ so that one face of each
cube is co-planar in Γ, then any threshold subgraph of G also has a unit-cube repre-
sentation.

PROOF. Let H = (V,EH) be a threshold subgraph of G = (V,EG) and let c : V →
[1 . . . r] be an (r, t)-threshold-coloring of G with respect to the edge-labeling defined
by H . We now compute a unit-cube contact representation of H from Γ using c.

Assume (after possible rotation and translation) that the bottom face for each cube
in Γ is co-planar with the plane z = 0; see Figure 1(a). Also assume (after possible
scaling) that each cube in Γ has side length t+ε, where 0 < ε < 1. Then we can obtain
a unit-cube contact representation of H from Γ by lifting the cube for each vertex v by
an amount c(v) so that its bottom face is at z = c(v); see Figure 1(b). Note that for any
edge (u, v) ∈ EH , the relative distance between the bottom faces of the cubes for u
and v is |c(u)− c(v)| ≤ t < (t+ ε); thus the two cubes maintain contact. On the other
hand, for each pair of vertices u, v with (u, v) /∈ EH , one of the following two cases
occurs: (i) either (u, v) /∈ EG and their corresponding cubes remain non-adjacent as
they were in Γ; or (ii) (u, v) ∈ (EG−EH) and the relative distance between the bottom
faces of the two cubes is |c(u)− c(v)| ≥ (t+ 1) > (t+ ε), making them non-adjacent.
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Theorem 8. Any subgraph of the hexagonal, octagonal-square, triangle-dodecagon,
and square-hexagon-dodecagon grid has a unit-cube contact representation.

PROOF. Each of the grids is total-threshold-colorable and has a unit-cube contact rep-
resentation; see Figure 10(c)–(d).

6. Conclusion and Open Problems

We introduced a new graph coloring problem, called threshold-coloring, that gen-
erates spanning subgraphs from an input graph where the edges of the subgraph are
implied by small absolute value difference between the colors of the endpoints. We
showed that any spanning subgraph of trees, some planar grids, and planar graphs with-
out cycles of length less than or equal to 9 can be generated in this way; for other classes
like triangular and square-triangle grids, we showed that this is not possible. We also
considered different variants of the problem and noted relations with other well-known
graph coloring and graph-theoretic problems. Finally, we use the threshold-coloring
problem to find unit-cube contact representation for all the subgraphs of some planar
grids. The following is a list of some interesting open problems and future work.

1. Some classes of graphs are total-threshold-colorable, while others are not. There
are many classes for which the problem remains open, e.g., the square grid.

2. Planar graphs with cycles of length ≥ 10 are total-threshold-colorable, while
all our non-threshold-colorable graphs contain triangles: can this 3-10 gap be
reduced?

3. Can we efficiently recognize graphs that are total-threshold-colorable?
4. Is there a good characterization of total-threshold-colorable graphs?
5. The threshold-coloring problem is NP-complete in general. Which restrictions

on G and/or H allow it to be polynomial time solvable?
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