
Research Statement

Mohan Rajagopalan

My research aims to combine aspects of operating systems, program analysis, and compiler op-
timization, areas of systems research that have traditionally evolved orthogonally and in relative
isolation. In particular, my dissertation work has focused on developing new approaches to system
optimization that are both holistic and that address attributes such as dependability in addition
to performance. The key distinguishing feature of this work is its use of traditional compiler tech-
niques in novel contexts, an approach that not only facilitates automation but also helps ensure the
correctness of the resulting system.

Holistic System Optimization

Techniques for optimizing system software have evolved along two distinct paths, targeting either
individual applications (compiler concerns) or policies that affect global system behavior (operating
system concerns). This traditional partitioning imposes significant restrictions on the types of opti-
mizations possible, their effectiveness, and the ability to automate this process. For example, even
though the execution of a program almost always involves interactions across multiple address spaces,
optimizations that span address-space boundaries are rare.

My dissertation shows that such problems can be addressed and systems optimized more effectively
by using a holistic approach that combines the fine-grain low-level information obtained through pro-
gram analysis techniques such as static analysis and profiling, with coarse-grained high-level system
execution semantics such as operating system policies and mechanisms. A key component of this
research has been the use of proven compiler techniques to ensure transparency, automation, and cor-
rectness. Specifically, in this research I have developed a new set of compiler optimizations targeting
event-based programs [2]; reduced the cost of system calls through an automatic compiler-assisted
approach, system call clustering [1]; increased dependability by protecting against intrusions through
a novel operating system primitive, the authenticated system call [3]; and developed a new binary
rewriting framework called Charon that is capable of transforming operating system kernels. Each is
now described in turn.

Event Optimizations. Events are increasingly used as a fundamental programming abstraction in
a variety of contexts since they provide an extremely flexible structuring paradigm that can be used
to realize richer execution semantics than thread and procedural-oriented styles. However, given the
basic indirection between modules that raise and handle events, standard program analysis techniques
have largely been ineffective in identifying connections between events and their handlers. As a result,
event-based programming often has the potentially serious drawback of high execution overheads.

In this research, I have developed new compiler techniques for optimizing event-based systems.
The underlying predictability exhibited by these programs is exploited to predict program behav-
ior statically. Specifically, I developed a model for describing event-based execution, techniques for
profiling event execution, and optimizations targeting event and handler sequences. Event execution
across modules was profiled to identify commonly encountered events and event sequences, which
were then optimized using static compiler techniques. Experimental results indicate that these opti-
mizations are promising for improving the performance of a range of programs such as protocol stacks
for applications such as H263-based video players, and applications based on X Windows.

System Call Clustering. Reducing the overhead of system calls can have a significant impact on
overall system performance. Not only are they expensive—more than 20 times the cost of a regular
procedure in terms of CPU cycles plus second level effects such as cache misses—they are also widely

1



used as each program makes thousands of system calls in a typical execution. This combination of
cost and ubiquity means that optimization of system calls, both individually and for a program as a
whole, can potentially have a large impact on overall program performance.

I developed a new holistic optimization approach, system call clustering, that focuses on improving
a program’s entire system call behavior rather than simply reducing the cost of an individual call.
The underlying premise of the approach is to replace groups of system calls with a single call im-
plementing their combined functionality, thereby reducing the number of kernel boundary crossings.
This transformation involves three steps. First, profiling is used to identify system call clusters—
sequences of system calls that can be grouped together, potentially from non-consecutive statements
and across function boundaries, and then executed in a single kernel crossing. Next, correctness-
preserving compiler techniques such as code motion, function inlining, and loop unrolling are used
to transform the program to maximize the size of the clusters given the semantics of the program.
Finally, each sequence is replaced by a single call to a generic multicall mechanism that is imple-
mented using kernel extension facilities. As a prototype, multicalls were implemented in Linux using
loadable kernel modules, with the transformations realized as an optimization pass in the Pentium
Link Time Optimizer (PLTO), a binary rewriting framework targetted at IA-32 binaries. In addition
to significant performance improvements, desirable side-effects included reduced power consumption
and improved cache behavior.

Authenticated System Calls. Intrusion tolerance has become an important area of systems re-
search given that security incidents continue to occur with increasing frequency despite the increased
attention being paid to computer security. System call monitoring is a technique for detecting and
controlling compromised applications by checking at runtime that each system call conforms to a
policy that specifies the program’s normal behavior. Current implementations of such security mech-
anisms suffer from drawbacks such as unacceptably high performance overheads and the potential
introduction of race conditions that introduce unwanted complexity.

I developed a new holistic approach to system call monitoring that combines the salient features of
fine-grain sandboxing with the expressiveness of policy-based techniques. The basis of this approach
is a new operating system primitive, the authenticated system call (ASC). An ASC is a system call
augmented with extra arguments that specify the policy for that call and a cryptographic message
authentication code (MAC) that guarantees the integrity of the policy and the system call arguments.
This extra information is used by the kernel at runtime to verify the system call. The version of the
application in which regular system calls have been replaced by ASCs is generated automatically
by an installer program implemented using PLTO that reads the application binary, uses static
analysis to generate policies, and then rewrites the binary with the authenticated calls. This approach
has several advantages compared with existing systems, including significantly smaller overheads
and policy generation that is easier, portable, and exhaustive. Further extensions to this research
are directed at authenticating control flow and using dynamic analysis to increase the precision of
generated policies.

Charon: Binary Rewriting of OS kernels. Even though binary rewriting is a promising tech-
nique for transforming and improving operating systems, existing systems fail to cope with the com-
plexities involved. For example, unlike regular application binaries, kernel binaries have a significant
amount of data embedded within executable sections, include implicit addressing constraints, and
have unusual instruction sequences that are a result of hand-coded assembly and self-modifying code.

I developed a new binary rewriter, Charon, targeted at transforming operating system kernel
binaries. Built on PLTO, this work introduces a number of novel mechanisms for kernel analysis and
transformation, such as an indigenous type-based disassembly algorithm and a new extended control
flow graph abstraction. As a preliminary application of Charon, we are looking at automating kernel
customization. Specifically, the goal is to specialize a given kernel for a given set of requirements,
such as a fixed set of programs and hardware specifications, in order to reduce the memory footprint
for embedded devices.

2



Future Directions

I would like to explore applications of these holistic approaches to system analysis and optimization
in broader contexts. Specifically, I would like to investigate new programming abstractions and richer
execution models that can be used to structure, understand, and adapt systems better. In this section,
I describe three ideas that demonstrate this vision.

Automatic OS Specialization. Charon is a powerful tool that provides the ability to both analyze
and transform operating system kernels. An immediate extension to memory-footprint reduction
would be to explore the concept of a η−kernel in which a combination of static and dynamic program
analyses and compiler optimizations are used to automate the specialization process, possibly on a
per deployment basis. In this research, I would like to explore different aspects of customization, such
as improving performance, reliability and security. As a simple illustrative example, one can imagine
the use of compiler techniques to improve the overall performance of the system by, for example,
introducing specialized versions of frequently used system calls, moving functionality into and out
of the kernel in a provably safe manner, and providing hints to improve scheduling and resource
allocation.

Improving OS Interfaces. While the structure and requirements of operating systems have un-
dergone drastic evolution over the years, surprisingly, the interfaces and abstractions have remained
largely unchanged. I would like to explore the possibility of developing new interfaces and richer
abstractions, which would not only be directed at enhancing attributes such as the reliability, scal-
ability, and performance of commodity operating systems, but also make them easier to structure,
analyze, and optimize. A simple example would be that of enhancing the OS-application interface
so that applications can inform the operating system about their quality of service requirements.
This would allow both the OS and application to adapt to various events such as changes in network
characteristics. Another would be seeing how the basic abstractions, eg. processes, can be extended
to convey meta data such as security policies or program execution traces that can be used at runtime
to monitor and adapt the behavior of the underlying OS.

Dependability. Different dependability attributes, including security, reliability and timeliness,
can benefit from a holistic approach. For example, fine-grain information obtained through program
analysis can be used to guide the replication of distributed objects or to develop new dependability
mechanisms for operating systems. Another related idea would be improving the precision of system-
wide security policies through static and dynamic analysis, to deal with for example, self-modifying
code. Finally, I am interested in exploring dependability issues that are specific to binaries or gen-
erated code, a topic of growing importance as software is increasingly composed of independently
developed components. An illustrative example of such a task would be the use of inter-address space
profiling to check for race conditions across modules or module compatibility in large applications.

References

[1] M. Rajagopalan, S. K. Debray, M. Hiltunen, and R. Schlichting. System call clustering: An
automated approach to system call optimization. In preparation.

[2] M. Rajagopalan, S. K. Debray, M. Hiltunen, and R. Schlichting. Profile-directed optimization
of event-based programs. In Proc. ACM SIGPLAN ’02 Conference on Programming Language
Design and Implementation (PLDI-2002), pages 106–116, June 2002.

[3] M. Rajagopalan, M. Hiltunen, T. Jim, and R. Schlichting. Authenticated system calls. In Proc.
IEEE International Conference on Dependable Systems and Networks (DSN-2005), June 2005. to
appear.

3


