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Abstract—Static disassembly is a crucial first step in reverse
engineering executable files, and there is a considerable iy
of work in reverse-engineering of binaries, as well as areas
such as semantics-based security analysis, that assumestth
the input executable has been correctly disassembled. Howe,
disassembly errors, e.g., arising from binary obfuscatios,
can render this assumption invalid. This work describes a
machine-learning-based approach, using decision treesporf
statically identifying possible errors in a static disassmbly;
such potential errors may then be examined more closely, e,g
using dynamic analyses. Experimental results using a varig
of input executables indicate that our approach performs w#,
correctly identifying most disassembly errors with relatively
few false positives.
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machine learning;

I. INTRODUCTION
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~85% of the functions) to be incorrectly disassembled [9],
[15]. Unfortunately, it is not always easy to determine
whether an executable has been correctly disassemblegd. Thi
is especially true of the widely-used Intel IA-32 architeet,
where a combination of variable-length instructions and
high encoding density (most byte sequences decode to
valid instructions) makes it difficult to identify erronesu
disassemblies.

The most definitive validation of a disassembly is to
execute a program and observe the instructions that get
executed, but such a dynamic analysis can only provide
information about a single execution path through a program
It is possible to extend dynamic analyses to explore meltipl
alternative execution paths [12], but in practice it may not
always be practical to dynamically explore an entire progra
in this way, for two reasons: first, the number of distinct
execution paths through a program can grow exponentially

~ Static disassembly, which recovers an assembly instrucas the number of basic blocks; and second, determining the
tion sequence from an executable file, is a crucial first stegpecific conditions that force execution to reach a pasicul
in reverse engineering executable files. It therefore findgode fragment may be difficult. Furthermore, multipath

important applications in computer security: researcbens

dynamic analysis can be misled by dynamic defenses based

fronted with a suspicious executable typically disassemblon memory errors [3]. This argues for a method to statically
its code in order to determine its internal logic, and there i jnspect a disassembly and identify regions that may contain
an extensive bOdy of Security research that assumes that thﬁ)sassemb]y errors. Using such an approach, for examp|e,

input file has been correctly disassembled [4], [8], [21].

one might assign higher priority for dynamic analysis to

This assumption may not always hold in practice, how-fegions of code whose disassembly appears suspect. This

ever. Disassembly errors can arise due to a variety oP@Per describes an approach that uses machine learning
reasons, and may be accidental or deliberate. An accidentifichniques to accomplish this. Itis based on the observatio
disassembly error occurs when a disassembler somehowat erroneous dlsassemblles are usually statlst|caII;.e qu
misinterprets some part of an executable file; very oftendifferent from correct disassemblies, and may contain, for
this happens when legitimate data, such as a jump tabkgxample, instructions with uncommon opcodes or ope_rands,
happens to be embedded in the code stream and is misidefienexistent branch target addresses, etc. We use tragtsig s
tified as code. Disassembly errors may also be induced b§f correct and incorrect disassemblies to train a decision-
deliberate binary-level obfuscations aimed at protectig ~ (r¢€-based classifier. Experimental results indicate it
code against reverse engineering; in earlier work we hav@PPropriate training, such classifiers can be quite aceurat
shown that it is surprisingly easy to fool even state-of-"’}”d can correctly identify most disassembly errors in test
the-art disassemblers into making errors that cause Iargfé!es'

parts of the input programs-©5% of the instructions and  The remainder of this paper is organized as follows.

Section 1l discusses background material on disassembly

t Current address: Keith Fligg, Pacific Northwest Nationabdratory, o ] ]
and decision tree models. Section Ill discusses the ef-
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fects of binary obfuscation on disassembly and shows howontrol transfer instructions in these alternative dieass
disassembly errors can lead to security problems. Sectioblies to identify basic block boundaries, then uses a wariet
IV discusses decision tree models for static disassemblyf heuristic and statistical reasoning to rule out altevest
Section VI gives experimental results from a prototypethat are unlikely or impossible.

implementation of our ideas. Section VII discusses related

. Interestingly, the disassembl rocess on the Intel IA-
work, and Section VIII concludes. gy y p

32 architecture turns out to Islf-repairing[9]. What this
means is that when a disassembly error occurs, a few instruc-
Il. BACKGROUND tions may be incorrectly disassembled, but the disassembly
process eventually corrects itself (usually fairly quickl
This section discusses background material on disasserithin 3 —5 instructions). It then proceeds to produce a
bly algorithms and decision trees. It may be skipped bycorrect disassembly thereafter, until the next disassgmbl
readers familiar with these topics. error is encountered.

A. Disassembly B. Decision Trees

Broadly speaking, there are two approaches to disas- Decision trees are a technique for supervised machine
y ’ ﬁearning, i.e., learning a function from a training data. set

sembly: static and dynamic the difference between them The training set consists of a set of pals f(x)) where
being that the former examines the program without exe- 9 paiss f (

. . . , -~ ~f is the unknown function to be learned. The task of the
cution, while the latter monitors the program’s execution ) . .
learning process is to see some number of paing, where

(e.g., through a debugger or emulator) as part of the dis; is the value of the functiorf at the pointx, and from

bl . Static di bl th . :
assembly process. Slalic disassembly processes e SNipRs weam: f, i.e., be able to predict the value 6tx) for

input program all at once, while dynamic disassembly OnIyvalues ofx that are not in the training set. For our purposes

disassembles those instructions that were executed for tr}ﬁe training input consists qiositive examplesi.e., pairs

particular input that was used. Moreover, with static dis- . :
o . . of the form (x, correct) wherex is a correctly-disassembled
assembly it is easier to apply offline program analyses to . ) .
. cpde sequence, ameégative examplese., pairs of the form
reason about semantic aspects of the program under consid- . : !
X,incorrect) wherex is an incorrectly-disassembled code

eration. Finally, programs being disassembled statical ) . o .
Y, prog g by .sequence. The desired output is a classifier that is able to

ng.. : ) )
) . ) ) N : o%tlngulsh between correct and incorrect disassemblies.
using anti-debugging or anti-monitoring techniques [5r F

these reasons, static disassembly is a popular choice for In general, each item in the domain of the functioto be
low level reverse engineering. This paper focuses on statitearned is considered to be defined by a collectioieafures
disassembly. together with a set of possible values for each feature. In
the context of the problem of detecting disassembly errors,

Static disassemblers typically use one of two tec:hniquesfor example, such features might includeptodé, * source

linear sweemndrecursive traversaJ20]. With linear sweep, . . o . ) .
disassembly begins at the program’s first executable locati addressing mode’ destination addressing modetc., with
different values for different instructions. The essdritiaa

and proceeds sequentially, disassembling each instruato . . L ) .
o . . n decision tree construction is to examine the various
it is encountered. This method is used by programs sucb

as the GNU utilityobjdump [13] as well as a number of eatures of the training data to come up with a “good” set

o L2 . of tests, organized in the form of a tree, that can be used
link-time optimization tools. Recursive traversal, by traist, o - .

. ) . . to distinguish between the positive and negative examples.
starts with the program’s entry point, and disassemble

. . . ; ?deally, we want the decision tree computed for any given
the code sequentially until a control transfer instructisn L . :
: . training set to be as small as possible; however, it turns
encountered. The disassembler then recursively processes . . . .
. . . . out that the construction of minimal decision trees, either
the possible control flow successors of that instructian, i. .
. : - terms of nodes, leaves, or depth, is an NP-hard problem.
addresses where execution could continue. Variations on
this basic approach to disassembly are used by a numberBecause of this NP-hardness result, most decision tree
of binary translation and optimization systems. A recentlyconstruction algorithms use greedy heuristics; in paldicu
proposed generalization of recursive traversal is that o&n approach based on the ID3 system of Quinlan [16], which
exhaustive disassembly [6], [7]. This approach aims to worlattempts to maximize the information gain at each step, is
around certain kinds of binary obfuscations by consideringvidely used in practice. This is done using the information-
all possible disassemblies of each function. It examines ththeoretic notion oentropy Given a collection of itemS&=



Memor :
Add Memor _ Address Joitents  Disassembly
ress contenYS Disassembly

0x 1014002 e8 call 0x101400a .

Ox 1014002 e8 call 0x101400a 003 03 N
003 03 004 00 |
004 00 005 00 |
005 00 006 00 )
88673 03 L odeseddr 007 €9 unreachablejunk .~~~

e jmp Ox465e 008 eb jmp 0x101400e! /

008 eb 009 04 / It !
009 04 00a 5d pop %ebp < |
00a  5d pop %ebp 00b 45 inc  %ebp ;o
00b 45 Inc %ebp 00c 55 pUSh %ebp L ,/
00c 55 push %ebp 00d 3 ret- o
00d  e8 ret 00e  e8 call .. &

(a) static disassembly (b) actual instruction sequence

Figure 1. An example of disassembly errors in an obfuscaiearyp

{s1,...,S}, such thats € S occurs with probabilityp;, the  addressOx465e44f7 is not in the address range of the
entropy ofSis given by binary, and there are no other control transfers to follow.)

The actual code for this part of the program is shown in
Figure 1(b). It turns out that the packer uses two techniques
“branch functions” and junk-byte insertion [9], to obfusea
the binary: the target of theall instruction actually modifies
its return address (using thpop—inc—push instruction
sequence), so that the call returns to an address one byte
beyond the return address passed to it byctikinstruction.
Gain(SF)=H(S) — Z/(|S/|/|S|)H(S/) This small pgrturbation to the_ return addr(_ess is _enough to

&y cause the disassembly to miss the real jump instruction,
‘jmp 0x101400e ’, at addres€x1014008. Similar snip-
pets of obfuscated code follow, which eventually cause the
énalware payload to be unpacked and executed.

H(S)_—ilpilogpi.

Given a collection of training itemsS with features
F1,...,F, the information gain for a featurg is given by
the expected reduction in entropy resulting from splittomg
this feature:

whereV; denotes the set of values taken on by feakrand
S, is the subset 0§ having the valuer for featureF; [11].
In this computation, the entropy of each resulting subset i
weighted by the relative size of that subset. The decis@a tr  There are two points to note in this example. The first
construction process proceeds recursively, starting ti¢h is that carefully crafted binary obfuscations can lead to
entire training set and at each step choosing a feature thaisassembly errors that cause code to be missed by the
yields the maximal information gain. The recursion stopsdisassembler, and so also by higher-level analyses that
when a set of items is obtained that are all in the samgely on this disassembly. The second is that an error in
category, i.e., where the functioh to be learned has the disassembly may not produce anything as obvious as an
same value for all of the items in the set. illegal opcode or instruction. Because of this, identityin
potential errors in a large static disassembly can be quite
[1l. DISASSEMBLY ERRORS ANDBINARY OBFUSCATION difficult.

To see the potential implications of disassembly er- The ;,Ixample ath\k/)e has sotme ;e/lltale S'g?st th?rththe d|s;
rors, we consider the static disassembly of the trojanas_sefm Yy may not be correct andior complete. The mos
Win32.Microjoin.R whose executable was packed usingstrlkmg of these is the jump to an address that does not exist
the software protection tooRspack[1]. Straightforward in the coc_ie, but this is not _something_that can be guarar!teed
recursive disassembly produces the innocuous code seequerﬁ(.2 oceurin all erroneous d|§assemblles_. An_other potéymal
shown in Figure 1(a): the code seems to consist of jus?USp'C'o_us featgre of the dlsa}ssgmbly n F'gufe 1(a.) Is that
six instructions, which don’t do much. (The recursive OIiS_the call instruction at the beginning seems to jump into the

assembly algorithm does not find any other code herémddle of another instruction, but it is not inconceivable

because it uses the possible targets of control transfépat this might be.the result of a clever compiler pptimizing
instructions to discover code. In this example, the targe{Or code size. Finally, most of the code section is not



disassembled in this example, which may seem suspiciousr as an offset, but rather that,N were to be used as an
However, this again does not generalize to all disassemblgddress/offset, it would be valid given the address rangres f
errors, since in order to hide malicious content it sufficesthe memory regions of the program.)

to conceal only a few key instructiodsThe remainder of

) . - For each instruction, we use as its feature set its operation
the paper discuss our approach to identifying some of these : . :
. o T mnemonic and the repeat prefix together with a vector of
telltale signs that may indicate an error in disassembly.

features for each of its operands. In the IA-32 instruction
set, a particular class of operations, e.g., push or jump, ma
be encoded via a number of different byte values at the
binary level; these are all abstracted into a single opmrati

mnemonic. The repeat prefixes can be used only with string

IV. DECISION TREE MODELS FORSTATIC DISASSEMBLY

A. Instruction Feature Extraction

In order to construct a decision tree for static disassemblyand input/ output instructions and therefore can be helpful
we have to identify which features of the disassembleddentifying invalid disassemblies when it occurs with athe

instructions are relevant to identifying potentially eremus

instructions. The features we consider for the operands are

disassemblies, and what values each of these features ctie following:

take on. In many cases, it turns out that what is of interest
is not the actual value of some aspect of an instruction,
but rather a property of that value. For example, in the
instruction

jmp 0x465e44f7

in the example shown in Figure 1, what is most significant is

not the actual value of the branch target address, but rather _

that it is too large to be a legal address. To capture such
properties, when extracting feature values from instounsti

we abstract away from operand values that are “too con-
crete.”

While the actual target address for a control transfer
instruction may be too concrete, however, it turns out to
be important to know whether a constant might specify a
memory address. This can happen if either the constant is
itself a valid address, or else if it specifies an offset from
some other address (in the latter case, which arises for ex-
ample when computing the address of a field within a heap-
allocated structure, the base address is typicaly computed
into a register and is not readily discernible from the code)
To determine this, we use the section header table of the
executable file to obtain the virtual addresses where each
section starts and ends, and use this to compute the virtual
memory size of that section. We say that a constaris
a valid addressin a given program if there is a section
S, occupying the virtual address randle,hi], such that
lo < N < hi; we say thatN is a valid offsetif there is a
section S with size M such that|N| < M. (Note that this
does not mean thall is in fact being used as an address

1As an example, consider a simple decryptor loop that desrgpid
executes code in a section that—as in the Aspack-protece described

— operand type e.g., memory address; register; seg-

ment:offset pointer; immediate address for a branch
instruction; etc.

base and/or index registersnapped to the size of the
register (i.e., 8-bit, 16-bit, 32-bit) if a general-purpos
register, or else to the type of register (segment register,
control register, mmx, etc.).

address validityindicating whether an immediate value
specified as (part of) the operand could refer to a legal
address. This feature takes on one of the valedil,
Invalid or Not Applicable, depending on the operand
type:

1) A memory operand containing a constintif the
operand does not contain a base register ldnd
is a valid address, then this feature has the value
Valid, else it islnvalid. If the operand contains
a base register and is either a valid address or
a valid offset then this feature Malid, else it is
Invalid.

2) An immediate operandN. For jump and call
instructions, this feature is mapped Valid if N
is a valid addresslnvalid otherwise. For other
instructions, this feature is mapped Valid if N
is a valid addresd\ot Applicable otherwise.

3) In all other cases, this feature takes on the value
Not Applicable.

— displacement and/or scale valueis order to distin-

guish between “large” and “small” constants, we map
a constank to the number of bits irx, or to a special
value indicating “ignore” if the address validity field is
eitherValid or Invalid.

above—is not marked as containing code. The decryptor cawrlien
using as few as 8-10 instructions, which can be scatteresughr a
program, with the code and control transfers between theskedausing
careful obfuscation, as above. In such a case, the amountafassembled
memory in the code section would be quite small.

Note that not all operands may have all of these features,
e.g., an immediate operand will not have a “register” featur
Note also that we create equivalence classes for “similar
kinds” of operands, e.g., all 32-bit general-purpose tegss



get mapped to a single feature valuBPREG32’ We  fragment. This can be seen as the set of paths of length 5 in
use the notatiorp(l) to denote the feature vector for an this graph, except when a path is truncated due to an indirect
instructionl. jump. In this case, therefore, we have

ngS(A) = {<A7 bCC LOa Ba ret >1
<Aa bcc LO, Ca bcc Ll, B>
<Aa bcc LO, Ca bcc Ll, D>}

B. Instruction n-Grams

A single instruction, by itself, often does not contain

enough “surrounding context” to allow us to make anpecy|| that the feature vector for an instructiois denoted
accurate determination of whether the disassembly is corre by &(1). This lifts to n-grams and sets af-grams in the

This is partly due to the nature of the Intel IA-32 ISA, which ot/ ral way. The feature vector of argram is obtained by

contains a lot of short (1-byte and 2-byte) instructions ant.,ncatenating the feature vectors of its constituent istr
is very densely encoded, i.e., most byte sequences decode g,

legal instructions. Because of this, a disassembly errgr ma

not immediately produce an instruction that is recognigabl O((l1,...,In) =d(l1) oo d(In).

erroneous. To deal with this, we incorporate additional

execution context into our feature vectors by considering>Ven @ set ofn-gramssS, ¢(S) denotes the set of feature
n-grams of instructions, i.e., groups afinstructions that ~Vectors for the elements &

may be executed in sequence. 0(S) = {¢(a) |a € S}.

The obvious approach to constructinggrams would be . . . .
PP <z In the discussion that follows, we will sometimes abuse

to consider groups aof adjacent instructions. This does not ) . .
group ) notation and writeng,(¢), where? is an address, to refer

work well for control transfers, however: as an example;con . . . .
. L . to the set ofn-grams starting with the instruction at address
sider the following instruction sequence, where the addres

of instructionly is different from¢: t

lo: jmp ¢ C. Decision Tree Construction
11 :
Once we have identified the set of features and feature

n tf_us case, the 2-grantlo, 1) does not correspond to values of interest, the next step is to identify appropriats
any instruction sequence that would actually be encouatere

. : ; . . of “correct” and “incorrect” disassemblies, extract the ap
during execution; indeed, the memory locations following . o
. . . a;gropnate feature vectors for them, and use these as tgainin
lo could contain data or garbage, i.e., not contain code

. s ) : . .~ inputs to construct a decision tree. This confronts us vhih t
all. Thus, simply considering adjacent pairs of instrutsio : s . . )
. . roblem of identifying a sufficiently large set of instriarts
is not enough. We therefore take a different approach. Le .
. that can be guaranteed to have been correctly disassembled.
succs(l) denote the set of all possible control-flow succes-_, . - - . : . .
i o . ) This is a difficult problem in general, since given an arlitra
sors of an instructiot, i.e, the set of instructions that could . LS .
. . o executable, and without any other auxiliary informatidre t
be executed immediately aftér we treat indirect control . B - .
. . . ) . only way we can be certain of the “correct” disassembly is
transfers (including theet instruction, which returns from : !
. . . . . to execute the program and record the instructions that are
a function call) specially: since their possible successoe . .
: . : executed at different addresses. However, this would only
not known, we defineuccs(l) = 0 for such instructions. Let . . : .
. . . yield a disassembly for a single execution path through the
ng,(l) denote the set of ali-grams starting at instruction

o , . . rogram; even using multipath execution techniques [12],

I, for n> 1. This is defined as follows, witk denoting brog 9 P d [12]

. we would be able to explore at best a small fraction of all
concatenation of sequences:

of the possible execution paths through the code, so it is not

{1} if n=1; clear whether we would be able to disassemble all, or even
{1} if succs(l) =0; most, of the program. Furthermore, using dynamic multipath
ngn(l) = U {lol"|1" €ngyp_1(J)} otherwise. execution to explore a significant nhumber of alternative
Jesuces(l) execution paths through a large program could be quite time-
As an example, consider the instruction sequence showfO"SUMING-
in Figure 2(a), where an instructiorbe; L' denotes a For this reason, we take a different approach. Wegese

conditional branch to the locatidn The control-flow struc- compiled binaries containing symbol table and relocation
ture of this code snippet is given by the digraph in Figureinformation. This turns out to be sufficient for accuratdista
2(b). Suppose that we are computing 5-grams for this coddisassembly, since the relocation information is enough to



bec Lo b.~ L
L, B cc Lo
ret /\
L,::B Lo: C
L() : C ret bCC I—l
bcc I—1
D \
E D
E
(a) (b)

Figure 2. An example instruction sequence and its contral Stvucture

identify code addresses, and therefore the targets ofeicidir be both “good” and “bad”, we remove any such overlap to

jumps and calls (the targets of direct jumps and calls ar@btain the negative training input:

easily determined). From each binaryP, we extract the bad

set of addressemstAddrs(P) for all of the instructions in Neglnputs(P) = (NGy™(P)) — Poslnputs(P).

P using the PLTO binary rewriting system [19]. SupposeOnce the positive and negative training sets are obtained, w

that the code section of the progréfrspans an interval of  find that it is always the case that the number of positive

addressea. We begin by computing, for the_specmc yalue examples are much fewer than the number of negative

of n we are using, the set of akgrams forP, i.e., starting  examples. So that the results are not skewed greatly towards

at every address iA: the negative, we keep adding in the unique positive set to the
B training set make the number of positive examples greater

NGn(P) = ag ngn(a). than or equal to the number of negative examples.

Let addr(l) denote the address of an instructibriThe set
of “good” n-grams forP, denoted byNGZ°°YP), are those
that do not contain any disassembly errors, i.e., where each We consider two metrics for evaluating decision-tree-

V. EVALUATION METRICS

instruction in then-gram is at an address InstAddrs(P): based classifiers: false legals and false illegals. Intlitj
“false legal” refers to situations where the classifier erro
NGZUP) = {a € NGn(P) | neously classifies some part of a disassembly as being cor-
VI € a :addr(l) € InstAddrs(P) }. rectly disassembled where in reality there is a disassembly

- S . . error; “false illegal” refers to the opposite situation, avh
The set of positive training inputs is then given by the sethe classifier erroneously indicates a disassembly erraa fo
of feature vectors for such goadgrams: part of the program that has been correctly disassembled.

Poslnputs(P) = ¢(NGI°YP)). In order to define these notions more formally, we have
. . L .. to specify what we mean when we refer to some part of
To obtain th“e se;[ of nega‘u\{e training inputs, we begin W'ththe program as being correctly or incorrectly disassembled
_the set_ of_ bad”’n-grams, i.e., those where at least oneSuppose that we know, for a prograithe setnstAddrs(P)
!nstructlon in then-gram does not correspond to an addressof the addresses of all of the instructionsHnAn n-grama

in InstAddrs(P): is said to be correctly disassembled if, for each instructio
NGBR29(P) = NGn(P) — NGZ°°Y(P). | in a, the address of is in InstAddrs(P); otherwisea is

incorrectly disassembled.
We cannot simply take the negative training inputs to be

the feature vectors for thesegrams, however, because the
encoding density of the Intel IA-32 instruction set can eaus
the feature vectors of the good and badrams to overlap.

Since it makes little sense to consider a feature vector t

A false legal refers to ann-gram that is incorrectly
disassembled but which is erroneously classified as correct
afalse illegalrefers to am-gram that is correctly disassem-
gled but which is erroneously classified as incorrect. The
percentage of false legals in the disassembly is then given

2 H P . . .

The executables _|ntended as _the gventual_ targets fo_r ouoagp will by the fraction of mcorrectly dlsassembleegrams that are
not, of course, contain such detailed information, but thisot a problem . ; .

false legals; the false illegal percentage is the fractibn o

since we are using the symbol table and relocation infoonatnly to - )
construct the training inputs. correctly disassemblea-grams that are false illegals.



VI. EXPERIMENTAL RESULTS These binaries were disassembled using the Gt
jdump utility [13], and the resulting disassemblies were
To evaluate our ideas, we implemented a classifier fogygjuated using our decision tree. (As discussed in Section
disassembly errors based on decision trees, as disCUSSRh objdump—which uses a straightforward linear sweep
above. This section reports the results of our experiment%isassemmy algorithm—is not a particularly good disassem
The numbers reported were obtained on a workstation witlhjer. This is not an issue here because we are interested in
a 2.4 GHz Intel dual-core x86-64 processor, with 4GB ofeya|yating the accuracy of the decision-tree-based Gizssi
RAM and 640 GB of hard disk, running Linux 2.6.21- not that of the disassembler.) We extracted a setn-of

1.3228.fc7. grams from each disassembly, for different valuesoés
discussed in Section IV-B; to facilitate evaluation, eaeh
A. Decision Tree Construction gram was additionally annotated with a comment (ignored

o . . ) . by the decision tree) giving the addresses of the instraostio
To reduce total training time, we tried to avoid using i, yhatngram. Theser-grams were fed to the classifier, and

trgining programs that were very similar to each other. To,q output of the classifier compared with the “ground truth”
this end, we used the results of studies by Phansalkat. o\ .04 from theinstAddrs(P) sets

[14], who examined programs from the SPEC benchmark
suite and grouped them into clusters of “similar” programs.
We used, as far as possible, a representative program fro
each of the c!usters they |dent_|f|ed. The _tramlng programs -, evaluating the accuracy of our classifier, it is important

we used consisted of the foIIpwmgppIu, bzipZ fpppp 9¢C o take into account how densely packed the disassembly
hydroZd mcf, parser, perl, swim andtu.rb3d Of these, five errors are, which depends on the extent to which the file
(bzip2 gcc mcef parser, andperl) are integer benchmarks, has been obfuscated. The reason for this is that if the

the remaining fivg are floating-point bench.mgrks.. Each proEjisassembly being evaluated contains a lot of errors—.e.,
gram was comp|lgd at four d.|fferent opt|rr.1|zat|on. .Ievels, the binary has been very heavily obfuscated everywhere, or
-0, ..., 03 using gce version 3'4'_4’ W'th addm_onal_ if the disassembler happens to be very stupid—then even an
comrr?a.nd-lme opiions to produce sta.t|cal.ly-l|nked. bigari imprecise classifier can produce misleadingly good results
conta!mng. symbol tgble anq relocation information. Thesimply by blindly reporting “disassembly error” most of the
re_su'“”g d|sas§embl|e§ contain a total of 4’3_77’929 f:dyre _time. Similarly, if the disassembly contains very few es;or
disassembled instructions and 10,685,094 instructioss di a classifier can produce misleadingly good results simply by
assempled frqm code addresses that do not correspond éRNays reporting “correct disassembly.” Since the co a
actu_a_l instruction addresses. We used the C4'5_ OPEN-SOUrgS mations introduced by the binary obfuscator are aimed
decision tree package [17] to construct our decision tree. specifically at throwing off the disassembly process, disas
sembly errors in the code tend to correlate with obfuscation
B. Test Inputs points, i.e., points in the program where anti-disassembly
bfuscation transformations were introduced. As a proxy

% Classification Accuracy

To evaluate the accuracy of our classifier, we evaluatet?

it on disassemblies obtained from binaries that had beeﬂcw)rertehfirge\r/]vseltisf tﬂse;svs;r;béy dzrr:;rts l;‘:)rl]a?u?czl:itogmizz:[s
deliberately obfuscated in order to introduce disassembl ' 9 Y P

errors [9]. We used as our test inputs a collection of teri/n the program: given a binary withl instructions prior to

programs from the SPECINt-2000 benchmark SUEE2 pbfgscatlon and obl_‘uscanon. ppmts, the obfus_catlon density
. is given byk/N. A file containing no obfuscation at all has
crafty, gap, gzip, mcf parser, perlomk vortex and vpr),

obfuscated using our anti-disassembly binary obfuscatiof " obfuscation density of 0, while a file where obfuscation

. : . transformations are applied to every single instructioa ha
tool [9]. These were compiled usimggcversion 3.4.4 at op- . . X L
N . " : ) an obfuscation density of 1. Each of the input binaries was
timization level-O3, with additional command-line options ) . "
. . L L obfuscated at 13 different obfuscating densities that eang
to produce statically-linked binaries containing symladile

and relocation information (the obfuscation tool requtrés from the very sparse (10) to very dense (D).

to correctly update addresses after modifying the code). Fo Figure 3 shows the overall accuracy of our classifier for
each input binary, our obfuscation tool also wrote out the the different test inputs for different obfuscation deiesit
setInstAddrs(P) of the addresses of the “actual” instruction for n-grams withn € {1,2,3,4}. For each obfuscation den-
in the code; this information is used to evaluate the acguracsity we show the average value of classification accuracy
of the decision-tree-based classifier, as discussed ino8ect (i.e., false legals and false illegals) together with elvars

V. indicating the range of values for the different programs.
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Figure 3. Accuracy oh-gram classification

It can be seen from Figure 3 that the percentage of false The reason for the high proportion of false legals for
legals decreases as the sizeneframs increases: it is very 1-grams is that there is very little information available
high for 1-grams, averaging between 57% and 66%, buaboutthe context surrounding each disassembled ingiructi
drops rapidly to about 3.5%-8.8% for 2-grams, 0.8%—3.8%As the size ofn-grams increases, more and more context
for 3-grams, and 0.7%—3.2% for 4-grams. 1-grams also showecomes available, leading to a steep drop in the false legal
a great deal of variability at low obfuscation densitieg.e. percentage. However, this gain flattens out fairly quickly:
at an obfuscation density of 0.0001 the false legal values fothe difference between =3 andn =4 can be seen to be
1-grams ranges from 33% to 77%. The reason for this wideuite small.
variability is that because of the low obfuscation density
there are very few incorreat-grams, which means that
an erroneous classification of even a singlgram has a
large effect in terms of percentage error. As the obfusnatio
density increases, this variability drops quickly. the amio
of variability is quite small fom-grams withn > 1.

The percentage of false illegals is quite small for all
values ofn, ranging from 0.4% to 2.8%. Interestingly, false
illegals are lowest for 1-grams, ranging from 0.3% to 0.4%;
they are a little over 2% for 2-grams, about 1.7% for 3-
grams, and about 2.8% for 4-grams. The reason for the
low proportion of false illegals for 1-grams is essentially



the same as that for the high false legal rate for this casaims specifically at the problem of identifying errors in
only those instructions that are very obviously incorrectl disassembly. There has also been some research on sétistic
disassembled are classified as incorrect. The reason for ttamalysis of byte or opcode distributions in executable fibes
relatively high false illegal rate for 4-grams is that if the identify executables that are packed or encrypted [2],.[10]
input contains am-gram that does not occur in the training The techniques and goals of these works are very different
set, it is by default classified as “incorrect.” As the valuefrom ours. In particular, they focus on overall statistical
of n increases, therefore, one expects there to be more amtoperties of executables taken as a whole, rather thaneon th
moren-grams that occur in the input but which may not havemore fine-grained focus of our work that examines features
occurred in the training set, and which are therefore falsel of individual instructions.

classified as illegal. This is borne out by the false illegal

percentages fon = 4, which are higher than for smaller VIIl. CONCLUSIONS

values ofn. (At this time we do not know why 3-grams

have a smaller proportion of false illegals than 2-grams.) ~ Disassembly of executables is an important component
of reverse engineering the code to understand its internal

By and large, the results are quite stable: the averaggorking. Disassembly errors can lead to errors in higher-
false legal and false illegal percentages do not vary mucClpye| semantic analyses based on the disassembly and can
for different obfuscation levels (1-grams are an exceptiory|so cause some code to be missed from analysis. Unfor-
to this, but this is in some sense moot because the higfnately, and especially on the widely used Intel 1A-32
level of false legals in this case limits its practical wili  architecture, disassembly errors very often do not result |
anyway.) This is desirable, because it suggests that deeisi pyious problems such as illegal opcodes or instructions,
tree_—based classifiers are not overly sensitive to the gensiy, ¢ produce other legal instructions that are not alwayiyeas
of disassembly errors. distinguished from those in a correct disassembly. Thigpap

Overall we find that for the programs we studied, 3-gramgPresents a machine learning approach to static identgicati
give the best results, with false legals ranging from 0.8% tcf disassembly errors. Experimental results from a protety

3.8% and false illegals ranging from 1.5% to 1.7%. implementation, using disassemblies obtained from a tyarie
of obfuscated executables, indicate that the approach can

accurately classify over 75% of the instructions even for
heavily obfuscated files.

We are not aware of any other work that focuses specif-
ically on static detection of disassembly errors. The work ACKNOWLEDGMENTS
that is closest to this is that of Krueget al, who use
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