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Abstract—Static disassembly is a crucial first step in reverse
engineering executable files, and there is a considerable body
of work in reverse-engineering of binaries, as well as areas
such as semantics-based security analysis, that assumes that
the input executable has been correctly disassembled. However,
disassembly errors, e.g., arising from binary obfuscations,
can render this assumption invalid. This work describes a
machine-learning-based approach, using decision trees, for
statically identifying possible errors in a static disassembly;
such potential errors may then be examined more closely, e.g.,
using dynamic analyses. Experimental results using a variety
of input executables indicate that our approach performs well,
correctly identifying most disassembly errors with relatively
few false positives.
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I. I NTRODUCTION

Static disassembly, which recovers an assembly instruc-
tion sequence from an executable file, is a crucial first step
in reverse engineering executable files. It therefore finds
important applications in computer security: researcherscon-
fronted with a suspicious executable typically disassemble
its code in order to determine its internal logic, and there is
an extensive body of security research that assumes that the
input file has been correctly disassembled [4], [8], [21].

This assumption may not always hold in practice, how-
ever. Disassembly errors can arise due to a variety of
reasons, and may be accidental or deliberate. An accidental
disassembly error occurs when a disassembler somehow
misinterprets some part of an executable file; very often,
this happens when legitimate data, such as a jump table,
happens to be embedded in the code stream and is misiden-
tified as code. Disassembly errors may also be induced by
deliberate binary-level obfuscations aimed at protectingthe
code against reverse engineering; in earlier work we have
shown that it is surprisingly easy to fool even state-of-
the-art disassemblers into making errors that cause large
parts of the input programs (∼65% of the instructions and
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∼85% of the functions) to be incorrectly disassembled [9],
[15]. Unfortunately, it is not always easy to determine
whether an executable has been correctly disassembled. This
is especially true of the widely-used Intel IA-32 architecture,
where a combination of variable-length instructions and
high encoding density (most byte sequences decode to
valid instructions) makes it difficult to identify erroneous
disassemblies.

The most definitive validation of a disassembly is to
execute a program and observe the instructions that get
executed, but such a dynamic analysis can only provide
information about a single execution path through a program.
It is possible to extend dynamic analyses to explore multiple
alternative execution paths [12], but in practice it may not
always be practical to dynamically explore an entire program
in this way, for two reasons: first, the number of distinct
execution paths through a program can grow exponentially
as the number of basic blocks; and second, determining the
specific conditions that force execution to reach a particular
code fragment may be difficult. Furthermore, multipath
dynamic analysis can be misled by dynamic defenses based
on memory errors [3]. This argues for a method to statically
inspect a disassembly and identify regions that may contain
disassembly errors. Using such an approach, for example,
one might assign higher priority for dynamic analysis to
regions of code whose disassembly appears suspect. This
paper describes an approach that uses machine learning
techniques to accomplish this. It is based on the observation
that erroneous disassemblies are usually statistically quite
different from correct disassemblies, and may contain, for
example, instructions with uncommon opcodes or operands,
nonexistent branch target addresses, etc. We use training sets
of correct and incorrect disassemblies to train a decision-
tree-based classifier. Experimental results indicate thatwith
appropriate training, such classifiers can be quite accurate,
and can correctly identify most disassembly errors in test
files.

The remainder of this paper is organized as follows.
Section II discusses background material on disassembly
and decision tree models. Section III discusses the ef-



fects of binary obfuscation on disassembly and shows how
disassembly errors can lead to security problems. Section
IV discusses decision tree models for static disassembly.
Section VI gives experimental results from a prototype
implementation of our ideas. Section VII discusses related
work, and Section VIII concludes.

II. BACKGROUND

This section discusses background material on disassem-
bly algorithms and decision trees. It may be skipped by
readers familiar with these topics.

A. Disassembly

Broadly speaking, there are two approaches to disas-
sembly: static and dynamic, the difference between them
being that the former examines the program without exe-
cution, while the latter monitors the program’s execution
(e.g., through a debugger or emulator) as part of the dis-
assembly process. Static disassembly processes the entire
input program all at once, while dynamic disassembly only
disassembles those instructions that were executed for the
particular input that was used. Moreover, with static dis-
assembly it is easier to apply offline program analyses to
reason about semantic aspects of the program under consid-
eration. Finally, programs being disassembled staticallyare
not able to defend themselves against reverse engineering
using anti-debugging or anti-monitoring techniques [5]. For
these reasons, static disassembly is a popular choice for
low level reverse engineering. This paper focuses on static
disassembly.

Static disassemblers typically use one of two techniques:
linear sweepandrecursive traversal[20]. With linear sweep,
disassembly begins at the program’s first executable location
and proceeds sequentially, disassembling each instruction as
it is encountered. This method is used by programs such
as the GNU utilityobjdump [13] as well as a number of
link-time optimization tools. Recursive traversal, by contrast,
starts with the program’s entry point, and disassembles
the code sequentially until a control transfer instructionis
encountered. The disassembler then recursively processes
the possible control flow successors of that instruction, i.e.,
addresses where execution could continue. Variations on
this basic approach to disassembly are used by a number
of binary translation and optimization systems. A recently
proposed generalization of recursive traversal is that of
exhaustive disassembly [6], [7]. This approach aims to work
around certain kinds of binary obfuscations by considering
all possible disassemblies of each function. It examines the

control transfer instructions in these alternative disassem-
blies to identify basic block boundaries, then uses a variety
of heuristic and statistical reasoning to rule out alternatives
that are unlikely or impossible.

Interestingly, the disassembly process on the Intel IA-
32 architecture turns out to beself-repairing[9]. What this
means is that when a disassembly error occurs, a few instruc-
tions may be incorrectly disassembled, but the disassembly
process eventually corrects itself (usually fairly quickly,
within 3− 5 instructions). It then proceeds to produce a
correct disassembly thereafter, until the next disassembly
error is encountered.

B. Decision Trees

Decision trees are a technique for supervised machine
learning, i.e., learning a function from a training data set.
The training set consists of a set of pairs(x, f (x)) where
f is the unknown function to be learned. The task of the
learning process is to see some number of pairs(x,y), where
y is the value of the functionf at the pointx, and from
this “learn” f , i.e., be able to predict the value off (x) for
values ofx that are not in the training set. For our purposes,
the training input consists ofpositive examples, i.e., pairs
of the form(x,correct) wherex is a correctly-disassembled
code sequence, andnegative examples, i.e., pairs of the form
(x, incorrect) where x is an incorrectly-disassembled code
sequence. The desired output is a classifier that is able to
distinguish between correct and incorrect disassemblies.

In general, each item in the domain of the functionf to be
learned is considered to be defined by a collection offeatures
together with a set of possible values for each feature. In
the context of the problem of detecting disassembly errors,
for example, such features might include ‘opcode’, ‘ source
addressing mode’, ‘ destination addressing mode’, etc., with
different values for different instructions. The essential idea
in decision tree construction is to examine the various
features of the training data to come up with a “good” set
of tests, organized in the form of a tree, that can be used
to distinguish between the positive and negative examples.
Ideally, we want the decision tree computed for any given
training set to be as small as possible; however, it turns
out that the construction of minimal decision trees, eitherin
terms of nodes, leaves, or depth, is an NP-hard problem.

Because of this NP-hardness result, most decision tree
construction algorithms use greedy heuristics; in particular,
an approach based on the ID3 system of Quinlan [16], which
attempts to maximize the information gain at each step, is
widely used in practice. This is done using the information-
theoretic notion ofentropy. Given a collection of itemsS=
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0x 1014002 call   0x101400a

(a) static disassembly (b) actual instruction sequence

Figure 1. An example of disassembly errors in an obfuscated binary

{s1, . . . ,sn}, such thatsi ∈ S occurs with probabilitypi , the
entropy ofS is given by

H(S) = −
n

∑
i=1

pi logpi .

Given a collection of training itemsS with features
F1, . . . ,Fk, the information gain for a featureFi is given by
the expected reduction in entropy resulting from splittingon
this feature:

Gain(S,Fi) = H(S)− ∑
v∈Vi

(|Sv|/|S|)H(Sv)

whereVi denotes the set of values taken on by featureFi, and
Sv is the subset ofS having the valuev for featureFi [11].
In this computation, the entropy of each resulting subset is
weighted by the relative size of that subset. The decision tree
construction process proceeds recursively, starting withthe
entire training set and at each step choosing a feature that
yields the maximal information gain. The recursion stops
when a set of items is obtained that are all in the same
category, i.e., where the functionf to be learned has the
same value for all of the items in the set.

III. D ISASSEMBLY ERRORS ANDBINARY OBFUSCATION

To see the potential implications of disassembly er-
rors, we consider the static disassembly of the trojan
Win32.Microjoin.R, whose executable was packed using
the software protection toolAspack [1]. Straightforward
recursive disassembly produces the innocuous code sequence
shown in Figure 1(a): the code seems to consist of just
six instructions, which don’t do much. (The recursive dis-
assembly algorithm does not find any other code here
because it uses the possible targets of control transfer
instructions to discover code. In this example, the target

address0x465e44f7 is not in the address range of the
binary, and there are no other control transfers to follow.)

The actual code for this part of the program is shown in
Figure 1(b). It turns out that the packer uses two techniques,
“branch functions” and junk-byte insertion [9], to obfuscate
the binary: the target of thecall instruction actually modifies
its return address (using thepop–inc–push instruction
sequence), so that the call returns to an address one byte
beyond the return address passed to it by thecall instruction.
This small perturbation to the return address is enough to
cause the disassembly to miss the real jump instruction,
‘ jmp 0x101400e ’, at address0x1014008. Similar snip-
pets of obfuscated code follow, which eventually cause the
malware payload to be unpacked and executed.

There are two points to note in this example. The first
is that carefully crafted binary obfuscations can lead to
disassembly errors that cause code to be missed by the
disassembler, and so also by higher-level analyses that
rely on this disassembly. The second is that an error in
disassembly may not produce anything as obvious as an
illegal opcode or instruction. Because of this, identifying
potential errors in a large static disassembly can be quite
difficult.

The example above has some telltale signs that the dis-
assembly may not be correct and/or complete. The most
striking of these is the jump to an address that does not exist
in the code, but this is not something that can be guaranteed
to occur in all erroneous disassemblies. Another potentially
suspicious feature of the disassembly in Figure 1(a) is that
the call instruction at the beginning seems to jump into the
middle of another instruction, but it is not inconceivable
that this might be the result of a clever compiler optimizing
for code size. Finally, most of the code section is not
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disassembled in this example, which may seem suspicious.
However, this again does not generalize to all disassembly
errors, since in order to hide malicious content it suffices
to conceal only a few key instructions.1 The remainder of
the paper discuss our approach to identifying some of these
telltale signs that may indicate an error in disassembly.

IV. D ECISION TREE MODELS FORSTATIC DISASSEMBLY

A. Instruction Feature Extraction

In order to construct a decision tree for static disassembly,
we have to identify which features of the disassembled
instructions are relevant to identifying potentially erroneous
disassemblies, and what values each of these features can
take on. In many cases, it turns out that what is of interest
is not the actual value of some aspect of an instruction,
but rather a property of that value. For example, in the
instruction

jmp 0x465e44f7

in the example shown in Figure 1, what is most significant is
not the actual value of the branch target address, but rather
that it is too large to be a legal address. To capture such
properties, when extracting feature values from instructions
we abstract away from operand values that are “too con-
crete.”

While the actual target address for a control transfer
instruction may be too concrete, however, it turns out to
be important to know whether a constant might specify a
memory address. This can happen if either the constant is
itself a valid address, or else if it specifies an offset from
some other address (in the latter case, which arises for ex-
ample when computing the address of a field within a heap-
allocated structure, the base address is typicaly computed
into a register and is not readily discernible from the code).
To determine this, we use the section header table of the
executable file to obtain the virtual addresses where each
section starts and ends, and use this to compute the virtual
memory size of that section. We say that a constantN is
a valid addressin a given program if there is a section
S, occupying the virtual address range[lo,hi], such that
lo ≤ N ≤ hi; we say thatN is a valid offset if there is a
sectionS with size M such that|N| ≤ M. (Note that this
does not mean thatN is in fact being used as an address

1As an example, consider a simple decryptor loop that decrypts and
executes code in a section that—as in the Aspack-protected code described
above—is not marked as containing code. The decryptor can bewritten
using as few as 8–10 instructions, which can be scattered through a
program, with the code and control transfers between them masked using
careful obfuscation, as above. In such a case, the amount of undisassembled
memory in the code section would be quite small.

or as an offset, but rather that,if N were to be used as an
address/offset, it would be valid given the address ranges for
the memory regions of the program.)

For each instruction, we use as its feature set its operation
mnemonic and the repeat prefix together with a vector of
features for each of its operands. In the IA-32 instruction
set, a particular class of operations, e.g., push or jump, may
be encoded via a number of different byte values at the
binary level; these are all abstracted into a single operation
mnemonic. The repeat prefixes can be used only with string
and input/ output instructions and therefore can be helpfulin
identifying invalid disassemblies when it occurs with other
instructions. The features we consider for the operands are
the following:

– operand type, e.g., memory address; register; seg-
ment:offset pointer; immediate address for a branch
instruction; etc.

– base and/or index registers, mapped to the size of the
register (i.e., 8-bit, 16-bit, 32-bit) if a general-purpose
register, or else to the type of register (segment register,
control register, mmx, etc.).

– address validity, indicating whether an immediate value
specified as (part of) the operand could refer to a legal
address. This feature takes on one of the valuesValid,
Invalid or Not Applicable, depending on the operand
type:

1) A memory operand containing a constantN. If the
operand does not contain a base register andN
is a valid address, then this feature has the value
Valid, else it is Invalid. If the operand contains
a base register andN is either a valid address or
a valid offset then this feature isValid, else it is
Invalid.

2) An immediate operandN. For jump and call
instructions, this feature is mapped toValid if N
is a valid address,Invalid otherwise. For other
instructions, this feature is mapped toValid if N
is a valid address,Not Applicable otherwise.

3) In all other cases, this feature takes on the value
Not Applicable.

– displacement and/or scale values: in order to distin-
guish between “large” and “small” constants, we map
a constantx to the number of bits inx, or to a special
value indicating “ignore” if the address validity field is
eitherValid or Invalid.

Note that not all operands may have all of these features,
e.g., an immediate operand will not have a “register” feature.
Note also that we create equivalence classes for “similar
kinds” of operands, e.g., all 32-bit general-purpose registers
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get mapped to a single feature value ‘GPREG 32.’ We
use the notationϕ(I) to denote the feature vector for an
instructionI .

B. Instruction n-Grams

A single instruction, by itself, often does not contain
enough “surrounding context” to allow us to make an
accurate determination of whether the disassembly is correct.
This is partly due to the nature of the Intel IA-32 ISA, which
contains a lot of short (1-byte and 2-byte) instructions and
is very densely encoded, i.e., most byte sequences decode to
legal instructions. Because of this, a disassembly error may
not immediately produce an instruction that is recognizably
erroneous. To deal with this, we incorporate additional
execution context into our feature vectors by considering
n-grams of instructions, i.e., groups ofn instructions that
may be executed in sequence.

The obvious approach to constructingn-grams would be
to consider groups ofn adjacent instructions. This does not
work well for control transfers, however: as an example, con-
sider the following instruction sequence, where the address
of instructionI1 is different fromℓ:

I0 : jmp ℓ

I1 : . . .

In this case, the 2-gram〈I0, I1〉 does not correspond to
any instruction sequence that would actually be encountered
during execution; indeed, the memory locations following
I0 could contain data or garbage, i.e., not contain code at
all. Thus, simply considering adjacent pairs of instructions
is not enough. We therefore take a different approach. Let
succs(I) denote the set of all possible control-flow succes-
sors of an instructionI , i.e, the set of instructions that could
be executed immediately afterI ; we treat indirect control
transfers (including theret instruction, which returns from
a function call) specially: since their possible successors are
not known, we definesuccs(I) = /0 for such instructions. Let
ngn(I) denote the set of alln-grams starting at instruction
I , for n ≥ 1. This is defined as follows, with◦ denoting
concatenation of sequences:

ngn(I)=















{I} if n = 1;
{I} if succs(I) = /0;

[

J∈succs(I)

{I ◦ I ′ | I ′ ∈ ngn−1(J)} otherwise.

As an example, consider the instruction sequence shown
in Figure 2(a), where an instruction ‘bcc L’ denotes a
conditional branch to the locationL. The control-flow struc-
ture of this code snippet is given by the digraph in Figure
2(b). Suppose that we are computing 5-grams for this code

fragment. This can be seen as the set of paths of length 5 in
this graph, except when a path is truncated due to an indirect
jump. In this case, therefore, we have

ng5(A) = {〈A, bcc L0, B, ret〉,
〈A, bcc L0, C, bcc L1, B〉
〈A, bcc L0, C, bcc L1, D〉}

Recall that the feature vector for an instructionI is denoted
by ϕ(I). This lifts to n-grams and sets ofn-grams in the
natural way. The feature vector of ann-gram is obtained by
concatenating the feature vectors of its constituent instruc-
tions:

ϕ(〈I1, . . . , In〉) = ϕ(I1)◦ · · · ◦ϕ(In).

Given a set ofn-gramsS, ϕ(S) denotes the set of feature
vectors for the elements ofS:

ϕ(S) = {ϕ(α) | α ∈ S}.

In the discussion that follows, we will sometimes abuse
notation and writengn(ℓ), whereℓ is an address, to refer
to the set ofn-grams starting with the instruction at address
ℓ.

C. Decision Tree Construction

Once we have identified the set of features and feature
values of interest, the next step is to identify appropriatesets
of “correct” and “incorrect” disassemblies, extract the ap-
propriate feature vectors for them, and use these as training
inputs to construct a decision tree. This confronts us with the
problem of identifying a sufficiently large set of instructions
that can be guaranteed to have been correctly disassembled.
This is a difficult problem in general, since given an arbitrary
executable, and without any other auxiliary information, the
only way we can be certain of the “correct” disassembly is
to execute the program and record the instructions that are
executed at different addresses. However, this would only
yield a disassembly for a single execution path through the
program; even using multipath execution techniques [12],
we would be able to explore at best a small fraction of all
of the possible execution paths through the code, so it is not
clear whether we would be able to disassemble all, or even
most, of the program. Furthermore, using dynamic multipath
execution to explore a significant number of alternative
execution paths through a large program could be quite time-
consuming.

For this reason, we take a different approach. We usegcc-
compiled binaries containing symbol table and relocation
information. This turns out to be sufficient for accurate static
disassembly, since the relocation information is enough to
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Figure 2. An example instruction sequence and its control flow structure

identify code addresses, and therefore the targets of indirect
jumps and calls (the targets of direct jumps and calls are
easily determined).2 From each binaryP, we extract the
set of addressesInstAddrs(P) for all of the instructions in
P using the PLTO binary rewriting system [19]. Suppose
that the code section of the programP spans an interval of
addressesA. We begin by computing, for the specific value
of n we are using, the set of alln-grams forP, i.e., starting
at every address inA:

NGn(P) =
[

a∈A

ngn(a).

Let addr(I) denote the address of an instructionI . The set
of “good” n-grams forP, denoted byNGgood

n (P), are those
that do not contain any disassembly errors, i.e., where each
instruction in then-gram is at an address inInstAddrs(P):

NGgood
n (P) = {α ∈ NGn(P) |

∀I ∈ α : addr(I) ∈ InstAddrs(P)}.

The set of positive training inputs is then given by the set
of feature vectors for such goodn-grams:

PosInputs(P) = ϕ(NGgood
n (P)).

To obtain the set of negative training inputs, we begin with
the set of “bad”n-grams, i.e., those where at least one
instruction in then-gram does not correspond to an address
in InstAddrs(P):

NGbad
n (P) = NGn(P)−NGgood

n (P).

We cannot simply take the negative training inputs to be
the feature vectors for thesen-grams, however, because the
encoding density of the Intel IA-32 instruction set can cause
the feature vectors of the good and badn-grams to overlap.
Since it makes little sense to consider a feature vector to

2The executables intended as the eventual targets for our approach will
not, of course, contain such detailed information, but thisis not a problem
since we are using the symbol table and relocation information only to
construct the training inputs.

be both “good” and “bad”, we remove any such overlap to
obtain the negative training input:

NegInputs(P) = ϕ(NGbad
n (P))−PosInputs(P).

Once the positive and negative training sets are obtained, we
find that it is always the case that the number of positive
examples are much fewer than the number of negative
examples. So that the results are not skewed greatly towards
the negative, we keep adding in the unique positive set to the
training set make the number of positive examples greater
than or equal to the number of negative examples.

V. EVALUATION METRICS

We consider two metrics for evaluating decision-tree-
based classifiers: false legals and false illegals. Intuitively,
“false legal” refers to situations where the classifier erro-
neously classifies some part of a disassembly as being cor-
rectly disassembled where in reality there is a disassembly
error; “false illegal” refers to the opposite situation, where
the classifier erroneously indicates a disassembly error for a
part of the program that has been correctly disassembled.

In order to define these notions more formally, we have
to specify what we mean when we refer to some part of
the program as being correctly or incorrectly disassembled.
Suppose that we know, for a programP, the setInstAddrs(P)

of the addresses of all of the instructions inP. An n-gramα
is said to be correctly disassembled if, for each instruction
I in α, the address ofI is in InstAddrs(P); otherwiseα is
incorrectly disassembled.

A false legal refers to ann-gram that is incorrectly
disassembled but which is erroneously classified as correct;
a false illegalrefers to ann-gram that is correctly disassem-
bled but which is erroneously classified as incorrect. The
percentage of false legals in the disassembly is then given
by the fraction of incorrectly disassembledn-grams that are
false legals; the false illegal percentage is the fraction of
correctly disassembledn-grams that are false illegals.
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VI. EXPERIMENTAL RESULTS

To evaluate our ideas, we implemented a classifier for
disassembly errors based on decision trees, as discussed
above. This section reports the results of our experiments.
The numbers reported were obtained on a workstation with
a 2.4 GHz Intel dual-core x86-64 processor, with 4GB of
RAM and 640 GB of hard disk, running Linux 2.6.21-
1.3228.fc7.

A. Decision Tree Construction

To reduce total training time, we tried to avoid using
training programs that were very similar to each other. To
this end, we used the results of studies by Phansalkaret al.
[14], who examined programs from the SPEC benchmark
suite and grouped them into clusters of “similar” programs.
We used, as far as possible, a representative program from
each of the clusters they identified. The training programs
we used consisted of the following:applu, bzip2, fpppp, gcc,
hydro2d, mcf, parser, perl, swim, andturb3d. Of these, five
(bzip2, gcc, mcf, parser, andperl) are integer benchmarks,
the remaining five are floating-point benchmarks. Each pro-
gram was compiled at four different optimization levels,
-O0 , . . . , -O3 , using gcc version 3.4.4, with additional
command-line options to produce statically-linked binaries
containing symbol table and relocation information. The
resulting disassemblies contain a total of 4,377,929 correctly
disassembled instructions and 10,685,094 instructions dis-
assembled from code addresses that do not correspond to
actual instruction addresses. We used the C4.5 open-source
decision tree package [17] to construct our decision tree.

B. Test Inputs

To evaluate the accuracy of our classifier, we evaluated
it on disassemblies obtained from binaries that had been
deliberately obfuscated in order to introduce disassembly
errors [9]. We used as our test inputs a collection of ten
programs from the SPECint-2000 benchmark suite (bzip2,
crafty, gap, gzip, mcf, parser, perlbmk, vortex, and vpr),
obfuscated using our anti-disassembly binary obfuscation
tool [9]. These were compiled usinggccversion 3.4.4 at op-
timization level-O3 , with additional command-line options
to produce statically-linked binaries containing symbol table
and relocation information (the obfuscation tool requiresthis
to correctly update addresses after modifying the code). For
each input binaryP, our obfuscation tool also wrote out the
setInstAddrs(P) of the addresses of the “actual” instruction
in the code; this information is used to evaluate the accuracy
of the decision-tree-based classifier, as discussed in Section
V.

These binaries were disassembled using the GNUob-
jdump utility [13], and the resulting disassemblies were
evaluated using our decision tree. (As discussed in Section
II-A, objdump—which uses a straightforward linear sweep
disassembly algorithm—is not a particularly good disassem-
bler. This is not an issue here because we are interested in
evaluating the accuracy of the decision-tree-based classifier,
not that of the disassembler.) We extracted a set ofn-
grams from each disassembly, for different values ofn, as
discussed in Section IV-B; to facilitate evaluation, eachn-
gram was additionally annotated with a comment (ignored
by the decision tree) giving the addresses of the instructions
in thatn-gram. Thesen-grams were fed to the classifier, and
the output of the classifier compared with the “ground truth”
obtained from theInstAddrs(P) sets.

C. Classification Accuracy

In evaluating the accuracy of our classifier, it is important
to take into account how densely packed the disassembly
errors are, which depends on the extent to which the file
has been obfuscated. The reason for this is that if the
disassembly being evaluated contains a lot of errors—i.e.,if
the binary has been very heavily obfuscated everywhere, or
if the disassembler happens to be very stupid—then even an
imprecise classifier can produce misleadingly good results
simply by blindly reporting “disassembly error” most of the
time. Similarly, if the disassembly contains very few errors,
a classifier can produce misleadingly good results simply by
always reporting “correct disassembly.” Since the code trans-
formations introduced by the binary obfuscator are aimed
specifically at throwing off the disassembly process, disas-
sembly errors in the code tend to correlate with obfuscation
points, i.e., points in the program where anti-disassembly
obfuscation transformations were introduced. As a proxy
for the density of disassembly errors in the input binary,
therefore, we use the average density of obfuscation points
in the program: given a binary withN instructions prior to
obfuscation andk obfuscation points, the obfuscation density
is given byk/N. A file containing no obfuscation at all has
an obfuscation density of 0, while a file where obfuscation
transformations are applied to every single instruction has
an obfuscation density of 1. Each of the input binaries was
obfuscated at 13 different obfuscating densities that range
from the very sparse (10−4) to very dense (1.0).

Figure 3 shows the overall accuracy of our classifier for
the different test inputs for different obfuscation densities,
for n-grams withn∈ {1,2,3,4}. For each obfuscation den-
sity we show the average value of classification accuracy
(i.e., false legals and false illegals) together with errorbars
indicating the range of values for the different programs.
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Figure 3. Accuracy ofn-gram classification

It can be seen from Figure 3 that the percentage of false
legals decreases as the size ofn-grams increases: it is very
high for 1-grams, averaging between 57% and 66%, but
drops rapidly to about 3.5%–8.8% for 2-grams, 0.8%–3.8%
for 3-grams, and 0.7%–3.2% for 4-grams. 1-grams also show
a great deal of variability at low obfuscation densities: e.g.,
at an obfuscation density of 0.0001 the false legal values for
1-grams ranges from 33% to 77%. The reason for this wide
variability is that because of the low obfuscation density
there are very few incorrectn-grams, which means that
an erroneous classification of even a singlen-gram has a
large effect in terms of percentage error. As the obfuscation
density increases, this variability drops quickly. the amount
of variability is quite small forn-grams withn > 1.

The reason for the high proportion of false legals for
1-grams is that there is very little information available
about the context surrounding each disassembled instruction.
As the size ofn-grams increases, more and more context
becomes available, leading to a steep drop in the false legal
percentage. However, this gain flattens out fairly quickly:
the difference betweenn = 3 andn = 4 can be seen to be
quite small.

The percentage of false illegals is quite small for all
values ofn, ranging from 0.4% to 2.8%. Interestingly, false
illegals are lowest for 1-grams, ranging from 0.3% to 0.4%;
they are a little over 2% for 2-grams, about 1.7% for 3-
grams, and about 2.8% for 4-grams. The reason for the
low proportion of false illegals for 1-grams is essentially

8



the same as that for the high false legal rate for this case:
only those instructions that are very obviously incorrectly
disassembled are classified as incorrect. The reason for the
relatively high false illegal rate for 4-grams is that if the
input contains ann-gram that does not occur in the training
set, it is by default classified as “incorrect.” As the value
of n increases, therefore, one expects there to be more and
moren-grams that occur in the input but which may not have
occurred in the training set, and which are therefore falsely
classified as illegal. This is borne out by the false illegal
percentages forn = 4, which are higher than for smaller
values ofn. (At this time we do not know why 3-grams
have a smaller proportion of false illegals than 2-grams.)

By and large, the results are quite stable: the average
false legal and false illegal percentages do not vary much
for different obfuscation levels (1-grams are an exception
to this, but this is in some sense moot because the high
level of false legals in this case limits its practical utility
anyway.) This is desirable, because it suggests that decision-
tree-based classifiers are not overly sensitive to the density
of disassembly errors.

Overall we find that for the programs we studied, 3-grams
give the best results, with false legals ranging from 0.8% to
3.8% and false illegals ranging from 1.5% to 1.7%.

VII. R ELATED WORK

We are not aware of any other work that focuses specif-
ically on static detection of disassembly errors. The work
that is closest to this is that of Kruegelet al., who use
statistical analyses of a collection of training executables
to choose the likeliest of several alternative disassemblies
of an executable [7]. These techniques rely on empirically-
determined probability distributions for instructions and
instruction pairs, which are augmented with heuristics in-
volving operand characteristics. We experimented using a
similar approach but found it difficult to specify a fixed
cutoff threshold for opcode and opcode-pair probabilities
such that values below the threshold accurately identified
incorrect disassemblies and values above it accurately iden-
tified correct disassemblies. Furthermore, it is not clear how
the heuristics for reasoning about operand characteristics
might be systematically derived.

Riecket al. apply machine learning to malware behaviors
to develop a classifier for malware [18]. This work differs
from ours in that it focuses on high-level features of the
runtime behavior of executables while we consider their
low-level static characteristics; their goals are also quite
different from ours, focusing on determining whether an
executable exhibits malware-like behavior, while our work

aims specifically at the problem of identifying errors in
disassembly. There has also been some research on statistical
analysis of byte or opcode distributions in executable filesto
identify executables that are packed or encrypted [2], [10].
The techniques and goals of these works are very different
from ours. In particular, they focus on overall statistical
properties of executables taken as a whole, rather than on the
more fine-grained focus of our work that examines features
of individual instructions.

VIII. C ONCLUSIONS

Disassembly of executables is an important component
of reverse engineering the code to understand its internal
working. Disassembly errors can lead to errors in higher-
level semantic analyses based on the disassembly and can
also cause some code to be missed from analysis. Unfor-
tunately, and especially on the widely used Intel IA-32
architecture, disassembly errors very often do not result in
obvious problems such as illegal opcodes or instructions,
but produce other legal instructions that are not always easily
distinguished from those in a correct disassembly. This paper
presents a machine learning approach to static identification
of disassembly errors. Experimental results from a prototype
implementation, using disassemblies obtained from a variety
of obfuscated executables, indicate that the approach can
accurately classify over 75% of the instructions even for
heavily obfuscated files.
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