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ABSTRACT

Grappling with the syntax of a programming language can be frustrating for

programmers because it distracts from the abstract task of creating a correct

program. Novice programmers often struggle because they are forced to learn

syntactic and general programming skills simultaneously. Persons with vision loss

and persons with mobility impairments have problems creating and debugging

syntactically detailed programs. Even experienced programmers may be hampered

by the need to learn the syntax of a new programming language.

A spoken language interface for programming provides one solution to these

syntax-related problems. In this thesis, I propose one possible design for such a

system and conduct a study to investigate several issues related to how people

might use it. My goal is to shed light on both the promise and challenges behind

future work in this area.

First, I developed a prototype natural language interface for Java programming,

called NaturalJava. In NaturalJava, the user types English sentences and describes,

step by step, the desired program. In response to each of these sentences, the

interface produces syntactically correct source code and displays it to the user.

NaturalJava’s architecture comprises three components: (1) Sundance, a natural

language processing system; (2) PRISM, a knowledge-based module that interprets

user requests; and (3) TreeFace, an abstract syntax tree manager that maintains

the evolving source code. While NaturalJava has a number of limitations, this

proof-of-concept prototype successfully demonstrates how such a system might be

developed using current technology.

Second, I conducted a Wizard of Oz study to answer several questions about

how people would ultimately use a fully functional version of a spoken language

programming interface similar to NaturalJava. I investigated three specific issues:



the complexity of the actions requested by the users, the extent to which people use

a similar vocabulary while programming, and the impact of artifacts of speech, such

as disfluencies, on the ability of the interface to function. My results suggest that:

(1) novice programmers request relatively simple actions from the interface, (2) they

utilize similar vocabularies while making these requests, (3) disfluencies will pose

significant problems for such an interface, but information extraction technology

is relatively resilient in the presence of these disfluencies, extracting ≈ 90% of the

data successfully.

v
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CHAPTER 1

INTRODUCTION

This research was motivated by my experiences taking introductory computer

science classes. As a blind student sitting in class, without access to the information

being written on the board, unable to read the textbook, and with a two-week

turnaround to obtain class notes in a form I can access, I became hopelessly lost

in the syntax of a new programming language. I also discovered that I had a

very difficult time finding and correcting syntax errors in my code. One possible

solution to this problem for someone who is blind is to design a syntax free method

of programming. This would allow the user to move to a higher level of abstraction

while programming—they can deal with the concepts of programming without

worrying about the details of syntax.

This method of programming could be very useful for many other people as well.

Novice programmers often struggle because they are forced to learn syntactic and

general programming skills simultaneously. People suffering from mobility impair-

ments, including those caused by repetitive strain injuries, have difficulties entering

syntactically complex code from a keyboard. Even experienced programmers may

be hampered by the need to learn the syntax of a new programming language.

After giving it some thought, I decided that using spoken English sentences

would be the best syntax-free input language. I made this decision for two reasons.

First, people will not need to be trained to use an intermediate language before

they can begin to work. A person can just describe, in English phrases, the desired

programming constructs, and create syntactically correct source code. Second, tools

for processing speech and extracting information from English sentences already

exist, and can be used to simplify the process of building any future interface.
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The major drawback to using natural English as the input language is the

inherent ambiguity of the language. Words in English do not have unique and

concise meanings, and the meaning is often strongly dependent upon the context of

its occurrence. The word “add” exemplifies the ambiguous nature of English. For

example, in the phrase “add x to y”, add takes on the meaning of mathematical

addition. Alternatively, in the phrase “add a method to this class”, add takes on

the meaning of incorporating an element into a greater whole. Finally, in the phrase

“create a method called add”, it represents the name of a method.

This is in direct contrast to the syntax of a programming language, which

contains words and symbols with concrete meanings which are only occasionally

dependent on context. For example, the symbol ‘*’ can have different meanings

based on context in the C programming language. When placed between two

variables that store numbers, it represents multiplication. On the other hand, when

placed before a variable that points to an address in memory, the combination of

‘*’ and the variable name refers to the value stored at the memory address, and not

to the memory address itself. However, there is a crucial difference between natural

languages and programming languages when it comes to context. A programming

language has rigidly defined rules for resolving the meaning of symbols based on

their context, while natural languages do not.

Therefore, to test whether a natural language interface for programming was

possible, I implemented a prototype, called NaturalJava, that takes natural lan-

guage sentences and sentence fragments from the keyboard and converts the re-

quests into syntactically correct Java source code [17].

The prototype works within a small subset of the Java language and, more

significantly, within the small subset of the English language that was sufficient for

me to create small Java programs. The interface exploits three subsystems. The

Sundance natural language processing system accepts English sentences as input

and uses information extraction techniques to generate case frames representing

program construction and editing directives [22]. A knowledge-based case frame

interpreter, PRISM, uses a manually created decision tree to infer program mod-
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ification operations from the case frames. A Java abstract syntax tree manager,

TreeFace, provides the interface that PRISM uses to build and navigate the tree

representation of an evolving Java program [17].

This prototype presents one proposed architecture for how a natural language

interface for programming might be designed. But many technical challenges and

questions must still be addressed in order to create a fully functional, robust, and

accurate spoken language interface for programming. The goal of this thesis is

to investigate three specific issues that would impact the development of spoken

language interfaces for programming. I will investigate these issues in the context

of a group of novice programmers taking a single introductory programming class.

These issues are represented in the following research questions:

• What types of commands do the people use and how do they use them?

• Do the people share a common vocabulary or do the words they use differ

substantially from person to person?

• What types of disfluencies are used by the people, how frequently do these

disfluencies occur, and how do they impact the underlying natural language

processing (NLP) system that extracts information from the user requests?

To answer these questions, I need to study how these students would use a

spoken language interface for programming. This leads to the problem of studying

how people use an interface before it is built. Unfortunately, the prototype cannot

be used for this task. The prototype accepts input typed from the keyboard. Even

if I added a speech recognition system in place of the keyboard, the prototype

could not be used because its coverage of the vocabulary used for programming is

limited, and the prototype cannot carry out all of the different editing operations

that might be needed. In short, the prototype cannot carry out arbitrary requests

from an arbitrary user. Expanding the prototype to have a fuller vocabulary and

more editing features is also problematic because I do not know the vocabulary

or features that an arbitrary user would be likely to use. Therefore, I needed a
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way to have people use a spoken language interface for programming without first

developing the system for them to use. This is the basic premise of a Wizard of Oz

study.

A Wizard of Oz study allows researchers to evaluate the possible design of

a new system before actually implementing it, and can be crucial in uncovering

design flaws and identifying research issues before the system is developed. People

interact differently with computer programs than they do with other people [16].

If a researcher wants to learn how people will use a program, it is necessary to

convince them that they actually are using that program.

In a Wizard of Oz study, the test subject sits in front of a computer displaying

the interface to “the new program”. An expert, called “the wizard”, sits at a

second computer located in a different room. The two computers are connected

over a network, allowing the wizard to watch and/or listen to every action taken

by the subject. The subject, however, is unaware of the presence of the wizard,

and believes that he or she is working with an existing program. The expert listens

and/or watches every input from the test subject, determines what the subject is

trying to do, and then places the appropriate response from the imaginary program

into the interface on the subject’s computer. In this way, the subject, believing

that the computer program exists, demonstrates how they would use the program.

The subject’s actions and the wizard’s responses can be used to aid in the future

development of the program being simulated.

For this thesis, I carried out a Wizard of Oz study. Two undergraduate research

assistants and I developed the hardware and software infrastructure needed to carry

out the study. After testing this infrastructure, I conducted the study using eight

novice programmers from an introductory C++ programming class. The students

who volunteered to take part in the study spent two hours each week working on

their class assignments using the simulated programming interface. The subjects

uttered 8117 requests to the interface during 67 sessions. Additionally, each subject

completed a questionnaire describing their successes and problems at the end of each

session.
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The results for the research questions I investigated for this study are:

• What types of commands do the people use and how do they use them?

Command types indicate the types of actions requested by the subject (such

as navigation, edit, declaration, etc.). Almost all of the requests made by

subjects were simple in nature, containing only one or two command types

within the request. Overall, subjects predominantly used a small subset of

the possible command types available to them. Examining the groups of

command types used within the individual requests shows that a relatively

small collection of command type groups comprise most of their requests.

• Do the people share a common vocabulary or do the words they use differ

substantially from person to person?

Subjects used a wide variety of words to express their requests to the in-

terface. However, comparing each subjects vocabulary against the collective

vocabulary of the other subjects shows that the collective vocabulary covers,

on average, almost 80% of the individual subject’s vocabulary. These results

suggest a strong commonality of vocabulary across subjects.

• What types of disfluencies are used by the people, how frequently do these

disfluencies occur, and how do they impact the underlying natural language

processing (NLP) system that extracts information from the user requests?

Disfluent speech is the portion of an utterance that must be removed to

achieve the speaker’s intended utterance. Disfluent speech includes filled

pauses, false starts, repetitions, and repairs. In the data collected during

the study, disfluencies occur in about 50% of the utterances. Filled pauses

are the most common, but the proportions of the various disfluencies vary

among the subjects. Surprisingly, the disfluencies found in these data have a

relatively small impact on the underlying natural language processing system

that supports NaturalJava.

These results are limited in a number of ways. First, all of the subjects were

novice programmers. Second, all of the subjects were students in a single introduc-
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tory programming class. The instructor may have influenced how they described

programming constructs through his use of language during class. Third, this

study covers a small number of subjects performing a relatively small number of

tasks. As a result, the data collected during this study may not represent a general

population.

In the next chapter, I discuss the current state-of-the-art in access technol-

ogy and previous research in syntax-free methods of programming, Wizard of Oz

studies, and spoken language disfluencies. Chapter 3 describes the NaturalJava

prototype that I developed. In Chapter 4, I describe the Wizard of Oz study that I

have completed. Chapter 5 discusses the results from analyzing the data collected

during the Wizard of Oz study. Finally, I present my conclusions drawn from this

research.

1.1 Chapter Summary

The problems posed by programming language syntax motivated this research.

Syntax-related problems impact many different groups of users, including novice

programmers, persons with vision and mobility impairments, and advanced pro-

grammers using a new programming language. One potential solution to these

problems is a spoken language interface for programming.

I implemented a prototype natural language interface for programming to de-

termine if it was possible to create program source code using natural language.

The prototype illustrated how such a system might be designed, but I realized

that extending it to be a complete system raised questions about how users would

interact with such a system. Consequently, I conducted a Wizard of Oz study

to collect data on how a group of novice programmers would interact with such

an interface. I then used these data to investigate three aspects of a spoken

language interface for programming. The results of this study show that the

subjects requested simple actions of the interface and used a similar vocabulary.

Speech disfluencies were common but the underlying natural language processing

system performed surprisingly well despite these disfluencies. These results are
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limited by several aspects of the study and, as a result, may not generalize to other

populations.



CHAPTER 2

RELATED WORK

In this chapter, I will describe previous research relevant to my work. First, I

will discuss the present state of the art in access technology—the technology that

enables persons with disabilities to use computers. Next, I will describe previous

syntax-free methods of programming. These previous efforts can be divided into

three categories: automatic programming, structure editors, and natural language

interfaces for programming. In Section 2.3, I will describe some previous work that

used Wizard of Oz studies. Finally, human speech often contains linguistic artifacts

that must be removed to achieve the speaker’s intended utterance. These artifacts

are called speech disfluencies. A spoken language interface for programming would

have to deal with speech disfluencies. Therefore, I will explain how previous research

has characterized disfluencies in the final section of this chapter.

2.1 State of the Art for Access Technology

Accessible computer technology is a field still in its infancy. Almost all of the

access technology currently developed is designed to allow persons with disabilities

to work with the mainstream applications commonly available today. These inter-

faces are developed by small- to mid-sized software companies, almost all of whom

specialize in adaptive technology.

Most mainstream software developers do not consider access issues during the

development process. An excellent example of this can be found in software that

automatically generates pages for the world wide web. Guidelines for the production

of accessible web content have been developed by the World Wide Web Consortium

[4]. Unfortunately, few developers incorporate these guidelines into their software,

so much of the content generated for the world wide web is difficult for the blind
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to access. A second example of this is associated with the Java programming

language. Sun Microsystems has built accessibility features into the Java API.

Unfortunately, few Java developers incorporate these features into their software,

nor is it commonly taught to students learning Java.

While a few major software suppliers have begun to address access issues,

their efforts have been less than successful. For instance, Microsoft has added

“Accessibility Options” to the Windows operating system. Some of the simpler

options are successful, but most are not. For the vision-impaired, the high contrast

display settings are successful, but the screen magnification and cursor/mouse

enhancements are not useful. Most importantly, these enhancements are of no

use to most blind computer users, who are unable to see the display. Microsoft has

introduced the Active Accessibility API (MSAA), which makes information from

programs available to access technology software. This API enables a few programs,

such as Microsoft Internet Explorer and Adobe Reader, to provide high-quality

access to mainstream applications for the blind. Unfortunately, many software

developers do not implement this API for their applications. For instance, Microsoft

does not utilize this API for many of their applications, such as the Office suite or

VisualStudio.

2.1.1 Access for Persons with Vision Loss

The bulk of the blind community uses screen reading software to access a

computer. These programs keep track of the user’s actions, such as typing or moving

the cursor through a document, and the computer’s actions, such as creating new

windows or printing status messages, and sends the appropriate information to an

output device. One type of output device displays braille. Unfortunately, braille

displays generally cost about $10,000, so are too expensive for many persons with

vision impairments to purchase. Additionally, only 10% of persons with vision loss

in the United States can read and write in braille. This figure is reduced further

because it is difficult for people who lost their sight as adults to achieve a high level

of braille proficiency. For them, reading braille is slow and cumbersome. Therefore,
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in the United States, most blind computer users use a speech synthesizer for their

screen reader output.

Speech output poses several challenges to the blind programmer. First, typing

mistakes, especially capitalization errors, are difficult to catch, because the mis-

spelled word may sound identical to the correctly spelled word. Second, finding

errors in syntax is difficult. For example, the sighted programmer has visual cues,

such as the level of indentation used to aid in matching braces. Visual information

of this kind is difficult to convey through speech. Third, scanning through the

source code is time-consuming. A screen reader does not have the ability of the

human eye to pick out individual words from the code to get a sense of the position

within the file. The screen reader must read across the line starting from the left

edge. Thus, the blind user must read many lines to get a sense of the current

position. This strongly affects one’s ability to quickly navigate through the source

code.

2.1.2 Access for Persons with Mobility Impairments

There are many different types of motor impairments. This results in a wide

variety of adaptive strategies and devices, depending on the nature of the im-

pairment. For those users with some mobility of the hands, there are specially

designed keyboards, mice, track balls, and joy sticks. The keyboards have fewer

keys, and rely on “key-chords” to provide access to all of the functions of a standard

keyboard. Pointing devices have larger buttons, that are often color-coded, and

have been modified to permit easier use. For those persons who do not have use

of their hands, other types of pointing devices are used with on-screen keyboards.

These pointing devices may be activated by feet, eye movement, mouth, or infrared

pointers mounted on headsets. To type, the user must point at a “key” on the

screen and then activate a “mouse-click.” There are computer applications, such as

word prediction software, that can increase the productivity of these users. Finally,

there are speech driven interfaces that can be used as input to a computer.

Unfortunately, none of these computer interfaces are well-designed for program-

ming tasks. Use of the keyboards and pointing devices is slow. Productivity
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enhancement applications, such as word prediction software, can help somewhat

with standard English words, but consider the problems associated with variable,

method, and class names, such as numberOfElements or elementAtIndex. These

names will not appear in standard dictionaries. The user will either have to type

out every name in full or have to add every such name to the dictionary. Speech

recognition packages allow a faster method of entering the source code. However,

this method is also cumbersome, since every aspect of the syntax (every parenthesis,

every semicolon, every comma, etc.) must be dictated. Variable, method, and class

names will also have to be added to the speech dictionary.

2.2 Syntax-free Programming Systems

NaturalJava is not the first attempt to produce a syntax-free method of program-

ming. The previous work on syntax-free programming spans three fields: automatic

programming, structure editors, and natural language interfaces for programming.

I will briefly describe the work that has occurred in each of these fields in the

sections below.

2.2.1 Automatic Programming

The goal for automatic programming has been a moving target over the years.

Initially, compilers and assemblers were considered automatic programming, since

they took a higher level language for programming and converted it into machine

language. Since that time, the goal for automatic programming has evolved to be-

come the process of generating computer programs from an end-user’s nontechnical

description. The discussion that follows is based on the survey found in Rich and

Waters [18].

To achieve the current goals, an automatic programming system would require

three features:

1. The system is end-user oriented. In other words, the system can communicate

in a language the user understands.

2. The system is general-purpose. It works equally well in all domains.
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3. The system is fully automated. Once given a set of requirements, it requires

no human assistance to generate an efficient program.

Unfortunately, current technology cannot satisfy these requirements.

For an automatic programming system to be end-user oriented, it must have

knowledge of the application domain. The user’s specification for the program

would be described using the terminology of the application domain. This spec-

ification must be converted into a specification in the programming domain. To

perform this conversion, the automatic programming system must have a knowledge

of the terminology used within the application domain comparable to the knowledge

of the end-user. For example, consider the following user specification:

“The function EvalOctal is a recognizer that determines whether or

not a given string contains an octal number optionally surrounded by

blanks. If this is the case, the decimal value of the number is returned;

otherwise, -1 is returned.”

To process this specification, the automatic programming system must understand

many terms, including recognizer, octal number, and decimal number. The sys-

tem must also know the procedure for converting an octal number to a decimal

number. While the required knowledge can be assembled for very narrow domains,

broadening the domain knowledge has proven difficult.

This need for domain knowledge also creates a problem in meeting the second

requirement for these systems. In order to be general purpose, an automatic

programming system must have domain knowledge for every possible domain. This

requirement is unrealistic at the present time, since the field of artificial intelligence

has not developed the capability to store and access such a knowledge base.

Finally, program specifications are rarely complete. In the relatively simple

EvalOctal example given above, several aspects of the desired program were not

fully specified. For instance, would the program need to process negative octal

numbers? A human programmer would make a good faith effort to complete

the program, making reasonable assumptions when necessary. In the EvalOctal
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example, the programmer would assume that only positive octal numbers must be

processed; otherwise, the error condition (-1) could also represent a valid return

value for the program. An automatic programming system would need to be able

to make inferences such as this in order to be effective.

However, when many possible solutions can be used to fill in gaps within the

specification, the human programmer would enter a dialog with the end-user to

constrain the specification. This is a common situation, since end-users often do not

know exactly what they desire when they first specify a program. In this situation,

the programmer enters a dialog with the end-user, refining the specification until

it is complete. An automatic programming system would need to engage in this

dialog, specifying its assumptions as well as forming questions to resolve problems

with the specification. Thus, achieving a fully automatic system is problematic.

Given the difficulties outlined above for each of the three desired features in an

automatic programming system, three approaches to solving the problem are being

attempted. Each of these approaches sacrifices one of the desired features in an

attempt to achieve the other two. These approaches are:

1. Bottom-up: End-user orientation is sacrificed by this approach. It starts

from the programmer’s level and pushes the level of automation upwards.

This approach limits the amount of domain knowledge needed by the system

because specifications remain much closer to the programmer’s domain than

the end-user’s domain. The high level languages used today, such as Java

and C++, represented the first step on this path. Current research focuses

on very high level languages, such as SETL [8].

2. Very Narrow Domain: This approach sacrifices the system’s ability to be

general-purpose. Since the knowledge needed to permit automatic program-

ming can be developed for very narrow domains, this approach develops fully

functional automatic programming systems that work within these narrow

domains. Current research for this approach focuses on broadening the knowl-

edge domains.
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3. Assistant: This approach reduces the amount of automation in an effort to

assist the user. This approach focuses on developing tools and interfaces to

assist in different levels of program development. Current work focuses on

improving the levels of assistance provided by the tools and integrating these

tools into more helpful interfaces.

At first glance, it may appear that NaturalJava (see Chapter 3) fits within

the “bottom-up” approach to automatic programming. However, the NaturalJava

system is not attempting to perform automatic programming. While the interface

is designed to accept natural English sentences and sentence fragments, the content

of the input is not a high-level specification of the program to be created. Input to

this program is a step-by-step description of the contents of the source code.

2.2.2 Structure Editors

Structure editors, also known as syntax-directed editors, have been used as an

educational tool for teaching introductory computer programming [15]. Unlike text

editors, structure editors do not allow the user to create a syntactically incorrect

program. Structure editors use an abstract syntax tree as the internal representa-

tion of the program. As a result, each modification to the evolving source code being

written by the student is governed by the grammar of the programming language,

resulting in error-free syntax for the student.

The user modifies the evolving program by choosing options from a menu

and then filling in the required fields in a form. The menu options available at

any given time are limited to those modifications permitted by the grammar of

the programming language at the current node within the abstract syntax tree.

These restrictions on the possible manipulations of the abstract syntax tree often

make it difficult to make large-scale changes to the evolving source code because

intermediate steps result in illegal syntax. These types of problems have been

circumvented by allowing the user to work outside of the structure editor for short

periods of time.
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Structure editors do not represent a viable alternative for programming for the

vision-impaired. They require the user to navigate through sequences of menus and

forms for each new construct. Although it would guarantee correct syntax, it would

be cumbersome and, at times, confusing for someone with visual impairments.

2.2.3 Natural Language-Based Programming

Two natural language interfaces for programming predate NaturalJava, while

three interfaces were developed after the NaturalJava project began. The two

systems that predate NaturalJava are NLC [1] and Moon [26] while the other three

are called TUJA [11], Metafor [13], and VoiceCode [6]. Four of these interfaces

(NLC, Moon, TUJA, and Metafor) take sentences from the keyboard as their input,

while VoiceCode uses spoken language input. I will briefly describe these systems

in the sections below.

2.2.3.1 NLC

NLC [1] is a natural language interface that allows users to manipulate tables

and matrices by typing English sentences. Four modules comprise the system:

the scanner, the parser, the semantics analyzer, and the interpreter. Each of

these modules run in sequence, and there is little interaction between the different

modules. These modules perform the following functions:

• The Scanner

The scanner divides the input string up into the individual words, called

tokens. If the word represented by a token is located in the dictionary, the

associated attributes are attached to the token. The authors do not detail

what happens if the word is not found in the dictionary.

• The Parser

The parser is used to determine the structure of the input sentence, given

the information provided by the scanner. The authors state that most inputs

in this domain follow the top-level structure of an imperative verb followed

by its operands. They use an augmented transition network to generate a
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syntactic structure for the sentence, and the noun phrases can be placed

into the appropriate complement structure for the given verb. These noun

phrases represent the operands for the matrix manipulations specified by the

imperative verb. For example, consider the input sentence:

“Add the first positive entry that was doubled in row 3 to the

second to last row.”

After parsing, the resulting noun phrases would be placed into the add-to

complement structure, which might look something like Figure 2.1. The

authors do not describe examples of sentences that do not contain imperative

verbs.

• The Semantic Analyzer

The primary task for the semantic analyzer is to determine, from the data

contained within a parse tree, the real world “objects” being specified by

the English input sentence. For example, the semantic analysis for the noun

phrase

“the last positive entry in row 4”

would locate the column in row 4 in which that value occurred and replace

the noun phrases with that matrix address. For example, if the last positive

value in row 4 is found in column 5, the phrase above would be replaced by

the matrix coordinates (4,5).

add-to { np: ‘‘the first positive entry that was doubled in row 3’’

pp_to: ‘‘the second to last row’’ }

Figure 2.1. The add-to complement structure used in NLC.
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This module also performs coreference resolution to locate the appropriate

addresses for the requested calculations. For example, given the request

“Add 5 to the row that was doubled”, the semantic analyzer must review

the previous user requests and their semantic analyses to determine which

row was most recently “doubled”. It can then substitute the appropriate row

address for the phrase “the row that was doubled”.

• The Interpreter

The interpreter takes the imperative verbs and the addresses determined by

the semantic analyzer and carries out the requested modifications to the

matrix. This is done in two steps. First, the verb is mapped to the associated

operation that will be carried out on the matrix. For instance, “double”,

“triple”, “negate”, “square”, and “cube” are all considered to be special cases

of the “multiply” operation. Next, having ascertained the operands for the

calculation in the semantic analyzer, the calculations can now take place and

the display updated to show the changes.

The NLC system was tested by twenty-three undergraduates taking their first

programming class. They were asked to solve one of two test problems. The

assigned problems were solved by 74% of the students within the two-hour time

limit. NLC processed 81% of their requests immediately, and most of the remaining

requests were rephrased and successfully processed.

2.2.3.2 MOON

MOON [26] is a natural language-based programming system that is designed

to obviate the need for learning syntax. Their goal in developing this system was

to “enable the comment to act as the code, making the code readable, maintainable,

and reusable.” This should allow for non-technical people to develop new data

structures and methods without requiring an in-depth knowledge of syntax and

programming language structure. While this goal sounds similar to automatic

programming, this programming language falls short of that mark. It requires the
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user to write step-by-step instructions for program execution. It also requires the

user to have a strong grasp of the concepts of object-oriented program design.

Moon differs from NaturalJava in a significant way. Moon does not transform

its input into an existing programming language. It is a programming language

in its own right, and must run within an interpreter. In contrast, NaturalJava

transforms its input into the constructs of the Java Programming Language.

Moon is an object-oriented language that implements polymorphism and in-

heritance. In this language, all objects are indicated by an initial capital letter.

The interpreter scans through the sentence, identifies the objects based on this

capitalization, and pushes the objects onto the stack. It then examines the re-

maining words of the sentence to identify the relevant command being invoked.

For example, given the input, “copy Number from Origin to Destination.”, the

interpreter will place Number, Origin, and Destination on the stack, find ‘copy

from to’ in the remaining words, and invoke the Number’s copy method, passing

Origin and Destination as arguments. This allows the Moon interpreter to use

method names that are more than one word or phrase in length.

The Moon interpreter also utilizes a fault-tolerance system to improve ease of

use. It has three principle tasks:

• Suggesting correct spellings (e.g., suggesting “argument” when “agrument”

is typed)

• Rearranging sentences so that the arguments are pushed onto the stack in the

correct order (e.g., “copy Number to Destination from Origin becomes “copy

Number from Origin to Destination”)

• Suggesting the correct method name if the sentence does not contain one

because of missing words or incorrect prepositions. For instance, if the user

wrote “index at position Pos on stack CheckStack”, Moon would suggest

“index of argument at position Pos on stack CheckStack” because the most

similarly defined method included the phrase “of argument”.
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Moon only approximates natural language understanding. It assumes that the

predicate (i.e., the word containing the most important information) is the first

word in the sentence that is not an object or a preposition. While this allows some

tortuous sentence structures (e.g., “from Origin copy Number to Destination”), it

allows the interpreter to quickly ascertain the crucial words in the sentence without

performing much processing of the natural language used as input.

Moon has been used to implement a prototype for a digital workplace supporting

a care process for nursing. Its aim is to allow the staff of a nursing facility to

create and modify process checklists and notification systems for patients based on

changing needs. It was ready for testing in 1997.

2.2.3.3 TUJA

TUJA [11] is a project to develop an interface that takes Turkish sentences from

the keyboard as input and produce Java source code as its output. In 2003, TUJA

was capable of creating a Java class skeleton (i.e., class, method, and data member

declarations).

TUJA uses an augmented transition network for parsing and semantic analysis

of the natural language input. TUJA classifies input sentences into four categories:

class declarations, member declarations, method declarations, and relationship

declarations (i.e., inheritance and polymorphism). In general, TUJA assumes that

nouns refer to classes, interfaces or members, while verbs refer to methods. TUJA

classifies verbs into four categories based on whether the action requires parameters

as input and/or returns values.

Knowledge derived from the ATN is stored in schemata. There are three

different types of schemata: method schema, member schema, and class schema.

TUJA uses a Prolog relational data base to store these schemata, relying on HASA

relationships for composing classes and ISA relationships for building class hier-

archies. The authors define a HASA to be the inclusion relation, indicating that

other objects are elements of a larger object. For example, a class has a method.

TUJA does not show the evolving source code to the user. However, at any

time the user can request that Java source code be written to a file. No user testing
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has been performed using TUJA, to date.

2.2.3.4 Metafor

Metafor [13] employs the idea that programming is similar to storytelling. It

builds a “scaffolding code” (which may or may not be executable) to demonstrate

the framework of the solution. It utilizes the notion that details about procedures

can be inferred from linguistic structures. This process, called programmatic seman-

tics, infers data structures from noun phrases, functions from verbs, and properties

from adjectives. Some linguistic structures indicate the presence of conditionals,

loops and recursive structures.

Metafor behaves similar to a prose outlining tool. As a programmer types

more and more of the “story” of the code into the interface, Metafor updates its

representation of the program with each sentence. The resulting code is displayed

in Python.

The authors conducted a preliminary user study with 13 participants, six of

whom were novice programmers and seven who were intermediate programmers.

The purpose of the task was to evaluate Metafor’s usefulness as a brainstorming

tool for writing source code. The subjects implemented, in story form, the actions

of the characters in the video game Pacman, first on paper and then using Metafor.

The subjects self-assessed the usefulness of brainstorming for producing a solution

to the problem both on paper and using Metafor. All subjects preferred brain-

storming using Metafor over paper, and preferred paper over not brainstorming.

Novice programmers were more enthusiastic about the benefits of Metafor than

were intermediate programmers.

2.2.3.5 VoiceCode

VoiceCode [6] represents the first spoken language interface for programming.

It was developed to assist programmers suffering from repetitive strain injuries. It

accepts spoken instructions using a defined syntax and produces source code in one

of three programming languages (ex, Python, or C++). This interface also allows

the programmer to navigate and modify the source code by uttering a continuous
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stream of voice commands.

VoiceCode uses templates to generate common programming constructs, such

as loops and class declarations. Several specific keywords are associated with each

of these templates to allow the user some flexibility in phrasing commands. Since

these keywords can also be used in variable, method, and class names, VoiceCode

uses the current context to determine if the word should be used as part of a name

or to create an instance of the template. Context sensitivity also allows some of

these keywords to be used to accomplish differing tasks when they are uttered in

different context within the source code.

VoiceCode allows local, in-screen navigation using three strategies: navigation

by template, navigation by punctuation, and navigation by pseudocode. Navigation

by template allows the user to move to the fields within a template, such as the

conditional expression or the body of a while loop. Navigation by punctuation

allows the user to move to locations before or after a nearby punctuation mark,

such as “after the next parenthesis”. Navigation by pseudocode involves using a

keyword like “before” or “after” followed by an utterance that might be used to

create the destination’s source code, such as “after clients array at index 0”. All

of these navigation commands can be repeated multiple times in either direction,

such as “again three times”.

VoiceCode includes two error correcting modes: “not what I said” and “not

what I meant”. If the speech recognition system fails to correctly recognize the

utterance, the “not what I said” mode is used to correct the misrecognition. The

“not what I meant” mode is used to correct errors when the speech is recognized

correctly but incorrect code is produced. For instance, “not what I meant” mode is

used if VoiceCode translated the phrase “current record number” into the variable

name current record number when the name curRecNum was desired. VoiceCode

learns from these mistakes to prevent future repetitions.

VoiceCode has not undergone any user testing.
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2.3 Wizard of Oz Studies

Wizard of Oz studies are commonly used to test concepts and designs for spoken

language interfaces for computers. Hirschman and others [9] describe the collection,

annotation, and distribution of data collected at multiple sites for a Wizard of Oz

study of a spoken language interface for accessing an airline travel database. One

interesting aspect of this paper is the efforts being made to verify that the data

collected at the different sites can be evaluated in a consistent manner.

Many papers describe the value of conducting a Wizard of Oz study before

implementing a new spoken language interface. For example, Lewin and others [12]

used a Wizard of Oz study to determine the nature of sentence parsing that would be

necessary for a spoken language interface to a web-based travel information system.

Walker and others [25] used a Wizard of Oz study to determine the features needed

for a spoken language e-mail access system.

2.4 Speech Disfluencies

Spoken language differs from written language in many ways. For instance,

grammar is less formal and the context of the language is often implied. Addition-

ally, spoken language often contains disfluencies. A disfluency is defined to be a

contiguous portion of an utterance that must be removed to achieve the speaker’s

intended utterance. For instance, if a speaker said, “I would like to fly to New

York no to Boston on Monday”, then the intended utterance is “I would like to

fly to Boston on Monday.” The portion of the utterance, “to New York no” is a

disfluency and must be removed from the original utterance to achieve the intended

utterance.

The nature of disfluencies in spontaneous human speech change with the domain

of the utterance as well as from speaker to speaker [14] [23]. In the domain of human

to computer speech, the disfluencies can interfere with the ability of the computer

to extract information from the utterance. Thus, for a spoken language interface for

programming, it is important to understand the nature of the disfluencies and how

they will affect the information the program receives. In this section, I will define
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and discuss the types of disfluencies that were identified by previous researchers,

following the terminology of Shriberg [23].

A disfluency comprises four elements:

• Reparandum: the entire portion of the utterance to be removed.

• Interruption point: the point at which the speaker interrupts the flow of the

utterance.

• Repair: the region where fluent speech recommences, fixing the speaker’s

mistake.

• Interregnum: the portion of the utterance between the interruption point

and the onset of the repair. Essentially, the interregnum is the portion of the

utterance, following the interruption point, in which the words and sounds

uttered have no correspondence with words uttered before the interruption

point. The interregnum may include editing phrases and filled pauses.

In the example “I want to fly to New York no to Boston on Monday”, the

speaker repairs his utterance in order to correct the destination for his flight. The

flow of the utterance is disrupted between the phrase “to New York” and the word

“no”—this is the interruption point. The correspondence of the two prepositional

phrases, “to New York” and “to Boston”, on either side of the interruption point

indicates that the phrase “to Boston” is the repair of the phrase “to New York”.

The interregnum is the collection of words and sounds uttered which follow the

interruption point and precede the onset of the repair—in this case, the editing

phrase “no”. The reparandum includes the words/phrases being repaired (“to new

York”) and any contents of the interregnum (“no”). Thus, the reparandum for this

utterance contains “to New York no”. Removing the reparandum from the original

utterance (e.g., “I want to fly to New York no to Boston on Monday”) results

in the effective utterance (E.g., “I want to fly to Boston on Monday”). Since the
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purpose of removing the disfluency is to obtain the intended utterance, the effective

utterance represents the intended utterance.1

Numerous classification schemes exist for disfluencies (cf. [23]). For the purposes

of my work, I categorized disfluencies into five groups: unfilled pauses, filled pauses,

false starts, repetitions, and repairs. Unfilled pauses are periods of time when no

sounds are being uttered. While these periods of silence can cause problems for

speech recognition systems, they pose no problems for a natural language processing

system, and so will be discussed no further. In the following paragraphs, I will

discuss the four remaining disfluency types. I took the examples from transcripts

derived from the Wizard of Oz study that will be described in Chapter 4.

Filled pauses are sounds uttered that contain no semantic content, such as um,

er, uh, etc. For instance, given the original utterance:

“move down to the uh student class.”

the speaker pauses to determine the destination within the source code for the move,

and fills the pause with the sound “uh”. The interruption point is located between

the phrase “move down to the” and the filled pause “uh”, while the filled pause

“uh” comprises the interregnum. There is no repair, since no words preceding the

interruption point are modified. Removing this disfluency results in the effective

utterance, “move down to the student class”

In the second type of disfluency, called a a false start, the speaker discards

previously uttered content and the topic of the new utterance differs substantially

from the discarded material. For example, the following user request contains a

false start:

“head field equals nah go to the parentheses”

This request begins by creating an assignment statement, but the user discards the

assignment and chooses to move to an existing location within the source code.

1I will use the terms intended utterance and effective utterance interchangeably.
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The portion of the utterance describing an assignment statement must be removed

to obtain the speaker’s intended utterance. This phrase, “head field equals nah”,

is the reparandum.

The third type of disfluency, repetition, occurs when the speaker exactly repeats

some portion of an utterance. Here is an example of one of these repetitions:

“print to screen print to screen quote slash quote”

In this case, the reparandum is the first instance of the phrase “print to screen”,

while the repair is the second instance of this same phrase. Removing the first

instance of the repeated phrase results in the effective utterance “print to screen

quote slash quote”. Note that not every exact repetition of a phrase is a disfluency.

For instance, a person could say “greater than sign greater than sign”. While in

some instances this could be a repetition disfluency, in other instances the speaker

may be referring to the input stream operator “>>”.

The final type of disfluency I will address is repairs. A repair occurs when

there is a deletion from, insertion into, or modification of what was previously

uttered. Generally, a repair occurs in a restatement of some portion of the utterance,

although this is not always true. For instance, in the first disfluency example, “I

want to fly to New York no to Boston on Monday”, the preposition “to” is repeated

in the repair. However, if the utterance were “I want to fly to New York no Boston

on Monday”, the repair would occur without repeated text.

2.5 Chapter Summary

Technology exists to allow persons with disabilities to use computers. However,

these technologies are not well suited for writing and debugging computer pro-

grams. Screen readers do not provide persons with vision loss access to the same

information available to sighted programmers within a programming development

environment. Debugging programs becomes more difficult as a result. Persons with

mobility impairments have difficulty inputting syntactically complex source code.

For both of these groups, a syntax free method of programming would be beneficial.
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Previous work in syntax-free programming spans three fields. Automatic pro-

gramming seeks to create programs from an end-user’s nontechnical specifications.

This goal has not yet been reached. Structure editors guarantee correct syntax by

requiring the user to create and modify source code by selecting editing options

from menus and providing the required data in templates. These interfaces are

cumbersome for the vision-impaired. Several small-scale natural language-based

interfaces for programming have been developed.

Wizard of Oz studies have often been used to determine how potential users

would interact with a new program. These studies are commonly used with spoken

language interfaces to determine the nature of the speech to be processed.

Spoken language often contains contiguous portions of utterances which must

be removed to achieve the speakers intended utterance. These artifacts, called

disfluencies, can be divided into four types: filled pauses, false starts, repetitions,

and repairs. Each of these types of disfluencies can interfere with a computer

program’s ability to process spoken language input.



CHAPTER 3

THE NATURALJAVA PROTOTYPE

I wanted to ensure that it was possible to create Java programs using natural

language before I began this research. Therefore, I implemented a prototype which

takes English sentences and sentence fragments typed on a keyboard and generates

Java source code. Before I discuss the Wizard of Oz study that is the focus of this

thesis, I will discuss this prototype and describe its limitations.

The prototype interface is fully implemented and can be used to produce Java

source code. During a programming session, the interface comprises three text

areas, an edit box, and a prompt (Figure 3.1). The largest text area displays

the evolving source code. Beneath this text area is a prompt indicating that the

program is processing a request or waiting for input from the user. The user

types requests to the system in the edit box below the prompt. The text area

at the bottom of the window shows error messages and any requests the program

is making to the user (such as, “What is the name of the index variable for this

loop?”). The text area along the right side of the window provides information

requested by the user (such as the names and parameters for methods within a

class or associated with an object) or a list of variables in scope.

Two faculty members have used NaturalJava to write exactly the same program.

The first user, Joe Zachary, defined a priority queue class, and the second user, Ellen

Riloff, tried to generate exactly the same source code while using different natural

language sentences. Excerpts from the transcripts of the user sessions are shown

in Figures 3.2 and 3.3, and the Java code that resulted is shown in Figure 3.4.

NaturalJava performs capitalization correction. Thus, variable, method, and class

names in the user transcripts that are not correctly capitalized appear with correct



28

Figure 3.1. The NaturalJava user interface. The largest of the three text areas
contains the evolving Java source code. The text area at the bottom of the screen
holds error messages and requests for more information from the user. The text
area along the right side of the window provides other data requested by the user,
such as the variables in scope or the methods associated with a class.

capitalization in the source code.

In the next section, I will discuss the architecture of this prototype. In Section

3.2, I will discuss its current limitations. Section 3.3 discusses the effort that would

be needed to convert NaturalJava to work with other programming languages.

3.1 The Architecture of the Prototype

The NaturalJava user interface has three components. The first component is

Sundance [22], a natural language processing system that uses a shallow parser

to perform information extraction [20] [19]. For NaturalJava, Sundance extracts

information from English sentences and generates case frames representing pro-
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1. I need to create an interface called Comparable.
2. Declare a public abstract method called isLessThan.
3. It takes a comparable called c.
4. Islessthan returns a boolean.
5. Exit the interface.
6. Make a class called PriorityQueue.
7. I need a vector and name it elements.
8. It is private.
9. Give me a constructor.

10. Elements is equal to a new vector.
11. Exit the method.
12. Make it public.
13. Declare a public method called enqueue which takes a comparable called newEle-

ment.
14. Call elements’ addelement and pass it newelement.
15. Exit.
16. Create a public method called dequeue.
17. It returns a comparable.
18. Define an int called index and initialize it to 1.
19. Declare an int called minIndex equal to 0.
20. Create a comparable called minValue which is equal to elements’ firstelement cast

to a comparable.
21. Loop while index is less than elements’ size.
22. Make a comparable called currentElement, which is equal to elements’ elementat

passed index, and cast to a comparable.
23. If currentelement’s islessthan passed minvalue.
24. Assign index to minindex.
25. Minvalue is equal to currentelement.
26. pop out.
27. Increment index.
28. Leave the loop.
29. Call elements’ removeelementat passed minindex.
30. I need to return minvalue.
31. Exit.
32. Declare a method named isEmpty which returns a boolean.
33. Isempty is public.
34. Elements’ isempty is returned.

Figure 3.2. Input from User 1’s NaturalJava session to create a priority queue
class. Note that NaturalJava does capitalization correction on class, method, and
variable names.
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1. make me an interface named Comparable
2. create a method called le
3. make le public and make le abstract
4. le should return a boolean and take a Comparable parameter called c
5. exit
6. make a public class that is called PQ
7. create a private Vector and call it elements
8. give me a public constructor
9. elements gets a new Vector

10. pop out of the method
11. I want a public method that is named enq
12. This method should take a Comparable parameter called c
13. call elements’ addElement and pass it c as a parameter
14. pop
15. I would like to define a public method that is named deq and that returns a

Comparable
16. declare an int variable named i that is initialized to 1
17. declare an integer variable named minIndex that has an initial value of 0
18. add a Comparable variable named minValue which is equal to elements’ firstEle-

ment but that is cast to a Comparable
19. declare a loop and have it iterate while i < elements’ size
20. add a Comparable named c, initialize it to elements’ elementAt, pass in i, and cast

to a Comparable
21. if c’s le when passed minvalue
22. minindex gets i
23. minvalue gets c
24. exit the loop
25. call elements’ removeElementAt and pass it minIndex
26. please return minValue
27. jump out of this method
28. make a public method, name it isEmpty, and have it return a boolean
29. please have it return elements’ isEmpty

Figure 3.3. Input from User 2’s NaturalJava session to create a priority queue
class. Note the differences between these instructions and those in Figure 3.2, which
both create the same priority queue class.
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import java.util.*;

interface Comparable {

abstract public boolean isLessThan(Comparable c) ;

} // end interface Comparable

class PriorityQueue {

private Vector elements;

public boolean isEmpty() {

return elements.isEmpty( );

}

public Comparable dequeue() {

int index = 1;

int minIndex = 0;

Comparable minValue = (Comparable)elements.firstElement( );

while ( index<elements.size( ) ) {

Comparable currentElement = (Comparable)elements.elementAt( index );

if ( currentElement.isLessThan( minValue ) ) {

minIndex = index;

minValue = currentElement;

}

index++;

}

elements.removeElementAt( minIndex );

return minValue;

}

public void enqueue(Comparable newElement) {

elements.addElement( newElement );

}

public PriorityQueue() {

elements = new Vector( );

}

} // end class PriorityQueue

Figure 3.4. Output from a NaturalJava session. The input sentences shown in
Figures 3.2 and 3.3 result in the Java source code seen above.



32

gramming concepts. The second component is PRISM, a knowledge-based case

frame interpreter that uses a manually constructed decision tree to infer high-level

editing operations from the case frames. The third component is TreeFace, an

abstract syntax tree (AST) manager [17]. PRISM uses TreeFace to manage the

syntax tree of the program being constructed.

Figure 3.5 illustrates the dependencies among the three modules and the user.

PRISM presents a graphical interface to the user, who types an English sentence

describing a program construction command or editing directive. PRISM passes

the sentence to Sundance, which returns a set of case frames that extract the key

concepts of the sentence. PRISM analyzes the case frames and determines the

appropriate program construction and editing operations, which it carries out by

making calls to TreeFace. TreeFace maintains an internal AST representation of

the evolving program. After each operation, TreeFace transforms the syntax tree

into Java source code and makes it available to PRISM. PRISM displays this source

code to the user, and saves it to a file when the session terminates.

In the next three sections, I will discuss each of these modules in more detail.

3.1.1 Sundance

I selected English as the input language because it would not require the student

to learn a new language to begin programming. He or she can use the language

the instructor is using in class to write programs. However, English has two

drawbacks as an input language: natural language specifications can be ambiguous

and incomplete, and natural language processing can be fragile because complete

natural language understanding is still beyond the state of the art. I addressed the

first problem by limiting the role of inference in my system. I decided that user

requests, while stated in English, must be very similar to programming constructs.

This level of specification is relatively well defined, yet general enough that the

programmer can focus on programming rather than syntax. The interface can

detect when a command is incomplete (e.g., the terminating condition of a loop is

missing) and prompt the user, but the role of inference in NaturalJava is mainly

limited to the disambiguation of general verbs (e.g., “add” can refer to arithmetic



33

PRISMSundance TreeFace

User

(3) Case frames

(2) Sentence (5) Source code

(6) Java source code
line input

(4) AST methods

(1) English command

Figure 3.5. Architecture of the NaturalJava prototype.

or insertion).

I addressed the second problem of fragile natural language processing by using

information extraction technology supported by a partial parser. Partial parsers

are typically more robust and flexible than full parsers, which try to generate a

complete parse tree for each sentence. Full parsers often fail on sentences that are

ill-constructed or ungrammatical. Partial parsers are more robust because they do

not have to generate a complete parse structure, but instead generate a syntactic

representation of sentence fragments.

Information extraction (IE) is a form of natural language processing that in-

volves extracting predefined types of information from natural language text [3]

[21]. The goal is to identify information that is relevant to the task at hand

while ignoring irrelevant information. Information extraction systems have been
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built for a variety of domains, including Latin American terrorism [20] [19], joint

ventures [19], microelectronics [19], job postings [2], rental ads [24], and seminar

announcements [7].

For the NaturalJava interface, I used IE techniques to extract information

related to Java programming constructs from the user’s input. The natural language

engine used by NaturalJava is a partial parser called Sundance [22]. Sundance

generates a flat syntactic representation of sentences and also can activate and

instantiate pattern-based templates, or case frames. Initially, I manually designed

400 case frames to extract information about relevant programming constructs.

Using the data collected during the Wizard of Oz study (Chapter 4), another

graduate student and I expanded this set to 500 case frames. Sundance generates

39 types of case frames for NaturalJava; the nature of these types are summarized

in Table 3.1.

As an example, consider the sentence “Create a for loop that iterates from

1 to 10.” Sundance begins by deriving a partial parse for this sentence, which

includes part-of-speech disambiguation, syntactic bracketing, clause segmentation,

and syntactic role assignment. Sundance then instantiates all active case frames to

extract information from the sentence. The case frames represent local linguistic

expressions primarily revolving around verbs and nouns. Each case frame has a

trigger word and an activating function that determines when it is applicable. For

example, a case frame might be triggered by the word “iterates” when it appears

as an active voice verb form. A case frame also has a type, which represents its

general concept, and an arbitrary number of slots that extract information from

local syntactic constituents.

Figure 3.6 shows a case frame triggered by the verb “iterates.” It contains

four slots that extract information from the subject of the clause and from three

prepositional phrases. For example, the subject of the clause will be extracted

as a CONTROL FLOW object, while the object of the preposition “from” will be

extracted as the start condition for the loop. The prepositional phrases may appear

in any order, and any subset of these slots may be instantiated, depending on the
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Table 3.1. Summary of the case frame types used by Sundance in NaturalJava.

Case frame type Purpose Example trigger words
allocate Allocating memory new
array length Declaring array size size, length
array offset Indicates the offset in an array sub, index
assignment comparison Indicates an assignment equals

or value comparison set
cast Casting an object cast
comment Indicates presence of a comment comment, precondition
comparison Comparing two values less than, greater than
conditional Conditional expression if, then
conjunction Joins elements of conditional exps. and if, or if
construct Indicates programming construct class, method
control exp Expressions controlling controlled

entry to blocks expression
control flow Control flow structures loop, iterate
create Declaring variables, methods, etc. create, declare
debug Debugging features for NaturalJava trace, debug
edit Modify source code delete, change
extends Inheritance extends, inherits
i o Input / Output open, save, print
implements Implmenting interfaces implements, uses
info Requesting information list, show
insertion mode Changing where new insert

code is placed append
list Requesting information “a list of . . . ”
literal string Declaring a literal string says
location Indicate locations in code top, end
loop Nouns indicating a loop for loop, while loop
math Math operations multiply, plus
method calls Invoking a method apply, call
multi purpose Usable in more than one context add, make
name Naming a variable, method, etc. called, name
navigation Move to a new location go, move
negation Negating a value minus, negative
packages Creating and importing packages import, package
param passing Parameters for methods pass, takes
pop out Navigating up AST pop, exit
property Properties of classes, members is private, are static
property name Properties of classes and members public, final
push into Navigating down AST push, enter
type list Types of things listed as info methods, parameters
type name Names of intrinsic types boolean, double
value Indicates a value following value
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CF

Name: iterates

Act_Fcns: active_verb(ITERATES)

Type: control_flow

Slot: subj <- object

Slot: PP(FROM) <- loop_start

Slot: PP(TO) <- loop_end

Slot: PP(WHILE) <- exit_condition

Figure 3.6. An example of a case frame in Sundance. This case frame is
instantiated when the word “iterates” is used as an active voice verb construction.

input sentence.

The final output of Sundance for the example sentence is shown in Figure

3.7. Two case frames are generated, representing a CREATE concept and a

CONTROL FLOW concept. The CREATE case frame indicates that a for loop

should be created, and the CONTROL FLOW case frame specifies the control

conditions for the loop. Figure 3.7 shows the instantiated version of the case frame

shown in Figure 3.6. Notice that Sundance did not extract an exit condition because

there was no prepositional phrase for the preposition “while” in the sentence.

3.1.2 PRISM

The Programming Instruction Synthesis Module (PRISM) forms the core of

NaturalJava. It provides the user interface (Figure 3.1) and ties all of the compo-

nents together. PRISM receives the case frames produced by Sundance, determines

the nature of the action requested by the user, collects the necessary information to

carry out that action, and calls the appropriate methods within TreeFace in order

to modify the evolving source code.

PRISM divides the case frame processing into two tasks. First, it determines

the type of action the user desires. Then, it retrieves the necessary information

from the case frames to carry out that request. PRISM makes one assumption

to simplify the task of determining the action to be taken: PRISM assumes that
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Trigger: create

Type: create

create_type: "a for loop"

Trigger: iterates

Type: control_flow

object: "a for loop"

loop_start: "1"

loop_end: "10"

Figure 3.7. The instantiated case frames produced by Sundance given the sentence
“Create a for loop which iterates from 1 to 10.”

each request by the user represents only one type of action taken on the AST. For

example, a single request can contain either a request to move to a new location in

the source code (“Move down two lines”) or the declaration of a variable (“Declare

an int called index”), but it cannot request the program to move to a new location

and declare a variable at that location (“Move down two lines and declare an int

called index”) in a single command.

PRISM’s first step is to determine the nature of the user’s request. PRISM

determines this in two stages. First, PRISM utilizes a heuristic function that

examines the types of all of the case frames returned by Sundance to classify user

requests into the possible types of AST actions, such as declaration, navigation,

or I/O. Some case frames are triggered by verbs that can be used in more than

one type of command, such as “make” and “give”. These “multipurpose” case

frames are examined with a concept disambiguation method. This method exam-

ines information in the extracted strings to determine the type of concept these

case frames represent and relabels their types accordingly. For example, PRISM

determines that “make a double called myDouble” is a variable declaration, and

the case frame triggered by “make” is relabeled with type create. However, “make

myName public” changes a property of a data member, so PRISM relabels the
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case frame triggered by “make” with type property. If the multipurpose case frame

does not contain the necessary information, PRISM discards it. For example, given

“make x equal to y,” PRISM discards the “make” case frame because its extracted

string, the direct object phrase “x”, does not contain any content indicating the

nature of an action. Then, PRISM examines the remaining case frame instantiated

for “equal” and can classify the request as an assignment.

I developed this heuristic function to allow the user to phrase requests in a

flexible way. NLC [1] and Moon [26] both required that requests be structured so

that the first verb defined the nature of the action to be taken. With this restriction,

requesting an assignment statement with “Assign x plus y to z” would be a legal

request, but “add x to y and assign it to z” would not be legal. Since both requests

represent a single AST action (i.e., creation of a single assignment statement), my

heuristic function allows both phrasings of the request to be legal.

PRISM uses the classification provided by the heuristic function as the first

decision made in a manually constructed decision tree that converts the case frames

extracted by Sundance into actions to be taken on the AST. Subsequent levels of the

decision tree examine the case frames’ trigger words and extracted strings to further

subdivide the command. For example, the heuristic function determines the request

to be a declaration, and subsequent levels of the decision tree determine if the

request is declaring a class, method, data member, or local variable. Additionally,

PRISM often uses the current editing context of the AST to further constrain the

nature of the user’s request.

Once the decision tree fully classifies the requested action, PRISM gathers the

necessary information from the extracted strings held in the case frames. Given this

information and the nature of the action to be taken, PRISM calls the appropriate

methods within TreeFace to complete the user request.
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3.1.3 TreeFace

The third component of NaturalJava is TreeFace, which creates and manipulates

objects that encapsulate AST representations of Java source files.1 TreeFace pro-

vides constructors that create empty ASTs and that initialize ASTs by parsing Java

source files. TreeFace also provides methods that navigate through, add content

to, perform generic editing operations on, and return information about an AST.

In response to instantiated case frames produced by Sundance, PRISM composes

appropriate sequences of TreeFace constructor and method invocations.

A TreeFace object also keeps track of the current editing context. PRISM uses

this context to determine where in an AST a particular editing operation should

take effect. The user must often change the editing context, much as the user of a

standard editor must often change the current selection. Since the editing context is

always a subtree of the entire AST, changes to the editing context can be expressed

in terms of motion through a tree. However, TreeFace also maintains information

about the line numbers for each node in the AST. Therefore, navigation can also

occur with respect to the lines shown in the code window.

TreeFace provides content creation methods that create new classes and inter-

faces, member variables, methods, local variables, compound statements such as

loops and conditionals, and simple statements such as assignments and returns. It

also provides methods that allow the user to change certain attributes of existing

constructs. For example, the user can make a member private.

TreeFace’s generic editing operations allow the user to delete the current selec-

tion and to undo recent modifications to the AST. TreeFace also provides operations

that report the state of the AST. These operations allow the user to request

information about the AST, such as the list of variables currently in scope. PRISM

uses this capability to answer questions posed by the user.

1The underlying AST was generated using Java Compiler Compiler (JavaCC).
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3.2 The Limitations of the Prototype

The NaturalJava prototype possesses a number of limitations. Its interface is

very simple. All input must be entered in English sentences—the mouse cannot be

used for navigation or selection of program constructs. As was described previously,

each user request is limited to containing only one type of AST action. Additionally,

compilation and debugging facilities are not integrated into the interface.

NaturalJava’s language is limited in several ways. Its vocabulary is limited

by incomplete case frame coverage of all of the concepts utilized in creating and

editing source code. Sundance has problems correctly parsing some of the unusual

sentence structures that might be used in programming. For instance, verbs used

as method names cannot be extracted. Given the sentence “Declare a method

called add”, Sundance is unable to instantiate the case frame triggered by “called”

because “add” is misparsed as a verb but should have been parsed as a noun in

this context.

The prototype is best suited for writing new source code and doing local,

statement-level editing. Expression-level editing and global program modifications

are unsupported. For example, the only way to modify an expression is to delete

and replace the statement that contains it. Renaming a variable requires replacing

its declaration as well as every occurrence of it.

NaturalJava supports a large but incomplete subset of Java. It does not support

nested classes and packages because I have not yet built the required AST support

into TreeFace or PRISM. Also, NaturalJava currently supports only four classes

from the Java API (e.g., Object, String, Integer, and Vector). Such limitations are

a result of my depth-first development strategy.

3.3 Converting to Other Programming Languages

NaturalJava currently produces source code in the Java programming language.

Converting NaturalJava to produce source code in other programming languages

would require substantial effort. Aspects of each of the three principal components

of NaturalJava would need to be modified in order to carry out such a conversion.
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Languages that include programming constructs and concepts different from

those found in Java would require modifications to both Sundance and PRISM.

New vocabulary would need to be added to Sundance’s dictionaries and new case

frames generated to encapsulate these new concepts. In PRISM, new keywords

would need to be added to the decision tree and new branches created to identify

and process the new concepts. Additionally, new methods in PRISM would be

required to correctly extract the necessary data for these new constructs.

For instance, languages such as C and C + + utilize pointers to locations in

memory. Java does not have the ability to access memory in this fashion. As a

result, all of the language used to describe pointers would need to be integrated into

Sundance and PRISM. New verbs such as “point” and “dereference” would have

to be added to the Sundance dictionaries. Sundance case frames triggered by verbs

such as “points” and “dereference” would then need to be generated to capture the

concepts essential to using pointers. In PRISM, new methods would need to be

developed to process these new case frames and properly extract the information

they contain. Additionally, new keywords, such as “pointer” and “address”, and the

branches these words might indicate would need to be added to PRISM’s decision

tree in order to properly determine the correct actions to be taken during processing.

Any new language would require major modifications to TreeFace. The under-

lying AST implementation would have to be replaced with an AST implementation

conforming to the new language’s grammar. All of the methods which create,

modify, and query the AST would have to be modified to correctly access the

components of the new AST implementation. new methods would be required to

manipulate constructs found in the new language that were not found in Java.

Essentially, the interface for TreeFace would remain, but the underlying implemen-

tation would require extensive modification.

3.4 Chapter Summary

The NaturalJava prototype accepts English sentences and sentence fragments

from the keyboard and produces syntactically-correct Java source code. The proto-
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type comprises three components: Sundance, PRISM, and TreeFace. Sundance

performs robust information extraction using a shallow parser. Information is

extracted based upon the occurrence of predefined keywords, primarily verbs and

nouns. Information relevant to these keyword triggers is extracted from surrounding

phrases and returned in data structures, called case frames. PRISM, a knowledge-

based case frame interpreter, examines the data held within these case frames and

determines the type of action contained within the request. Once the nature of

the request is determined, PRISM collects the needed information from the case

frames to carry out that request. PRISM calls methods within TreeFace, an abstract

syntax tree manager, to place the necessary information into an abstract syntax

tree representing the evolving source code. TreeFace manages the creation and

modification of these abstract syntax trees, and provides information to PRISM

on the current state of these trees. Many of NaturalJava’s limitations result from

the depth-first approach used during development. Other limitations result from a

lack of vocabulary coverage and knowledge of how users would interact with such

a system.

Converting NaturalJava to produce source code in a different programming

language would require substantial effort. Sundance and PRISM would need to

be modified in order to correctly process any new programming constructs present

in the new target language. TreeFace would need to be heavily modified to work

properly with the abstract syntax trees of the new target language.



CHAPTER 4

THE DESIGN OF A WIZARD OF OZ

STUDY

The NaturalJava prototype demonstrated that it is possible to build a Java

programming system with a written natural language interface, albeit one with the

limitations described in Section 3.2. My long-term goal was to build a fully-featured

Java programming system with a spoken language interface. But, before I could

contemplate designing such a system, I realized that I needed to better understand

how potential users would use such a system.

In particular, I wanted to investigate three specific issues relevant to the devel-

opment of a spoken language interface for programming. These issues are the types

of commands requested of the interface, the vocabulary used in these requests, and

the effect that disfluent speech would have on such an interface. Even if I had

somehow managed to graft a perfect speech recognition system to the prototype’s

front end, further experiments with the prototype would not have been helpful in

answering these questions. The limitations of the prototype would have made it

impossible to study these issues. What I needed was a way to observe programmers

using a fully-featured spoken language interface for programming without having

to first build the system. My solution was to design and conduct a Wizard of Oz

study.

In a Wizard of Oz study, a test subject is asked to experiment with a putative

software system running on a computer. Although the system presents what

appears to be a fully-functional user interface, that interface exists only to send

user input to a second computer. An expert, called the wizard, sits at the second

computer in another room. The wizard examines the user input from the subject’s
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computer and determines what the subject is trying to do. The wizard then

transmits the appropriate response back to the system on the subject’s computer,

which displays the results to the subject. In this way, the subject is presented with

the illusion of a fully-functional system.

I designed and conducted the study over a period of approximately 15 months.

Between October 2000 and May 2001, two undergraduate research assistants and I

implemented and tested the hardware and software infrastructure required for the

study. During the summer semester of 2001, a single subject from an introductory

Java programming class tested this infrastructure. During the fall semester of

2001, eight subjects from an introductory C++ programming class participated in

a Wizard of Oz study. (I chose students from a C++ class because no Java class was

offered; fortunately for my goals, Java and C++ are syntactically and conceptually

similar.) Each subject was paid $10/hour for their time during the study.

Over the course of the semester, each subject used the system once a week for

two hours. During each session, the subject would typically use the system to work

on a homework assignment from his or her programming class. If the subject had

begun work on the assignment before the session, he or she would e-mail the source

code to us as a starting point. At the completion of each session, we e-mailed the

resulting source code back to the subject.

4.1 Subjects

I recruited subjects for this study from CPSC 2000, an introductory program-

ming class for undergraduate students in the Department of Electrical Engineering.

As described above, this class was taught using the C++ programming language.1

I invited all students enrolled in CPSC 2000 to participate in the Wizard of Oz

study. Eight students volunteered to take part, and all eight were accepted into the

study.

1I selected this class because the introductory programming class taught the same semester for
undergraduate students in the Department of Computer Science utilized the Scheme programming
language—a programming language whose syntax and structure differs markedly from Java.
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Recruiting subjects in this manner results in one possible bias. All of the

subjects are students in the same class. As a result, the instructor could in-

advertently bias the subjects in the language they use to describe programming

constructs. If the instructor describes programming constructs in a consistent

manner, the students may unconsciously adopt the language of the instructor

for these constructs. Additionally, since they were working on the same set of

assignments, the nature of these assignments, and any source code they were given,

could also influence their performance in the study.

During the study, each subject sat at a computer that displayed a simple one-

window user interface. The interface was divided into a code region, a prompt

region, and a message region. The evolving source code appeared in the code region,

which was the largest of the three. (The code region also contained a highlighted

region, which indicated the point at which editing operations would apply.) The

prompt region indicated whether the system was processing an input or was ready

to receive the next input. The message region displayed, as necessary, messages that

requested more information from the user or warned that the previous command

was not understood.

The keyboard and the mouse were removed from the computer, leaving an audio

headset with a boom microphone as the only input device available to the subject.

The subject communicated with the system by speaking into the microphone, and

the system communicated with the user by displaying source code, messages, and

status updates in one of the three regions.

Before each subject’s first session, I explained the purpose of the three window

regions and instructed the subject to mark the end of each request by saying “new

paragraph.” I avoided giving more extensive instructions or examples because I

did not want to bias how the subjects would use the system. Unfortunately, this

strategy resulted in some subjects dictating syntax, symbol by symbol. Since we

were trying to develop a syntax-free method of programming, these sessions did not

provide me with interesting data.

I subsequently decided to give the subjects a way to think about the system
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and one concrete example of how to use it. I told them:

Think of the computer as if it were one of your classmates. It knows

exactly what you know, and you should give it instructions on what to

write in the easiest words possible.

I also gave them the following written example:

To print “Hello, world” to the screen, you can say “Print quote hello

comma world quote to the screen new paragraph.”

Given the mental picture and the example, the subjects were able to work with

the system as I had intended. A typical interaction with the system went as follows:

• The prompt initially reads “Please state your next request.”

• The subject says “Give me a for loop that goes from zero to ten new para-

graph.”

• The prompt becomes “Processing, please wait” as the system determines a

response.

• The message region displays the query “Name of index variable?”

• The subject says “i new paragraph”.

• The following code is inserted at the cursor in the code region:

for (int i = 0; i <= 10; i++) { | }

• The initial prompt is redisplayed.

4.2 Wizards

During the study, I used three undergraduate research assistants as the wizards.

During each session, one of the wizards donned headphones and sat at a computer

in a different room. The subject’s utterances were:
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• sent to the wizard’s headphones so he could hear what the student said;

• piped through a speech recognizer, whose output was both displayed to the

wizard (in case he forgot what the subject said) and logged to a text file;

• recorded to an audio file.

The wizard manipulated three windows on his computer: a text editor in which

he composed the source code to be displayed in the subject’s code region, a text

editor in which he composed messages to be displayed in the subject’s message

region, and a read-only window that displayed the output of the speech recognizer.

Each time the subject issued a command, the wizard responded by either

modifying the source code or composing a message to be displayed in the interface’s

message area, as appropriate. Only when the wizard saved the modified source code,

or the message to be displayed, to a file was the subject’s display updated. From

the point of view of the subject, the system would appear to compute for a few

seconds, at which point the entire response would appear instantaneously.

All source code modifications and messages were logged in coordination with the

logs of the subject’s audio requests. This made it possible, during the subsequent

analysis phase, to recreate the exact sequence of events of each session. See [5] for

further details on the software and hardware infrastructure.

4.3 Subject Feedback

During the study, the subjects provided feedback in two forms: responses to

a questionnaire and spontaneous comments during the sessions. Both of these

methods of feedback proved useful.

I received a great deal of information about the features the students desired

in the interface through the questionnaires. At the end of each two-hour session, I

asked the subject to move to a computer with a keyboard and fill in a web-based

evaluation form. The evaluation form requested feedback on whether the system

was easy to use, which features worked best and worst, and what would make the
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system easier to use. I will discuss the conclusions drawn from these questionnaires

in Section 5.5.

The wizards and I received spontaneous verbal feedback from subjects during

their sessions. The subjects often forgot they were being recorded; their unguarded

comments give me insight into their impressions and expectations. Some remarks

(e.g., “Wow! That’s great!”) exhibit surprise that the program functioned correctly.

Others (e.g., “No! That’s not what I wanted.”) reveal when the subject perceived

problems. Such comments, taken in conjunction with the related changes to the

source code, have helped me sort out what users meant when they employed

ambiguous language. For example, one such source of ambiguity is the word “add,”

which can be used to describe a mathematical operation (e.g., “add x to y”) or

to ask that an object be included in a larger context (e.g., “add a method to this

class”).

4.4 Chapter Summary

I used a Wizard of Oz study to investigate several specific issues relevant to

the development of a spoken language interface for programming. In this study,

subjects sat in front of an (imaginary) interface for a spoken language programming

system. The only input device available to the subjects was a microphone. A

few seconds after the subject uttered a request to add or modify the displayed

source code, the interface presented the updated source code to the subject. In this

way, the subjects believed they were testing a real spoken language interface for

programming. However, the subjects never realized that the responses were actually

generated by an expert programmer sitting in another room. These experts, called

wizards, listened to each request from a subject, modified the source code, and

placed the result back on the subject’s computer via the network.

Eight introductory programming students took part in this study. These sub-

jects interacted with the interface once a week for two hours. We collected a wide

variety of data from each of these sessions, including recordings of each uttered
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request, the resulting changes to the source code, and any messages provided to the

subjects through the interface. The next chapter contains analysis of these data.



CHAPTER 5

WIZARD OF OZ STUDY RESULTS

Many difficult problems will need to be solved before a flexible, fully-functional

spoken language interface for programming can be developed. The goal of this

research is to provide an understanding of a few of the basic issues faced in this

development process. In this research, I focused on a single potential group of users

— novice programmers taking an introductory programming class. I investigated

issues related to a spoken language interface for programming. These issues are

summarized in the following research questions:

• What types of commands do the people use and how do they use them?

• Do the people share a common vocabulary or do the words they use differ

substantially from person to person?

• What types of disfluencies are used by the people, how frequently do these

disfluencies occur, and how do they impact the underlying natural language

processing (NLP) system that extracts information from the user requests?

These three questions address three principal issues relevant to building a system

to convert spoken English into source code. I will discuss the issues raised by each

of these questions along with the associated results in depth later in this chapter.

First, however, I will describe the data I collected during the Wizard of Oz study

and the preparation of these data for analysis. Then, in Section 5.2, I discuss the

types of commands the subjects used. In Section 5.3, I analyze the vocabulary used

by the subjects. Section 5.4 describes the types and frequencies of disfluencies found

in the programming request domain and the effect these disfluencies have on the
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underlying NLP system. Finally, I draw conclusions, based on informal feedback

and my own observations, about the features needed for a spoken language interface

for programming in Section 5.5.

5.1 Data Collection

The Wizard of Oz study comprised 67 sessions totaling approximately 125 hours

of data. During these sessions, the subjects made 8117 requests to the interface.

Each session generated four types of data: an audio recording of each request, the

output from the NaturallySpeaking speech recognition system for each request, any

messages sent to the message region, and the sequence of changes to the source code.

Following the study, two undergraduate research assistants manually transcribed

the audio recording of each request to make further analysis possible.

The data for each session are organized into a single HTML file. Each entry

within this file represents a single subject request and has a link to the recorded

audio, the manual transcription of the request, the output from NaturallySpeaking,

the changes made to the source code, and any messages from the wizard related to

this request. This organization provides a convenient way to relate each request to

what the wizard interpreted the request to mean. Table 5.1 shows an entry from

one of these files.

A graduate student read through the transcripts and, using the organized data,

manually labeled each request with one or more tags that indicate the types of

commands that the request expresses. Table 5.2 gives the 24 tags used for this

purpose. I selected this group of tags to divide the user requests into the different

types of actions a natural language interface must address. For example, the request

“Move up three lines and insert a declaration of an integer called n” would be tagged

as both a navigation command and a declaration command. The set of tags that

characterize a request is unordered (it does not reflect the order in which command

types occur in the request) and contains no duplicates (it does not show the number

of times that a particular command type occurs in the request). I chose this method

for tagging the command types because order and duplication are not relevant to
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Table 5.1. Example entry in collated session data file. The manual transcripts
include information about pauses in the subject’s speech. In this case, [mp]
represents a medium-length pause (3–10 seconds).

Audio: [MP3]

Manual make a new function of type void called input names receiving
transcript: the parameters int num players and the array players new

paragraph [mp] array type string new paragraph

NaturallySpeaking making a function of that avoid culled input name is receiving
output: the parameters in nome players and they array players

array tight string

Messages: Array type?

Code: void inputNames(int numplayers, string players[])
{

}

the analysis I performed.

Throughout this chapter, word instances refers to a collection of uttered words,

while unique words is a synonym for the set of unique words found within that

collection (i.e., all duplicate instances have been removed). In other words, a word

uttered multiple times occurs multiple times in the collection of word instances,

but that word occurs only once in the set of unique words. For instance, all 10

words found in the utterance “Declare a String called foo and a String called bar”

comprise the word instances, but only seven words {declare, a, string, called, foo,

and, bar} comprise the unique words.

Recall that I asked the subjects to end each request with “new paragraph.”

(These words indicated to both the wizard and the NaturallySpeaking software that

the request was complete.) This phrase at the end of each request was removed

before I began analyzing the data. Thus, instances of these phrases do not appear

in the data set or in the results that follow.

Table 5.3 shows some high-level statistics on the data collected during the

Wizard of Oz study. I developed a list of 270 stop words [10], and I removed

all instances of these stop words from the data set. Excluding stop words, there
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Table 5.2. The command type tags applied to the Wizard of Oz data.

Array Declaring or accessing an array
Assign Assigning a value to a variable
Calls Calling a function
Cancel User discarding previously uttered material
Cast Type casting
Comment Comment included in source code
Cond Conditional expressions
Decl Declaring a class, function, or variable
Edit Making changes to existing source code
Extend Deriving a class from a super class
Flow Control flow statements, excluding loops
Implement Implementing an interface
Info Requesting information from the interface
Invalid Invalid requests to the interface
I/O Input/output within the source code
Loop Declarations of loop constructs
Math Math operations
Nav Navigation within source code
Overload Overloading methods and operators
Packages Importing external libraries
Param Parameter passing
Property Declaring and modifying class, method, and data member properties
Return Types and values returned by functions
System I/O Input/output used by the interface

are 2,220 unique words and 65,122 word instances in the data set. About 40% of

the 2,220 unique words were uttered only once.

Results from my analysis of the data set make up the remainder of this chapter.

Recall that I set few limits on how the subjects could form their requests. Essen-

tially, I asked the subjects to pose the kinds of requests that they would use when

talking to a fellow student. This resulted in very noisy data with many disfluencies

and, in some cases, a lot of thinking aloud.

5.2 Command Type Results

Each request uttered by a subject when creating or editing source code would

require an interface to take one or more distinct actions. Some examples of these
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Table 5.3. Statistics on the data set collected during the Wizard of Oz study.

Original data set Excluding stop words

Number of word instances 98,037 65,122
Number of unique words 2,394 2,220

Number of unique words used only once 894 880

actions include moving within the source code, declaring variables, and creating

control flow constructs. I refer to each distinct type of action as a command type.

For instance, here are some examples of users requesting movement within the

source code (i.e., the navigation command type):

1. “move down six lines.”

2. “go to body of if statement.”

3. “okay um go to the void function list students of a state by name.”

Similarly, some examples of subjects requesting declarations of classes and functions

(i.e., the declaration command type) include:

1. “create another function called list all students.”

2. “okay the next function needs to be a void function called set ski boot of class

type ski.”

3. “class address capital a public.”

Many of these requests do not have a simple sentence structure, and many words

are used in a fashion not normally seen in English text. In fact, many requests do

not include a verb at all, such as the third declaration example.1 The first step

in extracting information from these requests is determining the command types

1The third declaration example requests the declaration of a class named “address”, and the
name “address” begins with a capital ‘A’.
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they represent. Thus, a good understanding of how command types are employed

in practice is a prerequisite for designing an automated procedure for isolating and

identifying the types of commands in these user requests.

A knowledge of the relative frequencies of the different command types is im-

portant because a spoken language interface for programming must accurately

identify the most frequently occurring command types. Therefore, I examined

the relative frequencies of the different command types. The usage frequencies of

the 24 command types are shown in Table 5.4. These data show frequent uses

of navigation and editing commands. In retrospect, the predominance of these

command types is not surprising. As novice programmers write source code, they

often forget to include necessary declarations and other statements, and so they

move around in the file to add these missing pieces. Additionally, these students

were often given code “templates” to modify for their assignments. Making these

changes often required a great deal of moving through and editing existing lines of

source code. The pattern of usage shown in these numbers for all subjects (Table

5.4) parallels the patterns of command usage displayed for each individual subject.

While the ordering of some of the less frequently used commands changes between

users, the pattern remains the same.

Table 5.4. Distribution of command type usage.

Command type Usage

Navigation 24.1%
Edit 21.8%
Declaration 7.7%
I/O 6.9%
Parameter passing 6.4%
Comment 5.3%
Method calls 4.8%
System I/O 4.0%
Assignments 3.8%
Other 15.2%
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The presence of more than one command type within a single utterance further

complicates the classification of user requests. For instance, the request “move

up 3 lines” contains only one command type—a navigation command. However,

“go to the first line in this method and change i to index” contains two command

types—a navigation command and an edit command. If multiple command types

routinely co-occur within requests, it would greatly increase the complexity of the

process needed to identify the command types present within a request. Table 5.5

classifies each request based on the number of different command types found within

it. These data show that approximately 90% of the requests contain only one or

two types of commands, and 97% of the requests contain three or fewer types of

commands. This suggests that an automated procedure for classifying command

types need not be overly concerned with complicated requests, and that it would

not be very constraining to limit users to no more than two or three command types

per request. However, it is worth noting that the presence of multiple instances of a

command type within a single request may add some complexity to the classification

task.

Another way to view the complexity of the user requests is to examine the

different command types contained within each request. I use the term “command

tag cluster” to denote the set of all command tags associated with a single request.

For instance, the command “move to the first line in the method and change i

to index” contains both a navigation command and an edit command. Therefore,

“nav:edit” represents the command tag cluster for this request. If many different

Table 5.5. Frequency of the number of different command types per user request.

Number Usage

1 61.0%
2 28.5%
3 7.7%
4 2.2%

5–7 0.6%
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command tag clusters commonly occur in user requests, identifying the command

types present within the request would be more difficult. Alternatively, a small

number of commonly occurring command tag clusters may simplify recognizing

them.

To examine the number of command tag clusters used by the subjects, I sorted

the clusters based on the number of times each cluster occurred within the data.

The subjects used 349 different command tag clusters. Table 5.6 shows the 15

most common command tag clusters and the percentage of usage they comprise.

These 15 tag clusters make up 75% of all user requests. In each of these clusters,

only one or two command types appear. This preponderance of simple commands

would make classifying the types of commands within the majority of requests much

easier.

Table 5.6. The 15 most common command tag clusters, without regard to tag
order. The number of times each cluster occurs, and this number as a percentage
of all commands in the corpus, are given. These 15 command tag clusters account
for 75% of all command tag clusters.

Command Tags Number Percentage

nav 1421 17.7
edit 1302 16.3
edit:nav 562 7.0
i o 556 6.9
decl 452 5.6
sys i o 301 3.8
comment 274 3.4
comment:edit 219 2.7
packages 189 2.4
calls:param 147 1.8
comment:nav 147 1.8
decl:param 145 1.8
return 115 1.4
cond 98 1.2
nav:sys i o 92 1.1
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While these few command tag clusters comprise 75% of the requests, identifying

the remaining command tag clusters could be difficult. Determining that some

command types occur most commonly alone may provide a useful indicator when

classifying the command types found within a request. Similarly, knowledge that

certain command types most commonly occur with other command types could

also aid in this classification. I examined each request containing a given command

tag and tabulated the number of other command types present within the request.

Table 5.7 shows how often additional command tags occurred in combination

with each of the 23 other command types. For example, a navigation command

(nav) occurs 49.2% of the time as the only command type within a request. How-

ever, 36.5% of the navigation commands occur with one other command type within

a single request, while 10.6% of the requests containing navigation commands also

contain two other command types. (Note that these numbers are percentages of

a single command type’s total number of occurrences.) These data show that

all command types commonly co-occur with other command types. Four of the

command types (i o, overload, property, and sys i o) occur alone within a request

more than half of the time. In contrast, four command types (array, extend,

implement, and math) are virtually never used by themselves.

In summary, these data show that the subjects tended to make simple requests

of the interface. Their requests predominantly contained only one or two command

types. Additionally, the subjects used a small subset of command types for the bulk

of their requests, and 75% of the requests comprise a small number of command

tag clusters. These results suggest that determining the types of actions being

requested by novice programmers is not an overly complex task. One aspect of the

study may bias these results. The small number of subjects, working on a small

number of tasks, may not provide a large enough sample size to provide reliable

results.
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Table 5.7. Number of tags present within a request as a percentage of a given
command tag’s usage.

#tags in request 1 2 3 4 5 6 7

array 0.0 25.5 44.4 17.7 10.0 2.2 0.0
assign 15.6 35.8 23.4 17.9 4.9 2.0 0.1
calls 8.5 41.1 34.6 12.1 2.5 0.9 0.0
cancel 4.9 36.6 34.1 16.3 3.9 3.9 0.0
cast 25.0 0.0 25.0 50.0 0.0 0.0 0.0
comment 37.2 51.6 9.6 0.9 0.4 0.1 0.0
cond 27.1 45.7 19.9 4.9 1.6 0.2 0.2
decl 45.3 32.0 13.0 6.4 1.9 0.9 0.0
edit 47.5 40.5 8.8 2.2 0.5 0.1 0.0
extend 0.0 33.3 33.3 33.3 0.0 0.0 0.0
flow 44.4 33.3 16.6 0.0 0.0 0.0 5.5
i o 58.4 22.9 14.1 2.9 0.8 0.5 0.1
implement 0.0 66.6 33.3 0.0 0.0 0.0 0.0
info 22.2 33.3 44.4 0.0 0.0 0.0 0.0
loop 10.0 22.6 21.3 31.4 10.6 3.1 0.6
math 0.8 44.9 28.7 18.2 5.5 1.4 0.2
nav 49.2 36.5 10.6 2.8 0.4 0.1 0.0
overload 10.0 50.0 40.0 0.0 0.0 0.0 0.0
packages 80.1 16.4 2.9 0.4 0.0 0.0 0.0
param 10.4 48.1 29.9 9.0 1.6 0.6 0.0
property 51.4 24.6 20.1 2.9 0.0 0.7 0.0
return 42.1 33.3 13.5 8.4 1.4 1.0 0.0
sys i o 59.1 30.5 7.3 2.5 0.1 0.1 0.0

5.3 Vocabulary Results

The vocabulary used by the subjects must be understandable by any natural

language interface for programming. Consequently, gaining insight about the range

of vocabulary across subjects would greatly impact how any future interfaces are

designed. If all of the subjects use a consistent vocabulary, future systems can be

designed around this “core vocabulary”. If the vocabulary varies widely between

subjects, building a spoken language interface for programming without placing

restrictions on the language that can be used would be more complex.

However, it is unrealistic to expect that all the subjects would completely share

a single vocabulary. Each programmer uses a variety of novel words within their
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source code, such as class/method/variable names and text within comments, that

are not words that a natural language interface for programming would have to

understand and process. Therefore, it is unrealistic to expect that a dictionary will

ever attain complete coverage of the words uttered by users.

However, one would expect that the percentage of novel words of this nature

(e.g., variable names, method names, etc.) uttered by a user should be relatively

constant across users, and be a relatively small percentage of the words uttered.

If this is the case, then a system should not expect to achieve 100% vocabulary

coverage for new users but should expect to achieve good vocabulary coverage, since

most words do represent general programming and editing command directives that

should be common across users.

I conducted a set of experiments to examine the proportion of novel words used

by a “new user”. In these experiments, I imagined that a system has been created

to support the collective vocabulary used by N subjects. I then measured the

vocabulary coverage that this imaginary system would provide for the N + 1th

subject.

In the first experiment, I treated each subject as a new user. I combined the

vocabularies of all of the other subjects into a “base” vocabulary. I then compared

the new user’s vocabulary against this base vocabulary to determine the percentage

of unique words uttered by a “new user” that would be covered by the base

vocabulary. The results are shown in Table 5.8. The first column in this table

shows the number of unique words used by each subject. The second column shows

the percentage of each subject’s vocabulary that is covered by the base vocabulary.

These results show a surprisingly high level of coverage of a new user’s vocabulary,

averaging 77.6%.

It is possible that the range of vocabulary coverage could, in part, result from

some subjects speaking their thoughts aloud. For instance, the subject with the

highest vocabulary coverage, U52, never spoke extraneous thoughts aloud. On

the other hand, the subject with the lowest vocabulary coverage, U45, spoke his

thoughts on a continuing basis. Unfortunately, determining the impact of spoken
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Table 5.8. Percentage of each subject’s vocabulary that overlaps with a vocabulary
established by the other seven subjects.

Subject Number of Percent overlap
unique words against other Subjects

U08 406 81.0
U20 572 80.9
U24 859 69.6
U39 682 80.8
U45 964 69.4
U52 426 88.3
U66 629 77.9
U96 677 72.8

Average across
all subjects 651.9 77.6

thoughts on vocabulary coverage would require marking every instance of a spoken

thought in the data set. This work is beyond the scope of this thesis.

Seven subjects is a small sample from which to build a core vocabulary, which

makes 77.6% coverage even more impressive. But this small sample also raises the

question: how quickly/slowly does vocabulary coverage grow, and at what point (if

any) does vocabulary coverage level off? To examine the growth rate, I plotted a

curve showing how vocabulary coverage grows as more users are added to the pool.

Here’s the specific procedure that I used, where S = the set of subjects, and N =

|S|.

For i = 1 to N − 1 (where N = the number of subjects)

1. For each subject s in S

(a) randomly select i subjects from S − s and combine their vo-

cabularies to form the base vocabulary.

(b) compare s’s vocabulary against the base vocabulary and de-

termine the percentage of s’s unique words covered by the base

vocabulary.
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Table 5.9. The growth of vocabulary coverage as more subjects are added. The
number in the left column represents the number of other subjects used to build
the base vocabulary.

Number of Subjects Average Base Average Minimum Maximum
Used to Form the Vocabulary Overlap (%) Overlap (%) Overlap (%)
Base Vocabulary Size for new user for new user for new user

1 607.3 45.8 29.8 55.0
2 986.5 59.7 46.8 70.9
3 1178.2 65.9 55.3 78.2
4 1484.3 71.2 61.7 83.1
5 1721.7 74.0 63.4 86.6
6 1917.1 76.0 66.7 87.6
7 2064.2 77.6 69.4 88.3

2. Average the percentages from part (b) over all subjects.

This procedure computes the average vocabulary coverage for a new user, given

that the vocabularies from i other users were combined to form the base vocabulary.

The averages for all values of i are shown in Table 5.9 and plotted in Figure

5.1. These results show vocabulary coverage rising fairly rapidly until the coverage

attains more than 70% at four subjects, then the rate of coverage increase slows.

Vocabulary coverage reaches an average of 77.6% when a new user is compared

against all other subjects. These results show that good vocabulary coverage can

be attained with a small number of randomly selected users. These results suggest

that a dictionary can be constructed from a relatively small number of sample users

that is likely to have reasonably good coverage for new users.

Comments placed within the source code represent a possible source of words

that may be unique to a single subject. These words are the user’s description

of the code and its properties, but are not necessarily the same words that are

used to create the source code. Since the words within the comments are placed,

unprocessed, into the evolving program, a natural language interface would not

need to take any actions based on these words. To test the impact of the words

used in comments, I removed all utterances that requested a comment. This
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Figure 5.1. The growth of a shared vocabulary. The line shows the average
overlap in vocabulary for each of the subjects when compared against a vocabulary
generated by a given number of other subjects (on the x-axis). Error bars show the
range in overlap for the individual subjects.

removed 738 utterances (8.2% of all utterances) from the data set. Since 62.8%

of the utterances requesting a comment contained other command types (see Table

5.7), this resulted in removing 463 requests containing at least one other command

type (561 additional command tags removed). Edit and navigation commands

comprised 86% of these additional command tags. Table 5.10 shows the changes in

the vocabulary that resulted from removing these utterances from the data set.

To test whether source code comments influenced the rate of vocabulary growth,

I repeated the previous experiment, utilizing the data set containing no source code

comments. The results are shown in Table 5.11 and plotted in Figure 5.2. These

results show that removing the utterances including source code comments produces

almost no change to the underlying trends. However, there exists a possibility that

the words from the other command types removed with the comments could be

influencing this distribution.

Another question that arises is how many of the word instances uttered by a
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Table 5.10. Statistics for the data set for C++ subjects. The utterances excluded
from the data set contain source code comments.

Number of Number of
Unique Words Word Instances

All utterances 2220 65122

All utterances
excluding comments 1920 57198

Table 5.11. The growth of vocabulary coverage as more subjects are added. The
number in the left column represents the number of other subjects used to form the
base vocabulary. All utterances containing source code comments were removed
before comparison.

Number of Average Base Average Minimum Maximum
Subjects in Base Vocabulary Overlap (%) Overlap (%) Overlap (%)
Vocabulary Size

1 500.3 46.1 28.6 56.3
2 813.1 59.0 42.3 71.6
3 994.3 66.3 52.0 79.2
4 1319.0 72.1 63.0 83.7
5 1508.1 74.6 62.0 87.9
6 1648.6 75.8 65.3 88.5
7 1782.7 77.4 67.3 88.8

new user would be covered by the base vocabulary. If a new user’s most frequently

uttered words fail to exist in the base vocabulary, a spoken language interface

would be unusable. Alternatively, if all but a few word instances uttered by a user

existed within the known vocabulary, little frustration would result from unknown

words. To examine this question, I repeated the procedure just described (see page

61). However, in step b., I determined the percentage of the user’s word instances

covered by the base vocabulary, rather than unique words. The results are shown

in Table 5.12 and plotted in Figure 5.3.

These results show a rapid rise in instance coverage until attaining 95% coverage.

After this level of coverage is attained, growth of coverage slows. Therefore, a

vocabulary generated from only seven users covers the bulk of the words uttered by
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Figure 5.2. The growth of a common vocabulary when utterances containing
source code comments are removed. The line shows the average overlap in vocab-
ulary for each of the subjects when compared against a vocabulary generated by
a given number of other subjects. Error bars show the range in overlap for the
individual subjects.

a new user. This suggests that new users will not be frustrated because a vocabulary

generated from other users lacks words crucial to them.

In summary, the subjects of the Wizard of Oz study phrased their requests in

a wide variety of ways. However, the acquisition of a common vocabulary occurs

quickly, reaching a vocabulary coverage of unique words approaching 80% when the

base vocabulary is built from seven subjects. Furthermore, the words in the base

vocabulary cover more than 95% of the word instances uttered. Given that every

programmer is going to use their own novel words for variable and method names,

and in comments, these high levels of vocabulary coverage suggest that a common

vocabulary can be developed for a spoken language interface for programming that

will have good coverage for new users of the system. However, the selection of all

the subjects from a single class may introduce a bias to these results. The
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Table 5.12. The growth of word instance coverage as more subjects are added.
The number in the left column represents the number of other subjects used to
build the base vocabulary.

Number of Average Base Average Minimum Maximum
Subjects in Base Vocabulary Instance Instance Instance
Vocabulary Size Overlap (%) Overlap (%) Overlap (%)

1 607.3 79.3 57.3 86.7
2 986.5 88.4 79.7 94.9
3 1178.2 92.3 89.6 96.1
4 1484.3 94.1 91.2 97.4
5 1721.7 95.0 93.0 97.6
6 1917.1 95.3 92.7 97.7
7 2064.2 95.7 93.7 98.0

subjects may have unconsciously adopted the instructor’s vocabulary and phrasing

to describe programming constructs.

5.4 Disfluencies

The commands uttered by the users of a spoken language interface for program-

ming would likely contain disfluencies. These disfluencies would complicate the

task of extracting information from the input in order to create the source code.

However, as noted in Section 2.4, the nature of disfluencies varies across domains,

so I wanted to study how disfluencies presented themselves in a natural language

programming scenario. First, I will describe how the data were collected. Second,

I will examine the types and frequencies of disfluencies in the programming request

domain. Third, I will examine the effects these disfluencies have on an information

extraction system.

5.4.1 Data Preparation for Disfluencies

To create the data set for examining the effect of disfluencies, I randomly

sampled 10% of each subject’s utterances from the original transcripts. I marked

each instance of the four types of disfluencies described in Section 2.4: filled

pauses, repetitions, false starts, and repairs. The disfluency tags indicate the



67

 0

 20

 40

 60

 80

 100

 0  1  2  3  4  5  6  7  8

W
or

d 
In

st
an

ce
 O

ve
rla

p 
(%

)

Number of Subjects Generating Base Vocabulary

Word Instance Coverage

Figure 5.3. The growth of coverage in word instances. The line shows the
average coverage of word instances for each of the subjects when compared against
a vocabulary generated by a given number of other subjects. Error bars show the
range of coverage for the individual subjects.

interruption point, the onset of the repair, and the regions being repaired in the

case of repetitions and repairs. Since I instructed the subjects not to dictate

punctuation, the transcripts show no indications of boundaries between different

phrases, clauses, and sentences. Therefore, if the utterance contained a coherent

sequence of thoughts and I could discern a reasonable grammatical structure, I

assumed that there were no disfluencies.

I made one change to the data during this process. If the wizard needed to

request more information from the subject using the message region (see Section

4.1), I divided the subject’s original request and each response to a message into

separate utterances.

5.4.2 Disfluencies in Programming Requests

It is important to understand the frequencies and types of disfluencies in the

programming domain. If disfluencies pose a problem, this knowledge will be useful
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in determining how best to approach this problem. I began by determining the

frequencies of disfluencies for each of the subjects.

Table 5.13 shows the number of filled disfluencies committed by each subject

per utterance. Filled disfluencies represent those utterances that contain a portion

of the utterance that must be removed to achieve the intended utterance. This

category includes filled pauses, false starts, repetitions, and repairs (see Section

2.4). Three subjects (U08, U39, and U52) have fewer than one disfluency in six

requests. Subjects U20, U24, U66, and U96 span the range from one disfluency

in every three utterances to a disfluency in every utterance. Subject U45 averages

1.5 disfluencies in each utterance. This high rate of disfluencies results from this

subject’s propensity to think aloud. While many of the subjects thought aloud

occasionally, subject U45 spoke his thoughts on a continuing basis.

Table 5.14 shows the number of each type of disfluency produced by the subjects.

The same three groupings of the subjects appears in this table, despite the lack of

normalization. In fact, subject U45 produces 34% of all of the disfluencies.

Any disfluencies remaining in the utterance could interfere with the process of

information extraction. For instance, filled pauses may be interpreted as a noun

phrase, disrupting the parsing of the input and making information extraction

difficult. A knowledge of the distribution of the different types of disfluencies would

Table 5.13. Rates of disfluencies across subjects. The right-hand column shows
the number of filled disfluencies that occur per subject request.

Subject Filled DFs

U45 1.50
U96 1.05
U66 0.85
U20 0.45
U24 0.34
U39 0.16
U08 0.15
U52 0.01

All Subjects 0.49
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Table 5.14. The number of disfluencies, listed by type, contained within a subject’s
requests. Column headings are: FP = Filled Pauses; FS = False Starts; RPT =
Repetitions; RPR = Repairs.

Subject FP FS RPT RPR Total

U45 131 6 10 16 163
U96 60 3 8 20 91
U66 59 5 3 7 74
U20 13 12 20 28 73
U24 13 10 7 10 40
U39 11 1 1 8 21
U08 1 5 1 9 16
U52 0 0 0 1 1

All Subjects 288 42 50 99 479

be needed for solving this problem.

Table 5.15 shows the distribution of the different types of filled disfluencies for

each subject. The majority of the subjects generate more filled pauses than any

other type of disfluency, followed by a smaller number of repairs, with few false

starts and repetitions, although the relationships between these values vary. For

instance, Subject U20 repairs many utterances and corrects many repetitions, but

utters comparatively few filled pauses or false starts. Thus, the types of filled

Table 5.15. Distribution of filled disfluencies across types.

Subject Filled Pauses False Starts Repetitions Repairs

U08 0.06 0.31 0.06 0.56
U20 0.18 0.16 0.27 0.38
U24 0.32 0.25 0.18 0.25
U39 0.52 0.05 0.05 0.38
U45 0.80 0.04 0.06 0.10
U52 0.00 0.00 0.00 1.00
U66 0.80 0.07 0.04 0.09
U96 0.66 0.03 0.09 0.22

All Subjects 0.60 0.09 0.10 0.21
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disfluencies found depends strongly on the individual subject.

In summary, the nature of disfluencies within this domain varies widely among

the users. While few disfluencies are present within the utterances of some subjects,

they are plentiful in the utterances of others. Clearly, a spoken language interface

must cope with an abundance of disfluencies. One solution is to require users

to manually correct disfluencies before utterances are processed. However, users

might find it cumbersome to correct disfluencies if they occur in a majority of the

utterances. While manually correcting disfluencies may “train” users to plan their

utterances more carefully, a spoken language interface for programming cannot rely

on this training to eliminate disfluencies.

If the disfluencies are not corrected by the user, they must be corrected or

ignored during the processing of the request. In the next section, I will examine

the effects of disfluencies on the underlying NLP system used in NaturalJava.

5.4.3 Disfluency Impact on NLP

Information extraction is one approach to natural language processing. It seeks

to find relevant information for a task. One technique for performing information

extraction begins by parsing sentences to determine their syntactic structure. Since

disfluencies may disrupt the syntax of a sentence, they may interfere with the

process of information extraction. To test the impact of disfluencies on information

extraction, I examined the effects of disfluencies on the Sundance information

extraction system (see Section 3.1.1).

I used two data sets to perform this test. For the first data set, I used the

original sentences that I tagged for disfluencies. To build the second data set, I

utilized the disfluency tags described in section 5.4.1 to remove the reparandums

from the original utterances, obtaining the effective utterances (see Section 2.4).

These two data sets provided me with lists of original utterances (i.e., potentially

containing disfluencies) and their corresponding effective utterances (i.e., with all

disfluencies removed). Remember that, on average, half of these utterances con-

tained disfluencies (see Table 5.13).
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To determine the effect of disfluencies on Sundance’s ability to extract infor-

mation, I processed each of the original utterances and its corresponding effective

utterance using Sundance. For each utterance, Sundance instantiates a collection

of case frames. I compared the case frames instantiated for the original utterance

against those for the effective utterance. The differences between these case frames

resulted from the disfluencies found within the original utterance. For purposes

of this comparison, I assumed that the case frames instantiated by Sundance

for the effective utterances represented perfect extraction of information from the

utterances. While this assumption is demonstrably false, it represents a satisfactory

base case because I am measuring the impact of disfluencies on the current set of

extractions. If Sundance’s IE engine improves and more extractions occur, I would

expect the relative impact of disfluencies to be the same.

Each case frame instantiated by Sundance contains a great deal of information.

As I described in Section 3.1.1, a case frame contains four components: the word

triggering the case frame, the type of the case frame, the slot names, and the strings

extracted from the input (see Figures 3.6 and 3.7 for examples of case frames). Each

of these components provides valuable information. The triggering word can be a

useful keyword indicator while processing case frames. For instance, in NaturalJava,

the trigger word is used to aid in disambiguating the multi purpose case frames.

The case frame type represents the concept embodied in the case frame. The slot

names for the extracted strings indicate the role played by the phrase extracted in

that slot. For instance, in Figure 3.6, the prepositional phrase starting with the

preposition “from” indicates the initial condition of the loop and its slot name,

loop start, indicates that role. The extracted strings are usually noun phrases, with

the most important element being the head noun. For example, given the sentence

fragment “create a public class”, Sundance instantiates the case frame seen in

Figure 5.4. Sundance extracts the direct object noun phrase “a public class”. The

head noun for this phrase is “class.” It is the most important element of this string

because it indicates the type of object to be created.2

2The word “public” also contains important information, but this information is applied to
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Trigger: create

Type: create

create_type: "a public class"

Figure 5.4. An example of an instantiated Sundance case frame triggered by the
verb “create”.

I used these four components of the case frames to compare the case frames

instantiated from the original utterance to those instantiated from the effective

utterance. The disruptions caused by disfluencies can impact these case frame

components in a variety of ways. In some cases, minor changes can occur to the

data held within the case frame, but most or all of the essential data remains to

carry out the action indicated by the case frame. In other cases, the intent of the

case frame can still be recognized, but the disfluencies have disrupted the sentence

enough so that the action can no longer be understood. I utilized three levels

of equivalence between case frames to examine these differences in the impact of

disfluencies on information extraction. These levels of equivalence are:

• Exact Match

An exact match between case frames occurs when the trigger word, the type,

all of the slot names, and all of their extracted strings are identical in both

case frames. An exact match means that any disfluencies within the original

utterance have not degraded Sundance’s ability to extract information at all.

• Head Noun Match

A head noun match indicates that the case frame type and all of the slot

names are identical, and the extracted strings contain the same head nouns

between corresponding case frames. However, the noun phrase modifiers in

the extracted string may be different. Head Noun matches allow for the

disfluency to cause a minor change to one or more of the extracted strings, but

the class (i.e., the class is public), not to the verb (i.e., a class is created, not a public is created).
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the most crucial information extracted by the case frame remains the same.

Figure 5.5 shows an example of two case frames instantiated by Sundance

which satisfy a head noun match. Case frame A results from the original

utterance, “Create a um public class”, while case frame B is instantiated

from the corresponding effective utterance. Both of these case frames contain

the same trigger word, type, and slot name. The head noun, “class”, is the

same within both extracted strings, but a difference in the noun modifiers

disqualifies these two case frames from being an exact match.

• Slot Name Match

A slot name match indicates that the trigger word, the type and all slot

names are identical between the two case frames. Slot name matches indicate

that the basic concept embodied in the case frame remains the same, but the

extracted information may have changed. In this case, the disfluency has a

serious impact on the information extracted, but some useful information is

still retained. Consider the original utterance “Create a um let’s see public

A.) Original Utterance Case Frame

trigger: create

type: create

create_type: "a um public class"

B.) Effective Utterance Case Frame

trigger: create

type: create

create_type: "a public class"

Figure 5.5. A pair of case frames that satisfy the head noun match criteria. The
original utterance to produce case frame A is “create a um public class”.
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class”. The case frames instantiated by Sundance for the original and effective

utterances are shown in Figure 5.6. The disfluency in the original utterance

prevents the direct object noun phrase from being parsed correctly. As a

result, Sundance is unable to extract the string “public class”.

Table 5.16 shows the differences in Sundance’s ability to extract information

from the original utterances and the corresponding effective utterances. In this

table and the following discussion, the term “original utterance case frames” indi-

cates case frames generated by Sundance extracting information from the original

utterances. Similarly, the term “effective utterance case frames” applies to the case

frames generated from Sundance’s processing of the effective utterances.

The presence of disfluencies increases the number of case frames extracted

from the original utterances by 112 over the number extracted from the effective

utterances. This is a surprisingly small number of additional case frames to be

produced, given the presence of 479 disfluencies (see Table 5.14). However, these

additional case frames do not represent the complete effect of the disfluencies.

A.) Original Utterance Case Frame

trigger: create

type: create

create_type: "a um"

B.) Effective Utterance Case Frame

trigger: create

type: create

create_type: "a public class"

Figure 5.6. A pair of case frames that satisfy the slot name match criteria. The
original utterance to produce case frame A is “create a um let’s see public class”.
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Table 5.16. Statistics on the case frames generated by Sundance and the numbers
of case frames that match for both the original utterance and the effective utterance.
Numbers for case frame matching are cumulative.

Total number of original utterance case frames 1,749
Total number of effective utterance case frames 1,637

Number of exact matches 1,542
Number of exact + head noun matches 1,576
Number of exact +
head noun + slot name matches 1,616

Number of unmatched original utterance case frames 133
Number of unmatched effective utterance case frames 21

Slightly more than 88% of the case frames generated from the original utterances

(1,542/1,749) exactly match those generated from the effective utterances. Thus,

Sundance successfully extracted the correct information nearly 90% of the time

despite the presence of disfluencies.

As described above, head noun matches represent situations where the disflu-

encies resulted in minor changes to the extracted strings within a case frame. The

concept embodied by the case frame and all of the crucial information needed for

that concept still remain, but the additional words of the disfluency may have been

added to the extracted string. In an application like NaturalJava, these changes

may cause errors. If the extracted string is used in its entirety, such as in declaring

a literal string or commenting the source code, then the disfluency will appear in

the source code. In other cases, relevant features are selected from the extracted

strings and extraneous material is ignored. For instance, in Figure 5.5, part A, the

words “public” and “class” would be selected and the remaining words discarded.

Slightly less than 2% of the case frames generated from the original utterances

(34/1,749) do not match exactly but satisfy the head noun match criteria. So, for

90.1% of the utterances (1,576/1,749), the disfluencies had no effect or only very

minor effects on the natural language processing.

If the disfluencies result in more substantial errors in information extraction,
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crucial information is lost. This is particularly true when the head noun of a phrase

is not extracted properly. If the correct head noun is lost, the concept embodied

by the case frame remains, but crucial information for that concept is missing.

In applications like NaturalJava, loss of the head noun can result in inappropriate

actions. For instance, if the case frame embodied the concept of naming an element

of the source code, changing the head noun would result in changing the name of

the object. In other cases, such as creating an element of the source code, the

effects are much less serious. In this instance, there are a limited number of types

of elements which can be created. If the head noun was not one of the known types,

the user would be prompted to correct the error. Comparing original utterance case

frames to effective utterance case frames yields matches to slot names for 2.3% of

the original utterance case frames (40/1,749). Slot name matches increases the

coverage of original utterance case frames containing relevant information to 92.4%

(1,616/1,749).

The 7.6% of the original utterance case frames that do not match to effective

utterance case frames pose a potential problem for any future spoken language

interface for programming. Disfluencies within the original utterances resulted in

the extraction of extraneous information. Any future interface would need the

ability to identify and discard this extraneous information.

However, the case frames instantiated from the effective utterances that do

not match to a case frame found within the original utterances demonstrate a more

serious problem. These unmatched effective utterance case frames comprise 1.3% of

all effective case frames. These unmatched effective utterance case frames indicate

that the syntax of the utterance was disrupted enough by the disfluency to prevent

Sundance from extracting any information at all.

In summary, disfluencies present problems for a spoken language interface for

programming. However, an information extraction system appears to be surpris-

ingly resilient in the presence of these disfluencies. Sundance extracts approximately

90% of the information required for processing user requests. Therefore, the prob-

lems posed by disfluencies do not appear to be catastrophic for a spoken language
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interface for programming. However, Sundance is currently unable to extract all

relevant information from the user requests. Therefore, these results are shown

with respect to Sundance’s current ability to extract information. As Sundance’s

capabilities improve, these results may change. Additionally, these results may also

be skewed because I sampled only 10% of the total data set to create the data

used for this study. Errors generated by a speech recognition system may also

interfere with information extraction, but issues associated with speech recognition

lie outside the scope of this study.

5.5 Informal Feedback

At the end of each session, I asked the subjects to fill out a questionnaire

about their experience using the interface. I asked them to answer four open-ended

questions:

• Did you find the natural language programming system easy to use?

• What features worked best?

• What features did not work well?

• What suggestions do you have to make this system easier to use?

I asked these questions in order to ascertain how well the subjects liked using a

spoken language interface for programming and what features they would like to

have in such an interface.

The reaction from the subjects to using a spoken language interface for pro-

gramming was overwhelmingly positive. They found the interface easy to use in

most ways. Many liked the assistance the interface provided with syntax; they

said that they knew what they wanted the statement to do, but they could not

remember the exact syntax. Their complaints about the system revolved around

its slow speed of processing and problems that we occasionally had with our testing

infrastructure.
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The subjects expressed many opinions about the features they desire in a spoken

language interface for programming. Essentially, they would like a multi-modal

user interface with most of the features of a standard integrated development

environment. I combined their comments with my own observations to develop

the following list of suggested elements for a spoken language interface:

• Push to talk switch

While two of the subjects uttered few extraneous words, most subjects spoke

their thoughts aloud from time to time. In fact, one subject thought aloud

during most of his time during the study. These additional words make the

task of determining the types of commands present within the request more

difficult and complicate the task of information extraction. Adding a push

to talk switch allows the users to think aloud if they desire while providing

better input for the interface.

• Integrated compilation and debugging support

Compilation and debugging must be integrated into the user interface for ease

of use. This is particularly important for persons with mobility impairments,

who would have difficulties when forced to leave the spoken language interface

to compile and debug their source code.

• Multiple, resizable windows

Many of the subjects desired to display several files simultaneously.

• A mouse

A mouse should be integrated into the environment to add flexibility in

navigation and selection tasks. For instance, the subjects found navigation to

known locations within the source code in the spoken language environment

to be easy, but scanning through the code or finding new locations within the

source code was cumbersome.

• A keyboard

A keyboard should be integrated to quickly correct errors generated by the
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speech recognition system. These problems include homophones (e.g., hear

vs. here) and numbers (twelve vs. 12).

• Syntax Highlighting

The novice programmers who took part in the Wizard of Oz study stated that

they found their source code much easier to interpret when it was color-coded

to indicate syntax. Syntax highlighting also assists persons with vision loss

who use speech synthesizers as their output device because pitch changes used

to indicate syntactic elements in the source code improve listening compre-

hension.

• Line numbers displayed alongside source code

Many subjects found it cumbersome to navigate within the source code dis-

played in the current window—it often required counting lines up or down

from the cursor position. Line numbers adjacent to the source code would

make moving to these locations easier.

• Error messages detailing why processing of speech input failed

When subjects made requests that the wizard could not understand, the

subjects often received “Command not understood” as the error message.

Many subjects found this lack of information frustrating, wanting to know

if they did not use the correct words or if they mumbled. These subjects

wanted to know if they should rephrase the request or just state the request

more clearly. Thus, error messages stating why the user’s request could not

be processed are important.

• Extensive help files

The subjects for this study were given little direction about how to use the

interface so that we did not bias how they used it. Many subjects requested

help files with examples to show them how certain types of requests might be

made.
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Some of the features described above are not applicable for all types of users.

For instance, multiple windows for viewing source code would be of limited utility

for persons with vision loss. Other features, however, would need to be implemented

in a manner that would allow utility for all users. For instance, persons with vision

loss would desire the ability to control the mouse using the keyboard’s numeric

keypad.

5.6 Chapter Summary

Many difficult problems remain to be solved before a flexible, fully-functional

spoken language interface for programming can be developed. The goal of this

research is to provide an understanding of a few of the basic issues involved in this

development process. I investigated three specific questions relevant to a spoken

language interface for programming. These questions, and the associated results,

are listed below.

• What types of commands did the students use and how did they use them?

The command types contained within requests from the subjects were gener-

ally simple. Requests contained only one or two command types more than

90% of the time, and subjects primarily used a small subset of the possible

command types.

• Do the students share a common vocabulary or do the words they use differ

substantially from student to student?

The subjects phrased their requests using a wide variety of vocabulary. How-

ever, a common vocabulary could be built using a small number of subjects.

A vocabulary built from seven subjects covered nearly 80% of the unique

words used by a “new user”, and this vocabulary covered more than 95% of

the words uttered.

• What types of disfluencies are used by the students, how frequently do these

disfluencies occur, and how do they impact the underlying natural language

processing system that extracts information from the user requests?
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Disfluencies occurred, on average, in 50% of the requests in the programming

domain. Filled pauses comprised the bulk of the disfluencies but the types

and frequencies of disfluencies varied widely across the subjects. However,

the Sundance information extraction system performed surprisingly well in

the presence of the disfluencies, extracting nearly 90% of the information

without error.

These results are limited in a number of ways. First, all of the subjects were

novice programmers. Second, all of the subjects were students in a single introduc-

tory programming class. The instructor may have influenced how they described

programming constructs through his use of language during class. Third, this

study covers a small number of subjects performing a relatively small number of

tasks. As a result, the data collected during this study may not represent a general

population. Finally, the results indicating Sundance’s ability to extract information

despite the presence of disfluencies are shown with respect to Sundance’s current

ability to extract information. As Sundance’s capabilities improve, these results

may change.

I utilized feedback from the subjects and my own observations to develop a list of

suggested features for a spoken language interface for programming. These features

should be added to the features offered by an integrated development environment.

The additional features include a push-to-talk switch, integrating speech input with

mouse and keyboard input, line numbers to ease spoken navigation, and specific

error messages regarding failures when processing requests.

Additionally, the reaction from the subjects to using a spoken language interface

for programming was overwhelmingly positive. In particular, they appreciated the

assistance with syntax provided by the interface. This result suggests that novice

programmers would use a spoken language interface for programming.



CHAPTER 6

CONCLUSIONS

A spoken language interface for programming represents one possible solution

to the problems posed by programming language syntax. The complexities of the

syntax pose problems for many groups of potential programmers. These groups

include novice programmers, persons with vision or mobility impairments, and

advanced programmers using a new programming language.

Many difficult problems remain to be solved before a flexible, fully-functional

spoken language interface for programming can be developed. The goal of this

research is to provide an understanding of a few of the basic issues faced in this

development process. I investigated three aspects of a spoken language interface

for programming in the context of novice programmers taking an introductory pro-

gramming class. These issues are summarized in the following research questions:

• What types of commands do the people use and how do they use them?

• Do the people share a common vocabulary or do the words they use differ

substantially from person to person?

• What types of disfluencies are used by the people, how frequently do these

disfluencies occur, and how do they impact the underlying natural language

processing (NLP) system that extracts information from the user requests?

The results addressing these three questions are summarized in the following para-

graphs.

The complexity of the requests made by the users will be a factor in any future

interface. This complexity appears in the number of command types, or actions,
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contained within each request. Increasing the number of command types within

a request increases the difficulty of determining the actions being requested. In

general, the subjects in this study made simple requests of the interface. Most of

the requests contained only one or two command types. Additionally, the bulk of

the subject requests utilized a small subset of the possible command types. These

results show that the subjects made relatively simple requests of the interface.

A spoken language interface must be able to understand the language comprising

the requests. If all of the subjects use a consistent vocabulary, future systems

can be designed around this common vocabulary. If each user utilizes a different

vocabulary, building a spoken language interface for programming without placing

restrictions on the language that can be used would be more complex. In this study,

the subjects phrased their requests using a wide variety of vocabulary. However,

a common vocabulary built from seven subjects covers nearly 80% of the unique

words used by a “new user”. The unique words in this common vocabulary cover

more than 95% of the words uttered by the new user. These results suggest that a

common vocabulary can be generated from a relatively small number of users.

Disfluencies are parts of an utterance that must be removed in order to achieve

the speaker’s intended utterance. They are artifacts of human speech that impact

spoken language interfaces. In particular, disfluencies disrupt the syntax of a

sentence, which can impact some methods of information extraction. In this study,

subjects averaged a disfluency in every second utterance, although the rates and

types of disfluencies varied widely across the subjects. However, the Sundance

information extraction system performed surprisingly well despite the disfluencies.

Sundance extracted nearly 90% of the information without error. Thus, some

methods of information extraction appear to be remarkably resilient despite the

presence of disfluencies.

One aspect of this study may limit the application of these results. All of the

subjects for this study were recruited from a single introductory programming class.

As a result, all of the subjects taking part in the study were novice programmers, so

these results may not generalize to other populations of programmers. Additionally,
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since all of the subjects were learning programming skills from the same instructor,

the instructor’s choice of vocabulary and phrasing for programming constructs may

have been adopted by the subjects. Finally, this study observed a small number

of subjects working on a relatively small number of tasks. Therefore, these results

may not apply to a general population working on a wide variety of tasks.

Another issue that may impact the reliability of these results pertains to the

apparently robust performance of the Sundance information extraction system in

the presence of disfluencies. Sundance is currently unable to extract all relevant

information from the user requests. Therefore, the results indicating Sundance’s

ability to extract information despite the presence of disfluencies are shown with

respect to Sundance’s current ability to extract information. As Sundance’s capa-

bilities improve, these results may change.

The Wizard of Oz Study also allowed me to observe the subjects interacting

with a spoken language interface for programming. I used these observations and

informal feedback from the subjects to develop a list of suggested features for

a spoken language interface for programming. Essentially, the interface should

contain all of the features of a standard integrated development environment.

Additional features should be integrated into this environment. These features

include a push-to-talk switch, integrating speech input with mouse and keyboard

input, line numbers to ease spoken navigation, and specific error messages regarding

failures when processing requests.

The opportunity to observe the subjects interacting with a spoken language

interface for programming also allowed me to evaluate their reaction to using such

an interface. The subjects of the study were enthusiastic about using this type of

interface for programming. They particularly enjoyed the assistance with syntax

provided by the interface. Therefore, I believe that a spoken language interface

would provide a useful tool for learning to program.

Additional research could also be carried out using the data collected during

this study. For instance, the method for tagging user requests with the command

types they contain could be changed. I chose the method used in this study to
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avoid biasing the tagging to complement the Sundance natural language processing

system. However, embedded XML-style tags could be used to encapsulate the

portion of each utterance relevant to a given command type. This style of tagging

would allow other research questions to be addressed. For instance, the vocabulary

associated with any given command type could be collected, and overlapping vo-

cabularies between command types could be defined. Another issue that could be

studied relates to the boundaries between command types: do pairs of command

types tend to be nested, overlapping, or well-separated, and are there grammatical

boundaries, such as phrase or clause boundaries, that tend to divide command

types. Additionally, these embedded XML-style command tags would allow better

definition of the complexities of the user requests containing multiple instances of

the same command type within a single request.

One issue not addressed in this research is the potential interactions between the

different components of a spoken language interface for programming. Errors occur-

ring in one component of the spoken language interface could generate additional

errors in other components of the system. For instance, if a crucial word does not

exist in the vocabulary of the system, then the types of commands present within

the request may not be properly classified. If the types of commands contained

within a user’s request are not properly classified, then incorrect actions would be

taken when extracting information from the request and attempting to generate

source code. While the additional errors generated from the interactions between

different aspects of a system will pose problems, studying these interactions is

beyond the scope of this research.

Many difficult problems remain to be solved before a flexible, natural spoken

language interface for programming can be developed. These problems span many

fields, from speech recognition to information extraction to utilizing the extracted

information to create and modify source code. For instance, many phrases used to

describe computer programs (e.g., “for loop”, “while loop”, “plus plus”, etc.) do

not occur in normal human speech. Therefore, new models for speech recognition

may need to be developed. Similarly, the unusual phrases that pose problems for
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speech recognition may pose problems for natural language processing systems.

As a result, these NLP systems may require modification to handle these unusual

phrases. Additionally, the knowledge needed to carry out information extraction

in this domain must be acquired and implemented. Finally, the wide variety of

expressions that can be used to request that a single type of action be taken poses

many problems. For instance, determining each individual action being requested,

given the wide range of potential actions that can be taken when creating or editing

source code, is just one problem remaining to be solved.
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