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ABSTRACT

Semantic lexicons are useful for many tasks in natural language processing. Until
recently, semantic lexicons were built by hand, which required many hours of effort.
Techniques have been developed to automate this process, but precision of automatically-
generated semantic lexicons has generally been low. I have developed an algorithm,
BASILISK, that exploits the tendency of words to belong to a single semantic category
within a limited domain, as well as the tendency of extraction patterns to extract se-
mantically similar words. BASILISK uses two original techniques to improve performance:
application of statistics gathered over a large body of extraction patterns, and generation
of semantic lexicons for multiple categories simultaneously. BASILISK has been used to
generate semantic lexicons for six categories using the MUC-4 terrorism corpus, achieving

substantially better precision than achieved by previous techniques.
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CHAPTER 1

INTRODUCTION

1.1 Why Do We Need Semantic Lexicons?

Suppose you are the head of a major corporation that wants to keep on top of late-
breaking news. If there have been any corporate mergers or acquisitions in the past 24
hours, you would like to know about them right away. Or perhaps you are working for
a government anti-terrorism department, and you need immediate information about all
perpetrators of terrorist activity in the past five years. Or maybe you are developing
an automatic question-answering system and would like to be able to have your system
answer questions like, “Who was the mayor of Billings, Montana in 19657”

What do all these tasks have in common? They can all benefit from natural language
processing. The first task might be handled by a program that crawls the World Wide
Web, picking up and summarizing articles relevant to corporate activity. The second task
might be addressed by a program that reads through newswire articles about terrorism,
extracting the names of perpetrators of terrorist acts. For the third task, the problem
could be solved by mapping the question into a query for a database of historical infor-
mation.

As well as profiting from natural language techniques, these applications may also
benefit from semantic information. Semantic information deals with meanings of words.
It is often useful to know semantic information about the entity or action represented by a
word, in addition to the word’s syntactic role in a sentence. For example, in the question
above, “Who was the mayor of Billings, Montana in 1965?” the question-answering
program will need to know that “the mayor” is a phrase referring to a human entity,
“Billings” refers to a city, “Montana” is the name of a state, and “1965” is an expression
of time. Semantic information can be represented in many ways, but one of the simplest

and most straightforward representations is a semantic lezicon.



There are different kinds of semantic lexicons; however, for our purposes, the phrase
semantic lexicon will refer to a list of words, each with a single associated semantic
category. For example, a semantic lexicon might specify the word “mayor” as belonging to
the semantic class human. A semantic lexicon may be used in conjunction with a semantic
hierarchy, so that information can be gained not only from the direct semantic designation
of each word, but also from the hierarchy both above and below that specific designation.
In the present example, one might construct a hierarchy in which the semantic categories
city and state are both subordinate to the semantic category location, in which case both
“Billings” and “Montana” could be recognized as belonging to the class location as well.

These brief examples are only a few of the tasks for which semantic information can
be useful. There are many other applications for which semantic information has been
observed to improve performance. For example, semantic information has been shown
to help information extraction systems, such as PALKA [11], CRYSTAL [25], and Riloff &
Schmelzenbach’s IE system [20]. Semantics are also used in anaphora resolution systems,
such as RESOLVE [15], MLR [2], Kameyama’s system [10], and Ge, Hale, & Charniak’s
system [8]. For the recent TREC Question Answering task [28], several of the top-scoring
systems used heavy semantic typing of questions and answers. These systems include
InfoXtract [26], LASSO [17], and AT&T’s system [24]. Reading comprehension systems
have also been shown to benefit from semantic information, as evidenced by Deep Read
[9], the systems of Charniak et al. [4], and QUARC [22].

QUARC was a system I designed for the task of reading comprehension, and it became
the impetus for this research. In the reading comprehension task, a system reads simple
texts and then answers questions about the texts to test its understanding. QUARC used
hand-coded rules to select the best answer for each question. I developed these rules
through extensive examination of the training data, and many of the rules used semantic
information from human, location, and time semantic categories. QUARC was able to
achieve a score of 40% on a particular set of reading comprehension tests, which was
better than previous results. By isolating rules that looked for semantic information, I
was able to determine that the who, when, and where questions all benefitted greatly from
semantic knowledge. With more and better semantic knowledge, reading comprehension
systems such as QUARC may be able to improve well beyond their limited capabilities of

today.



1.2 The Problem with Previous Approaches
1.2.1 Broad-coverage Lexicons

Since semantic lexicons are so useful in a variety of tasks, one might expect that some-
one somewhere has undertaken a project to create the ultimate comprehensive semantic
lexicon, which would obviate the need for semantic lexicon generation techniques. In fact,
there have been several large projects undertaken, such as WordNet [16] and cyc [12].
Both of these resources are useful for the researcher who requires semantic information.

Broad-coverage resources such as these contain thousands of words with part-of-speech
and semantic information, but they are often insufficient to cover the idiomatic vocabulary
that is particular to specific domains [23]. For example, in the MUC-4 terrorism corpus,
the word “department” frequently refers to a geographic designation. However, in general
English usage, the word “department” is rarely used to designate a geographic location. If
a word can have multiple parts-of-speech or word senses, the sheer amount of information
in a broad-coverage resource can actually increase the difficulty of disambiguating its
meaning. On the other hand, domain-specific lexicons have the advantage of highly
constraining the natural ambiguity of language. For example, a lexicon specific to the
terrorism domain may safely omit most of the meanings of the word “shot” that are
irrelevant to terrorism, such as the throw of a basketball, a drink of hard liquor, or an
injection with a needle. In the terrorism domain, “shot” almost always refers to the

shooting of ammunition from a weapon.

1.2.2 Manually-generated Lexicons

Automatic generation of semantic lexicons is also a worthwhile pursuit in terms of
saving time and human effort. Until very recently, semantic lexicons were painstakingly
compiled by hand. Depending on the task for which a lexicon is intended, building it
manually can take anywhere from a few hours to a few months. In addition, even the
most meticulously-constructed semantic lexicon is prone to errors of omission. Language
is so diverse that there will always be valid words and phrases that the lexicon creator
simply did not know or forgot to include. For example, “M-60" is a type of machine gun
mentioned fairly often in terrorism newswire articles, and would be a good word for a
weapon semantic lexicon. However, it is likely that someone compiling such a lexicon by
hand would forget or be unfamiliar with this weapon.

For these reasons, it is important to develop methods for building domain-specific

semantic lexicons automatically. It is also important to develop techniques for making



these semantic lexicons as accurate as possible, to minimize the amount of time that
a human will have to spend reviewing the automatically-generated lexicons for use in

real-world applications. The research presented in this thesis addresses these problems.

1.3 A New Approach

The main result of my research is an algorithm that generates high-quality, domain-
specific semantic lexicons automatically. My algorithm, BASILISK (Bootstrapping Approach
to Semantlc Lexicon Induction using Semantic Knowledge), takes advantage of two
main observations. The first observation is that extraction patterns! tend to extract
semantically similar words, and that statistics over a variety of extraction patterns
can provide reliable evidence that a word belongs to a semantic category. The second
observation is that words tend to be used in a single word sense within a limited domain.
This observation can be exploited by generating semantic lexicons for multiple semantic
categories simultaneously, using evidence from all categories to determine the proper

categorization for any particular word.

1.3.1 Collective Evidence Over a Body of Extraction Patterns

Since extraction patterns tend to extract semantically related words, collective evi-
dence gathered from a large number of extraction patterns may reliably identify words
that belong to a semantic category.

The observation that extraction patterns tend to extract semantically similar words
was originally utilized by Riloff & Jones in their meta bootstrapping algorithm [19].
Figure 1.1 shows a real example of an extraction pattern from the terrorism domain. One
can see that the pattern “was killed in <X>” extracts “Peru”, “Colombia”, “eastern El
Salvador” and other location phrases. The heart of the meta bootstrapping algorithm
is an inner level of bootstrapping, mutual bootstrapping, that exploits this tendency at
each iteration by finding the best extraction pattern for a semantic category and adding
all of its extractions to the lexicon for that category. An outer layer of bootstrapping

then attempts to choose the best words from the ones that were added during the mutual

! An extraction pattern is a syntactic pattern that usually consists of a trigger phrase and a syntactic
slot that is filled when the trigger phrase is found in a text. For example, in the extraction pattern “<X>
killed”, the trigger phrase is “killed” in the active voice, and the slot to be filled is the syntactic subject
of the verb. The phrase that fills the slot is called the extraction.



bootstrapping iterations. Meta bootstrapping uses this multi-level approach to generate

semantic lexicons and lists of relevant extraction patterns.

“was killed in <X>" extracts:
e “Peru” (location)
e “this action” (event)
e ‘“clashes” (event)
e “Urrao” (location)
e “this sector” (location)
e “a shootout” (event)
e “San Francisco” (location)
¢ ‘“eastern El Salvador” (location)

e “Colombia” (location)

e “San Salvador” (location)

Figure 1.1. Extraction Pattern Example

Unfortunately, mutual bootstrapping can introduce many incorrect lexicon entries as
well as legitimate ones, because even extraction patterns that are highly correlated with a
semantic category may extract non-category phrases as well. For example, the extraction
pattern “was killed in <X>” also extracts non-location phrases such as “a shootout”,
“clashes”, and “this action”. Infecting the lexicon with non-location words such as these
can have a drastically negative effect on the bootstrapping process. For this reason,
BASILISK is wary of trusting any individual extraction pattern too much when selecting
words for the lexicon.

While meta bootstrapping is pattern-centric in that it relies heavily on finding the
single best extraction pattern for a semantic category, BASILISK is word-centric in that
it seeks to choose the best words for a semantic category by using statistics over all

extraction patterns. Using information from many extraction patterns increases precision



of the semantic lexicon by requiring credible evidence from a variety of sources before a
candidate word is added to the lexicon.

To continue the example above, by accounting for extraction patterns in addition
to “was killed in <X>”, BASILISK may see that the words “shootout”, “clashes”, and
“action” do not tend to be extracted by any other location-related extraction patterns.
On the other hand, true location words such as “Peru” and “Colombia” will be extracted
repeatedly by other location-related patterns. In this way, BASILISK can determine that
words consistently extracted by patterns associated with a category have a high likelihood

of belonging to that category.

1.3.2 Bootstrapping Multiple Categories Simultaneously

In addition to using collective evidence over a large body of extraction patterns,
bootstrapping multiple categories simultaneously can also improve the precision of the
semantic lexicon for all categories.

It is possible to benefit from generating multiple categories simultaneously because of
a “one sense per domain” assumption, which says that a word tends to be used with a
single word sense within a limited domain. This assumption is based on the “one sense
per discourse” observation made by Gale, Church, & Yarowsky [7]. They noticed that
within a single text, any given word has a strong tendency to be used only in a single
sense. For example, if a text contains the word “plant” in reference to a living organism,
it is highly improbable that the word “plant” will be used in the same text to refer to a
manufacturing facility. Since texts within a limited domain comprise a loose discourse,
this theory can be broadened into the “one sense per domain” assumption. In a practical
sense, this assumption allows BASILISK to assert that within a limited domain, each word
may only belong to a single semantic category. This assertion is not always strictly true,
but it is true of most words most of the time.

Previous semantic lexicon generation algorithms have focused on generating lexicons
for one semantic category at a time. BASILISK is able to exploit the “one sense per domain”
assumption by generating semantic lexicons for multiple categories simultaneously. For
example, an algorithm that only considers a single semantic category may incorrectly
hypothesize “shootout” as a location word because it occurs in the location-related
extraction pattern “was killed in <X>". In contrast, BASILISK may be able to use
information from the event category to determine that it should be a event word instead.

This may happen if the word “shootout” is extracted by several event-related patterns.



If “shootout” is added to the lexicon for the event category, then BASILISK will never
consider it as a candidate for the location category again. Even if “shootout” is not
added to the event lexicon, the fact that it occurs in several event-related patterns will
discourage BASILISK from classifying it as a location.

BASILISK has been used to generate semantic lexicons for six categories in the MUC-4
terrorism corpus: building, event, human, location, time, and weapon. Using collective
evidence over many extraction patterns improved accuracy for each semantic category, in
most cases substantially. In addition, generating semantic lexicons for multiple categories
simultaneously improves the accuracy of the BASILISK algorithm and of meta bootstrap-
ping for some categories. Even greater improvements are achieved by taking advantage

of both techniques at the same time.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 describes related work
in automatic semantic lexicon generation and unsupervised bootstrapping, which is the
general approach used by BASILISK. Chapter 3 describes the BASILISK algorithm in detail
and presents results showing its improvement over meta bootstrapping. Chapter 4 de-
scribes the multiple-category versions of meta bootstrapping and BASILISK, and presents
results showing improvement over their single-category versions. Chapter 5 presents an
analysis of BASILISK’s performance compared to previous techniques, and summarizes the

conclusions that can be drawn from this research.



CHAPTER 2

RELATED WORK

My research focuses on the simultaneous generation of semantic lexicons using unsu-
pervised bootstrapping techniques. There has been much work done previously, both in
the areas of semantic lexicon generation and unsupervised bootstrapping. In this chapter,
I will summarize some of the previous work that is best-known and most closely related

to my research.

2.1 Semantic Lexicon Generation
2.1.1 Riloff & Shepherd, 1997

One of the first algorithms for automated acquisition of semantic lexicons from unan-
notated text was proposed by Riloff & Shepherd [21]. The algorithm is based on the
observation that words in a semantic category often co-occur with each other within
certain syntactic constructs. The examples cited are conjunctions (lions and tigers
and bears), lists (lions, tigers, bears, ...), appositives (the stallion, a white Arabian),
and nominal compounds (Arabian stallion; tuna fish). One can take advantage of this
observation to create a semantic lexicon by a bootstrapping process.

The process begins with a few seed words for the semantic category. The seed
words are chosen by a human. All instances of these seed words as head nouns! in the
corpus are found, and co-occurrences with these words are considered within a context
window. The window includes one word to the left and right of a seed word. Non-seed
words within these context windows are given a score based on the ratio of each word’s
occurrence within context windows to that word’s occurrence throughout the corpus.
Next, stopwords and numbers are removed, and any word that occurred fewer than six
times in the corpus is removed from consideration. All non-seed words are ranked based

upon their score, and the five top-ranked nouns are added to the seed word list. Beginning

! A head noun is the word that occurs as the “head” of a noun phrase (NP). It is usually the rightmost
word in the NP. For example, the head noun in the NP “the white rabbit” is the word “rabbit”.



with this new, larger seed word list, the bootstrapping loop iterates again. At the end
of a certain number of iterations, the algorithm outputs is a ranked list of words that
are hypothesized to belong to a certain semantic category. To determine which of these
words are valid semantic category members and which are not, this list must be filtered
by a human.

Rankings of the top 200 words for each category yielded an average of about 35 true
category members and about 25 subparts of category members for vehicle and weapon
categories. This constitutes a limited degree of success. This algorithm was among the
first to attempt automatic semantic lexicon generation, but the precision (about 17%) of

the final semantic lexicons was fairly low.

2.1.2 Roark & Charniak, 1998

Another algorithm for acquiring semantic lexicons from unannotated text is given by
Roark & Charniak [23]. This algorithm was inspired by the Riloff & Shepherd approach.
It shares the basic observation that members of a semantic category tend to occur together
within certain syntactic constructs. Their approach focuses exclusively on these syntactic
constructs, using complete parse trees of each sentence in the corpus to identify lists,
appositives, conjunctions, and compound nouns.

As in the Riloff & Shepherd approach, the process begins with a small list of seed
words. These words are chosen from among the most frequently-occurring head nouns
in the corpus to ensure broad coverage. The algorithm proceeds by looking within the
syntactic constructs throughout the corpus to find non-seed words that co-occur with seed
words. All nouns with the highest score are added to the seed word list and the process
is repeated. After a number of iterations (the authors used 50), all remaining non-seed
words are discarded from consideration. The seed word list is then returned to its original
members, and a final ranking stage begins, using a log-likelihood metric for ranking. This
ranking loop iterates for the same number of times that the first bootstrapping loop was
run, adding words to the seed word list, and finally the algorithm outputs two lists. The
first is a list of head nouns, ranked by when they were added to the seed word list in the
ranking loop. The second is a list of compound nouns from the corpus, ordered by when
their head nouns were added to the seed word list.

This algorithm was run for various semantic categories over the MUC-4 terrorism
corpus [1] and the Penn Treebank Wall Street Journal corpus [13]. This new approach
yielded, on average, 2-3 times the number of valid category words found by the Riloff
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& Shepherd approach, with approximately twice the level of precision. This algorithm
performed with 33% precision on the vehicle category and 36% precision on the weapon

category.

2.1.3 Multi-Level Bootstrapping: Riloff & Jones, 1999

Multi-level bootstrapping [19] seeks to automate the acquisition of semantic lexicons
and extraction patterns, given only a large corpus of unannotated texts relevant to a
specific domain.

The Riloff & Jones algorithm consists of two levels of bootstrapping. The inner level
is called mutual bootstrapping because the semantic lexicon and extraction patterns are
able to bootstrap off each other; The outer level is called meta bootstrapping because it
is a bootstrapping process upon the mutual bootstrapping process.

Empirical results from this process indicate that it can produce more accurate seman-
tic lexicons than previous lexicon generation techniques. My research is similar to this
work. In fact, part of my research entails enhancing the meta bootstrapping algorithm
to improve its performance. For this reason, meta bootstrapping is explained in greater

detail in Section 3.1.

2.1.4 Other Approaches

In addition to generating lists of words that belong to semantic categories, there are
other approaches to acquiring semantic information automatically.

One method for generating semantic lexicons automatically is presented by Thompson
& Mooney [27]. In this context, a “semantic lexicon” refers to phrases paired with formal
meaning representations in Prolog. Their system, WOLFIE, generates a lexicon of meaning
representations given a corpus of sentences paired with semantic representations. It
begins by assigning general candidate meanings for each phrase, iteratively constraining
phrase meanings until the learned semantic lexicon covers the entire corpus or until
phrase meanings can be constrained no further. WOLFIE’s effectiveness was measured
by using its learned lexicons in a semantic parser, CHILL [31], and measuring CHILL’S
performance as an interface to a database of geography facts. Hand-crafted lexicons and
other automatically generated lexicons were also used for comparison. Overall, WOLFIE
performed comparably to hand-built lexicons for this task.

Another algorithm for obtaining semantic information is given by Ge, Hale, & Char-

niak [8], who present a probabilistic model for anaphora resolution. Their anaphora



11

resolution algorithm incorporates four main factors, one of which is semantic information
about the gender and animaticity of certain words. The authors devised a method for
automatically acquiring this information using the simple co-occurrence of nouns and
pronouns in a text corpus. They employ the log-likelihood ratio [6] using the raw
frequencies of each pronoun class (masculine, feminine, neuter) in the corpus, as well
as the co-occurrence statistics of nouns that are likely referents to those pronouns. This
algorithm is able to learn gender information with approximately 70-90% precision.
Caraballo presents an algorithm for automatically constructing a semantic hierarchy.
Her algorithm takes advantage of the observation that semantically related words often
occur within conjunctions and appositives, which was utilized by Riloff & Shepherd [21]
and Roark & Charniak [23]. Caraballo’s method uses bottom-up clustering techniques
in order to build a binary hierarchy of hypernym relationships. Following the example
of WordNet [16], word A is said to be a hypernym of word B if native English speakers
would accept the sentence, “B is a (kind of) A.” A portion of the final hierarchy was

evaluated as achieving precision of 30-60% for the hypernym relationships.

2.2 Unsupervised Bootstrapping
2.2.1 Word Sense Disambiguation: Yarowsky, 1995

Many words have different meanings in different contexts. Meanings that are suf-
ficiently distinct are called word senses. For example, the word “plant” may be used
generally to refer to a living organism or a factory, among other possible uses. Unfor-
tunately, the disambiguation of such polysemous words? is not always straightforward.
David Yarowsky has developed an unsupervised bootstrapping algorithm that performs
word sense disambiguation with high accuracy [30].

There are two main hypotheses behind the bootstrapping algorithm. The first is a
“one sense per collocation” hypothesis. This states that words have a strong tendency to
exhibit only one sense in a given collocation. For example, the word “plant” may have two
major word senses, but when found in collocation with the word “life”, it almost always
takes on the “living organism” sense. This phenomenon was observed and quantified

by Yarowsky [29]. The second hypothesis is a “one sense per discourse” observation.

2A word is called “polysemous” if it has more than one word sense. Polysemous words are more
common in natural language than one might expect, which is why word sense disambiguation is an
important problem.
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Gale, Church, and Yarowsky observed that words strongly tend to take on a single word
sense within a given discourse or document [7]. Yarowsky’s algorithm uses these two
hypotheses throughout an iterative bootstrapping procedure that trains classifiers for
binary-ambiguous words (i.e. words with two major senses).

The algorithm begins with a small list of seed collocations provided by a human. For
example, a human might give the “plant” classifier the word “life” as a collocation for
word sense A, and “manufacturing” as a collocation for word sense B. The algorithm uses
a log-likelihood ratio to label instances of the word “plant” about which it is most certain.
Based on these newly-classified words, the algorithm discovers new collocations that are
indicative of each word sense. The best collocations are added to the seed collocation list,
and the loop repeats. If evidence is strong, the one-sense-per-discourse constraint may
be invoked to classify unresolved words, or to correct mistakes of previous iterations. For
example, if 5 instances of “plant” within a document exhibit word sense A, and the sixth
is unknown or labeled with word sense B, then the “one sense per discourse” heuristic
may change the classification of the sixth instance to word sense A.

Beginning with only these two heuristics and a very small seed collocation list for
each ambiguous word, Yarowsky’s algorithm is able to achieve a very high success rate,

averaging over 96% for 12 binary-ambiguous words.

2.2.2 Co-training: Blum & Mitchell, 1998

For many machine learning tasks, there is a very large amount of unlabeled data
available, but labeled data is more scarce. Co-training [3] seeks to take advantage of this
situation by building classifiers from a small amount of labeled data and a large amount
of unlabeled data.

For a binary classification task, co-training has been theoretically proven to improve
the performance of individual classifiers, given certain assumptions. One must be able to
describe each training instance in terms of two independent kinds of information. The
authors give the example of a web page, which can be described in terms of its actual
content or the text of the hyperlinks that point to it. It must also be assumed that
each kind of information is sufficient to classify an instance. For example, given either
the content of a web page or the text of hyperlinks pointing to it, one must be able to
make a classification about that web page (e.g., whether the web page is the homepage
of a university professor). Co-training operates within this framework of two “views”

of training instances, each view being sufficient for classification. Incidentally, Blum &
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Mitchell also suggest that Yarowsky’s word sense disambiguation work can be seen as a
co-training framework, with one view based on the “one sense per collocation” hypothesis
and the other view based on the “one sense per discourse” hypothesis.

Co-training takes as input a small amount of labeled training examples and a large
amount of unlabeled training examples. One classifier is trained for each view of the data.
Each of these classifiers is allowed to classify p positive examples and n negative examples
from the unlabeled data. These newly-labeled examples are added to the labeled data,
and the classifiers are re-trained. In this way, the most confidently-labeled examples of
one classifier can be used as training data for the other, and both classifiers grow more
accurate as a result.

The authors show that given this binary classification task and the fulfilled prerequi-
sites described above, co-training will learn to classify new instances with accuracy. This

conclusion is affirmed by empirical results.

2.2.3 EM and Active Learning: McCallum & Nigam, 1998

McCallum & Nigam [14] use the Expectation-Maximization (EM) algorithm [5] to
enhance active learning for text classification. EM is an unsupervised iterative bootstrap-
ping algorithm for predicting missing data values and estimating a generative model for
certain problems. Given a model and data with missing values, EM estimates the missing
values based on the model, then reestimates the model based on the hypothesized values.

In this context, active learning is used for classifying texts by choosing unlabeled texts
to be presented to a user for the correct classification. Since such requests are considered
to be expensive, the algorithm tries to choose texts that would yield the most information
if their classification were known. McCallum & Nigam find such texts by using a Query
By Committee (QBC) algorithm, which creates various classifiers over the training data
and then records their classifications of unlabeled texts. Texts on which the classifiers
disagree strongly are displayed to the user for classification.

McCallum & Nigam enhance the active learning algorithm by using EM to train
the QBC classifiers before their classifications are used to calculate disagreement. They
also enhance the QBC method by using “distance-weighted pool-based sampling” to
choose unlabeled texts with high disagreement. This sampling allows the algorithm to
choose from all unlabeled texts, while encouraging the algorithm to choose from a densely

populated area of the search space for maximum relevance.
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In experimental results, QBC with pool-based sampling reduces the need for labeled
training documents by 42% over previous QBC methods. In addition, combining pool-
based sampling with EM allows the algorithm to learn with only 58% as many labeled
texts as EM alone, and only 26% as many as QBC alone. These results show that
employing EM and active learning can greatly reduce the need for labeled training data

in text classification tasks.



CHAPTER 3

DESCRIPTION OF ALGORITHMS

One of my main claims is that using statistical information over many extraction
patterns improves semantic lexicon generation. This idea was originally conceived to
overcome a problem with meta bootstrapping: that it relies heavily on individual extrac-
tion patterns that are not completely reliable. I developed a new algorithm, BASILISK,
to correct this weakness by utilizing collective evidence over many extraction patterns.
This chapter describes the meta bootstrapping and BASILISK algorithms in detail. The
other main claim of this thesis, that generating lexicons for multiple semantic categories

simultaneously can improve precision, will be addressed in Chapter 4.

3.1 Meta Bootstrapping

Meta bootstrapping is an algorithm developed by Riloff & Jones for simultaneously
generating lists of extraction patterns and noun phrases associated with a semantic
category. As explained in Section 2.1.3, meta bootstrapping consists of two levels of
bootstrapping. The inner level is called mutual bootstrapping because the semantic
lexicon and extraction patterns bootstrap off each other, and the outer level is called
meta bootstrapping because it is built upon the inner bootstrapping layer.

Learning begins with a small set of human-chosen seed words for the semantic lexicon.
All extraction patterns throughout the corpus are found. These patterns are ranked
according to the RlogF metric used by AutoSlog-TS [18]. Using this function, the score
for each extraction pattern is

RlogF (pattern;) = % * logy (F;) (3.1)

i
where F; is the number of unique lexicon entries extracted by pattern; and NV; is the total
number of unique phrases extracted by pattern;. All the noun phrases extracted by the
highest-ranked extraction pattern are added to the seed word list, the extraction pattern

is added to a “best patterns” list, and the mutual bootstrapping process repeats.
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While this inner bootstrapping layer works well on its own, it is also subject to noise.
If an extraction pattern tends to extract good words for the semantic lexicon but also
extracts bad words, then the semantic lexicon will become polluted and performance will
degrade quickly. To slow the degradation of performance, the meta bootstrapping layer

was added.

META BOOTSTRAPPING ,
extraction patterns and

their extractions

seed
words MUTUAL Y
BOOTSTRAPPING
Y s
initialize select best pattern
permanent = temporary = category
semantic | semantic | pattern
lexicon | 544 5 best lexicon add extractions of list
phrases best pattern

Figure 3.1. Meta Bootstrapping Algorithm

With the meta bootstrapping layer added, mutual bootstrapping proceeds normally
except that it adds candidate phrases to a temporary lexicon. After a number of iterations
of mutual bootstrapping, the five most reliable lexicon entries in the temporary lexicon
are added to a permanent semantic lexicon, and all the others are thrown away. These
reliable lexicon entries are chosen by ranking all candidate phrases according to how
many extraction patterns in the “category pattern” list extracted each one. The scoring
function also includes a tie-breaking factor that accounts for the individual strength of

each pattern. The function used is
N;
score(word;) = Z 1+ (0.01 % RlogF (patterny)) (3.2)
k=1

where NV; is the number of extraction patterns in the “category pattern” list that extracted
word;, and RlogF (patterny) is the RlogF scoring function described by Equation 3.1.

After adding the five most reliable candidate phrases to the permanent lexicon, the

temporary lexicon and category pattern list are cleared, and the mutual bootstrapping
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e Generate all extraction patterns in the corpus and save the patterns with their
extractions

e perm_lezicon = {seed words}
e META BOOTSTRAPPING

1. temp_lezicon = {}
2. category_patt_list = {}
3. MUTUAL BOOTSTRAPPING (10 iterations)

(
(

) Score all extraction patterns according to RlogF

c) Add best_patt to category_patt_list
(d) Add extractions of best_patt to temp_lexicon

a
b) best_patt = top ranked pattern not already in category_patt_list
d
e) Go to Step 3a

(
(
4. Score candidate words in temp_lezicon

5. Add top 5 candidate words to perm_lezicon

6. Go to Step 1

Figure 3.2. Meta Bootstrapping Pseudo-Code

process begins anew. Meta bootstrapping may be run for as many iterations as the user
likes, adding five lexicon entries at each iteration. When processing stops, the multi-level
bootstrapping will have produced a semantic lexicon and a list of extraction patterns
relevant to the semantic category.

Although meta bootstrapping generates semantic lexicons with greater precision than
previous automatic semantic lexicon generation techniques, it does have one major short-
coming. Meta bootstrapping is built upon the mutual bootstrapping algorithm, which
trusts the best individual category patterns to extract only semantically valid category
words. This assumption is often false, which can cause non-category words to infiltrate the
lexicon. For example, the “was killed in <X>" extraction pattern presented in Section 1.3
extracts several valid location words, but it also extracts other words such as “shootout”
and “clashes”. If “was killed in <X>” were the best location pattern, these spurious
words would be added to the lexicon.

The meta bootstrapping layer alleviates this problem somewhat; however, non-category
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words can still be added to the permanent lexicon if they are extracted by a few category
patterns, or even merely by the single best category pattern. For example, after a certain
number of meta bootstrapping iterations, it is often the case that every candidate word
is only extracted by one “category pattern”. When this happens, the algorithm has no
choice but to choose words for the lexicon based on their extraction by a single pattern. In
this case, the tie-breaking factor in Equation 3.2 causes the extractions of the single best
pattern to be added to the permanent lexicon, even though there may be little evidence

for their validity.

3.2 BASILISK

My new algorithm, BASILISK, addresses the source of the weaknesses faced by meta
bootstrapping. Instead of trusting individual patterns to extract only valid semantic
category words, BASILISK uses statistical information from all the patterns that extracted

each candidate word. This section describes the various stages of the BASILISK algorithm

in detail.
seed extraction patterns and
words their extractions
BASILISK Y
initialize
! select add extractions of
best patterns best patterns
semantic > pattern pool "| candidate
lexicon | word pool
add 5 best candidate words

Figure 3.3. BASILISK Algorithm

3.2.1 Seed Word Generation
Like the meta bootstrapping algorithm, BASILISK requires a list of seed words as input.

In Riloff & Jones’s work, the seed words were chosen by a human, giving total discretion
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to the human to select good seed words with no systematic way of doing so. In my
research, the algorithm is seeded with the most frequently-occurring head nouns in the
corpus. To determine which head nouns occur most frequently, a list of possible seed

words is generated by running a partial parser!

over the corpus and counting the number
of times each unique word occurs as the head noun of a noun phrase. A human generates
the seed word list for a semantic category by selecting the ten most frequently-occurring
unambiguous words belonging to that category.

During this step, BASILISK also uses AutoSlog to generate all extraction patterns from

the corpus. The extraction patterns and extractions generated by AutoSlog form the

basis of the statistics used by BASILISK throughout its processing.

3.2.2 The Candidate Word Pool

Using a bootstrapping framework similar to mutual bootstrapping, BASILISK begins
with a small dictionary of ten seed words and iteratively augments these dictionaries by
adding words that are hypothesized to be valid members of each semantic category.

The first step in bootstrapping the semantic lexicon is to find candidate words that
might be good words to add. BASILISK first finds the top N extraction patterns as
ranked by the RlogF function. All the extractions of those N patterns are added to a
candidate word pool from which the best candidate words will be chosen. This step can
be seen as a filtering process; instead of choosing from the entire set of head nouns in
the corpus, BASILISK narrows the field down to a subset of words that are likely to be
good candidates because they are extracted by patterns that are highly associated with
the semantic category.

BASILISK uses a value of N = 20 patterns? at the beginning of bootstrapping, which
is sufficient to allow a variety of candidate words to be considered, yet small enough that
the extraction patterns are genuinely good patterns for the category. Choosing a larger
value of NV near the beginning can include many non-category patterns, thus introducing

many non-category words into the candidate word pool.

'T used Sundance, the parser used by the University of Utah NLP research group, for sentence parsing.

2«Useless” patterns are not considered. An extraction pattern is useless if all of its extractions already
belong to the semantic lexicon. For example, if the pattern “roof of <X>” extracts only two words, and
both of them already belong to the building lexicon, then that pattern will not be considered one of the
best N building patterns, because it has no unclassified candidate words to contribute to the candidate
word pool.
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e Generate all extraction patterns in the corpus and save the patterns with their
extractions

lezicon = {seed words}

t=0

BOOTSTRAPPING

Score all extraction patterns according to RlogF

pattern_pool = top ranked 20 + 7 patterns
candidate_word_pool = extractions of patterns in pattern_pool
Score candidate words in candidate_word_pool

Add top 5 candidate words to lezicon

t:=1+1

Go to Step 1

NS e w® b

Figure 3.4. BASILISK Pseudo-Code

As the algorithm progresses, however, continuing to use a value of N = 20 can stifle
the candidate word pool. To make this point clear, let us assume that BASILISK performs
perfectly, adding only valid category words to the lexicon. After a certain number of
iterations, all the valid category members extracted by the top 20 extraction patterns
will have been added to the lexicon, leaving only non-category words for the algorithm to
consider. For this reason, the pattern pool needs to be infused with new patterns to allow
more valid category words to enter the candidate word pool. To achieve this desired effect,
BASILISK increments the value of N by one after each iteration of bootstrapping. This
action ensures that there will always be at least one new extraction pattern contributing

words to the candidate word pool on each successive iteration.

3.2.3 Selection of New Category Words
After creating a pool of candidate words, the next step is to identify the best candi-
dates for the lexicon. One simple scoring metric is the average number of category words
extracted by patterns that extracted a candidate word. In this context, a “category word”

is a word that has been labeled as belonging to a category in the current semantic lexicon.
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The formula for this scoring function is

N;
> F
=1

score(word;) = 2

N (3.3)

where N; is the number of extraction patterns® that extract word;, and F} is the number
of unique words in the semantic lexicon that are extracted by pattern j. Intuitively, this
scoring function measures the average correlation of a candidate word with a category
for each occurrence of the candidate word. It rewards words that co-occur often with
category words within many extraction patterns.

Unfortunately, this simple scoring function has a flaw that was discovered during
experimentation. In addition to rewarding words that consistently co-occur with category
words in a variety of extraction patterns, it also rewards words that co-occur with a large
number of category words in a single extraction pattern. For example, let us consider two
candidate words, word A and word B. Word A is extracted by ten patterns, each of which
extract two category words. Word B is extracted by ten different extraction patterns,
one of which extracts twenty category words while the other nine extract none. Word
A and word B will receive the same score according to this function. However, word A
is more likely to be a valid category word because it consistently co-occurs with known
category words. Word B, on the other hand, probably does not belong in the lexicon
because there is no systematic correlation between word B and known category words.
The only evidence linking word B with the semantic category is a single, high-frequency
extraction pattern.

To correct this deficiency in the scoring function, a logarithmic factor is added to
lessen the influence of individual, high-frequency patterns on a word’s overall score. The

improved scoring function used by BASILISK is

N;

Z logo(Fj + 1)
) ==

AvgLog(word; (3.4)

N;
In the previous scoring function, each pattern’s contribution to the numerator was

the number of category words extracted by that pattern (F}). In the improved scoring

3This formula takes into account the extractions of every pattern that extracted word;, not just the
patterns that contributed to the candidate word pool.
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function, AvgLog, each pattern’s contribution is log,(Fj 4 1). The addition of 1 compen-
sates for the fact that if F; = 1, then log(F};) = 0. This new scoring function will reward
words that exhibit a systematic correlation with known category members over the entire
body of extraction patterns. Examining its behavior on the previous example, we find
that word A (which co-occurred with two category members in each of ten extraction
patterns) receives a score of 1.098. In contrast, word B (which only co-occurred with
category members in one extraction pattern out of ten) receives a score of 0.300.

As mentioned before, BASILISK tries very hard not to trust any individual pattern too
much, preferring to rely on statistics over the entire body of extraction patterns. The
exception to this claim occurs when a candidate word is only extracted by a single pattern
in the entire corpus. In this case, BASILISK must rely on the evidence provided by a single
pattern. If the pattern is a particularly good one, then the candidate word will get a high
score and will have a high likelihood of being added to the lexicon. This is not undesirable
behavior, for two reasons. First, the absence of negative evidence can be interpreted as
weak positive evidence. Since the candidate word is extracted by no other patterns except
a single good one, it is likely that it may be a valid semantic category member. During
experimentation with BASILISK, visual inspection of these instances confirmed that this is
often the case. Second, even if the word is not truly a member of the semantic category,
its negative effect on the rest of the bootstrapping process will be small because it is only
extracted by a single pattern.

Once the words in the candidate word pool are scored, they are ranked and the top
five are added to the semantic lexicon. The pattern pool and candidate word pool are

cleared, and the process repeats from the beginning.

3.3 Single Category Results

This section compares the results of meta bootstrapping to the results of BASILISK. In
these experiments and all other experiments presented in this thesis, I used the MUC-4
terrorism corpus [1], which contains 1700 newswire articles about terrorism in Latin
America. Performance on six categories will be explored in this thesis: building, event,
human, location, time, and weapon.

Results for both algorithms can be seen in Figure 3.5. Some things should be noted
when examining the graphs presented in this thesis. First, tables showing some of the

data points represented by these graphs can be found in Appendix B. Second, the vertical
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Figure 3.5. Meta Bootstrapping vs. BASILISK, Single Category

axes in the graphs are not all the same. Because different categories yield varying degrees
of success, it is difficult to graph various algorithms’ results for different categories while
maintaining fixed axes. For this reason, it is important to note that the vertical axes on
various graphs may be different. Third, the “baseline” represents the performance that
could be expected if words were chosen at random. It is simply a line representing the
conditional probability that a random word belongs to a category.

The meta bootstrapping results are not comparable to the results published in the orig-
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inal meta bootstrapping paper [19], because Riloff & Jones generated semantic lexicons of
full noun phrases, while I used meta bootstrapping to generate semantic lexicons of head
nouns only. In general, the results using only head nouns are lower than the results using
full noun phrases. This occurs because unique phrases that share a head noun will only be
scored once when scoring head nouns, whereas they may have been rewarded separately
when scoring full noun phrases. For example, Riloff & Jones would have scored “eastern
Colombia” and “Colombia” separately, but BASILISK does not distinguish between the
two because they have the same head noun, “Colombia”.

BASILISK clearly outperforms meta bootstrapping for every category. The major
difference between meta bootstrapping and BASILISK is the way in which extraction
patterns are used to hypothesize words for the semantic lexicon. Meta bootstrapping
is pattern-centric while BASILISK’s approach is word-centric. Since BASILISK outperforms
meta bootstrapping in all cases presented, there is strong evidence for the first claim
of this thesis: that utilizing collective statistics over a body of extraction patterns can

improve the precision of automatically-generated semantic lexicons.



CHAPTER 4

ALGORITHMS FOR MULTIPLE
CATEGORIES

A major claim of this thesis is that generating semantic lexicons for multiple categories
simultaneously will increase the overall precision of the lexicons. Why would generating
semantic lexicons for multiple categories simultaneously be expected to improve perfor-
mance? My hypothesis was that errors of confusion! between semantic categories can be
lessened by having information about all categories available.

Many extraction patterns exhibit a systematic ambiguity between two or more cat-
egories. As we saw in Figure 1.1, the pattern “was killed in <X>" can extract many
valid location words, but can also extract many event words such as “shootout” and
“clashes”. When generating semantic lexicons for a single category, such ambiguity can
cause the lexicon to become infected with words that really belong to another semantic
category. For example, when generating only a location lexicon, the algorithm may choose
“shootout” because it has no idea that the pattern tends to extract both location and
event words. It can’t know this because it does not even know that the event category
exists. However, when generating lexicons for multiple categories simultaneously, the
algorithm can detect such ambiguity and handle the situation appropriately. With this
ability, errors of confusion between location and event words can be reduced.

Figure 4.1 shows another way of viewing the task of semantic lexicon generation.
In this figure, the set of all words in the corpus is visualized as a search space. Each
category owns a certain territory within the search space (demarcated with a dashed
line), representing the words that are true members of that category. Not all territories
are the same size, since some categories have more words than others. Some categories
have bordering territory, representing cases where there may be systematic ambiguity of

extraction patterns that extract members of both classes. Of course, this visualization

! Throughout this thesis, T use the term confusion to refer to errors where a word belonging to category
X was incorrectly added to the lexicon for category Y.
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Figure 4.1. Visualization of Search Space

is a simplification of the true search space, but it serves well to illustrate the concepts
presented in this chapter.

Figure 4.2 demonstrates what happens when a semantic lexicon is generated for a
single category. The seed words for the category (in this case, category C) are represented
by solid black areas within the category’s territory. The hypothesized words in the
growing lexicon are represented by a shaded area. The goal of the lexicon generation
algorithm is to expand the area of claimed words so that it exactly matches the category’s
true territory in the search space. If the claimed area expands beyond its true territory,
then the category’s lexicon includes incorrect words. In this example, category C has
claimed a significant number of words beyond its own territory.

Much of the territory claimed by category C actually belongs to other categories,
resulting in confusion errors. When generating a lexicon for a single category at a time,
such errors are impossible to detect. In this case, the algorithm only knows about category
C and does not know about territory belonging to other categories. As a consequence,

category C is free to expand in any direction, even deep into the heart of territory
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Figure 4.2. Bootstrapping a Single Category

belonging to categories B and E.

However, while generating lexicons for multiple categories, simple conflict resolution
disallows each semantic category from claiming a portion of the search space that has
already been claimed by another category. Since the lexicons are not allowed to overlap,
the ability of categories to overstep their boundaries is limited. Confusion errors may
still occur; however, their scope is more limited because knowledge about all categories
is available.

Figure 4.3 shows the same search space when lexicons are generated for all categories
simultaneously. When generating lexicons only for one category, category C was able
to claim extensive territory belonging to categories B and E. However, when generating
lexicons for all categories simultaneously, category C is limited in its ability to expand
into other categories’ territory. Because claims of different categories are not allowed to
overlap, category C is forced to expand in other directions once it encounters territory

claimed by B and E. In this example, category C is benefitted by being forced to expand

further into its own territory.
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Figure 4.3. Bootstrapping Multiple Categories Simultaneously

Section 4.1 describes how meta bootstrapping and BASILISK can be extended to use
simple conflict resolution in generating lexicons for multiple categories. Section 4.2 also
describes how BASILISK can be extended to take further advantage of multiple categories
simultaneously by using a more intelligent scoring function to choose words for the
lexicon. In the comparison of the algorithms and their performance, the abbreviation
SCAT represents a “single category at a time”, while the abbreviation MCAT represents

“multiple categories simultaneously.”

4.1 Simple Conflict Resolution
Perhaps the easiest way to take advantage of multiple semantic categories simulta-
neously is to add simple conflict resolution into the algorithm to enforce the “one sense
per domain” assumption. Whenever a word is hypothesized to belong to more than one
category, the algorithm must choose one, since a word can only be added to the lexicon
for one category.

Simple conflict resolution can be added to the original meta bootstrapping and BASILISK
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algorithms in a fairly straightforward manner, allowing them to take advantage of multiple
categories simultaneously. The next two sections describe how simple conflict resolution
can be integrated into the meta bootstrapping and BASILISK algorithms, and how the

precision of the final semantic lexicons is improved as a result.

4.1.1 Meta Bootstrapping

The meta bootstrapping MCAT algorithm using simple conflict resolution is extremely
similar to the original meta bootstrapping algorithm. In fact, the only modification that
needs to be made is to perform the conflict resolution step during mutual bootstrapping
when words are added to the temporary lexicon.

Each iteration of mutual bootstrapping is done in parallel for the various categories,
ensuring that no word can enter the temporary lexicon for more than one category. During
each iteration, the conflict resolution is performed after the best pattern for each category
is chosen. At that point, if a word is extracted by the best pattern for more than one
category, the word is scored using the word-scoring function (Equation 3.2). The conflict
is resolved in favor of the category for which the word receives a higher score, and the
word is added to the temporary lexicon for that category.

There is no modification to be done to the meta bootstrapping layer to implement
this conflict resolution. Since a word can only be added to one category during mu-
tual bootstrapping, there can be no conflicts in the temporary lexicon when the meta
bootstrapping layer chooses words for the permanent lexicon.

Examining the results shown in Figure 4.4, one can see that every category except
time benefits from generating multiple categories simultaneously. In fact, using multiple
categories simultaneously improves overall performance for all categories (except time)

by an approximate factor of two.

4.1.2 BASILISK
Adapting BASILISK to handle multiple categories using simple conflict resolution also
requires minimal changes to the algorithm. The conflict resolution must be performed
after the candidate words are scored, as BASILISK attempts to add them to the lexicon. If
any word is hypothesized for more than one category, then it is scored for those categories
and added to the category for which it receives the highest score. This conflict resolution

is the only significant change to the algorithm.
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The results in Figure 4.5 reveal that using simple conflict resolution in generating
lexicons for multiple categories simultaneously improves the performance of BASILISK
a small amount overall. The weapon and building categories benefit most, and the
improvement in all cases occurs after several iterations of bootstrapping rather than
at the beginning. In fact, for the event, human, and location categories, the difference is
hardly perceptible until 600 words have been generated. This phenomenon is consistent
with the visualization of the search space in Figure 4.3. Since the seed words of each
category are not generally located near each other in the search space, the algorithm is
relatively unaffected in the earlier bootstrapping iterations. The conflict resolution only
takes effect once the categories begin encroaching on each other’s territory.

It can be seen in Figure 4.5 that not all categories generate a full 1000 words when
BASILISK MCAT is run for 200 iterations. For example, the building category only generates
706 words. Each category is expected to generate 1000 words during 200 iterations
because five words are chosen during each iteration. Why might fewer words be generated?
This may happen when the simple conflict resolution resolves many disputed words in
favor of other categories. Although the building category is allowed to choose five words
to add to the lexicon, disputed words are resolved in favor of the category for which each
word receives a higher score. If there are fewer than five words that receive a higher score
for the building category than for another category, then fewer than five words will be
added to the building category. This effect is rare in the early stages of bootstrapping.
However, in later iterations conflicts are abundant, and some categories are often left
with fewer than five words at each iteration.

As one can see from the results, this effect may actually be beneficial to the category
losing the disputed words. For example, the building, location, and weapon categories
all generate fewer than 1000 words. However, even when generating fewer words, the
actual number of correct lexicon entries for each category is higher for MCAT than SCAT.
The precision of the lexicons is increased by correctly disambiguating disputed words in
favor of a category for which there is stronger evidence. The results indicate that this is
true even when conflict resolution leaves fewer than five words for the category losing the

dispute.
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4.2 A Better Scoring Function

Although adding a simple method of conflict resolution improves the precision of
BASILISK’s lexicons, it is not a particularly intelligent way to take advantage of multiple
categories simultaneously. It is preferable to use an algorithm that makes active use of
the information available from all categories, rather than an algorithm that passively
enforces a simple constraint. In this way, the search space may be more intelligently
explored because each category “knows” where the other categories are located. Using
only simple conflict resolution, each category explores the search space until it directly
encounters another category’s claimed territory, into which it cannot expand. A smarter
algorithm will try to avoid the other categories’ territory before such a direct encounter,
choosing instead to explore areas of the search space that do not belong to any category.
In terms specific to BASILISK, the algorithm will prefer words that co-occur frequently
with other words from the category under consideration, and do not co-occur frequently
with words from other categories.

BASILISK MCAT+ is an enhancement of BASILISK MCAT that takes advantage of
multiple categories in such a manner. BASILISK MCAT+ uses a variation of BASILISK’s
candidate-scoring function to choose words that have strong evidence for belonging to one
category but no evidence or only weak evidence for belonging to others. When scoring a
candidate word for a category, the word is penalized according to its maximum score for
any other category. Each word in the candidate word pool for a category receives a score

according to the following formula:
score(word;, caty) = AvgLog(word;, caty) — m;lg((Angog(word,-, catp)) (4.1)
a

where AvgLog is the candidate-scoring function used by BASILISK SCAT (Equation 3.4).
This new scoring metric takes advantage of the information available from multiple
categories by penalizing words that receive high scores for more than one category. For
example, if BASILISK MCAT+ is scoring candidate words for the location category, then
each word’s score will be its score for location minus its maximum score for any other
category. A word that receives a high location score according to the original scoring
function will only receive a high overall location score for BASILISK MCAT+ if its scores
for other categories are low.

This allows the search space to be more intelligently explored, as we can see by
visualizing the problem as in Figure 4.3. We have seen that BASILISK MCAT is exactly

the same as BASILISK SCAT except for the addition of a simple conflict resolution scheme.
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Each category will explore the search space until it stumbles across territory claimed by
another category, at which point it is forced to explore in other directions. In contrast,
during BASILISK MCAT-+, each category “knows” where the other categories are because
information from other categories is explicitly used when scoring candidate words in
Equation 4.1. In this way, each category will prefer to explore new areas of the search
space while steering clear of the territory claimed by other categories.

Figure 4.6 compares the MCAT algorithms described in this chapter: meta bootstrap-
ping MCAT, BASILISK MCAT, and BASILISK MCAT+. BASILISK MCAT+ generally performs
better than BASILISK MCAT, although the improvement is small for most categories. For
the event category, BASILISK MCAT actually outperforms BASILISK MCAT+. In all cases,
both versions of BASILISK perform with higher precision than meta bootstrapping, which
supports the claim that collective evidence over many extraction patterns is helpful, even
when generating lexicons for multiple categories simultaneously. Overall, the improved
scoring function is a very small win over MCAT with simple conflict resolution.

This chapter has presented evidence that generating semantic lexicons for multiple
categories simultaneously can improve the precision of the lexicons. Even adding a
very simple conflict resolution scheme can provide great benefits, particularly for meta
bootstrapping. BASILISK MCAT and BASILISK MCAT+ take advantage of both major claims
of this thesis: that precision of semantic lexicons can be improved by utilizing collective
evidence over many extraction patterns and by generating lexicons for multiple categories
simultaneously. The performance of those algorithms provides evidence to support both

claims.
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CHAPTER 5

ANALYSIS AND CONCLUSIONS

This chapter analyzes the data presented in this thesis, describes benefits and limita-

tions of BASILISK, provides suggestions for future research, and offers conclusions.

5.1 Benefits of BASILISK
5.1.1 Higher Precision

Semantic lexicons generated by BASILISK generally have higher precision than those
generated using previous techniques. To see the improvement in precision made by
BASILISK over previous techniques, Figure 5.1 compares all algorithms presented in this
thesis. As one would hope, all the algorithms perform above the random baseline. In
general, meta bootstrapping SCAT shows the weakest performance, with meta bootstrap-
ping MCAT and BASILISK SCAT providing large improvements. BASILISK MCAT generally
outperforms both of these algorithms, with BASILISK MCAT+ outperforming everything
on nearly all categories.

There are many clear benefits of having automatically-generated, domain-specific
semantic lexicons with high precision. Generating semantic lexicons automatically saves
much of the time and human effort of compiling lexicons by hand. It also helps eliminate
human errors of omission, particularly with domain-specific language that may not be
known to the person compiling a lexicon.

Although generating domain-specific lexicons automatically saves some human effort,
some effort will need to be expended to filter the lexicons. The relatively high precision
of the lexicons generated by BASILISK alleviates some of this effort. In particular, filtering
a lexicon with low precision can be a boring, frustrating task. Since BASILISK’s higher-
precision lexicons include many valid category words near the beginning of each lexicon,
the filtering is less tedious, more fruitful, and moves more quickly. Also, if only a certain
number of category words are needed, the human will not have to scan as many words if

the lexicon has high precision.
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The top 50 words for each category in the final lexicon generated by BASILISK MCAT-+
are shown in Figure 5.2. One can see that there are many valid lexicon entries for most
categories. Still, there is much improvement to be made, particularly for the less common

categories such as time and building.

5.1.2 Higher Recall

In addition to improved precision, BASILISK also achieves greater recall than previous
techniques. Whereas precision measures the percentage of correct words in the lexicon,
recall measures the percentage of all true category members found by the algorithm. The
problem of achieving high recall is the problem of finding every category word in the
corpus, thus eliminating errors of omission. This is one of the main problems of the
semantic lexicon generation task, and one of the main benefits of generating lexicons
automatically.

A table of recall results can be found in Appendix C. When it is allowed to run for
200 iterations, BASILISK achieves recall in the 40-60% range, which is very respectable.
Comparison to previously published results is not possible, because in previous work
recall could not be measured. Recall for this task can only be directly measured if one
knows the true number of words in the corpus that belong to each category. In the course
of experimentation, every word has been examined and given a category label, so these

data are known.

5.1.3 Reduction of Confusion Errors

Generating lexicons for multiple categories simultaneously reduces the confusion be-
tween categories. In other words, although BASILISK generates many incorrect lexicon
entries, few of those entries belong to other categories. Most of the incorrect lexicon
entries do not belong to any category. This effect is to be expected if BASILISK MCAT+ is
taking advantage of multiple categories as it should. The reduction of confusion between
categories is further evidence that utilizing multiple categories simultaneously has the
desired effect.

Tables of confusion data are presented in Appendix D. Results for all algorithms are
compared. Generating multiple categories simultaneously provides the greatest confusion

reduction, and for some categories, confusion can be reduced by over 80%.
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Building: ladrillo cela restroom theatre hilt promenade cai store checkpoint ciclotecnica
esquipulas manzanillo gas_station cathedral crossroads door strongholds premises flames
obaldia 0ll5 temple marker doors palace reopening spaces entrance borders penitentiary
km-28 disposition bank_branch disposal gmt terminal present location branches buildings
intolerance sanctuary academy briefing facilities houses school police_station park
Mansions

Event: exercises disobedience exploitation tragedies ambush disturbance act accident
aggression assassination 6-hour violating uprisings producing manipulations liquidation
authorship sabotage dynamite_attacks bomb_attack countless dynamite_attack annihilation
harassment bomb_attacks detonating mafiosi attemp sabotages placement burning
planting placing barletta murders games destruction takeover executions maneuvers
incursion kidnappings intervention clash uprising shoot-out bomb_explosion interference
controntation releases

Human: boys maoist_people’s_liberation_army eln_camilist_union ernesto snipers
french  unmasking national_guard permission individuals detainees traveling
army_of_national_liberation pizarro the_extraditables leader commandoes politicians
diaz professionals extremists activists foreigners espinosa women popular_liberation_army
cordero persons gacha deserter riding individual narcoterrorists demonstrators policemen
cronies celades meneses brings missionaries citizen woman cazolo priests escobar
policeman cano leftists civilian rivera

Location: ruins valparaiso san_salvador soyapango mejicanos vitoria oslo regions
marta corregimiento usulutan zacatecoluca credisa san_miguel suburb interior quito
capital tonacatepeque delgado quilcura jabaquara platinedi huaraz spots halls isidro maria
tequcigalpa cities lhasa meighborhoods departments complying region totonique salvado
achi cycles chalatenango morena ayutuztepeque cuscatancingo gotera alegria copinol
chirilagua majatepeque unicentro zacateluca

Time: owing ride showing disruptions top afternoon km starting evening decade
somewhere blocks hour march weeks sabotaging 1/2 saturday december january spot
plains july tuesday friday april february october june september flatlands thurday
thursday’s monday august atlantic suspicion sunday floor growth eve wednesday
antequera motorcycles happiness battlefield coast bail telecommunications anniversary
Weapon: medication yearning lumber belongings machines sticks minerals
cannon stones airliner grenade casings dynamite_charge launchers materials firebomb
molotov_cocktail dynamite_sticks car-bomb rifle truck_bomb medium-intensity carbomb
pistol fuses cannons kg car_bombs car_bomb package 20-kg explosive_charge incendiary
load device callao banner ardito dynamite_charges machinequns circle weapon processing
roadblocks cocaine good-bye fruit firearms ammunition music

Figure 5.2. Final Lexicons Generated by BASILISK MCAT+
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5.1.4 Efficiency

In addition to the improvement in recall and precision of the final lexicons, BASILISK
provides an efficiency gain over meta bootstrapping. It is fair to compare one iteration
of meta bootstrapping to one iteration of BASILISK, since they both add five words to
the lexicon. Each iteration of meta bootstrapping consists of ten iterations of mutual
bootstrapping, during which every extraction pattern must be scored to find the best one.
Thus, for each iteration of meta bootstrapping, all extraction patterns must be scored
ten times. In contrast, each iteration of BASILISK only needs to score every extraction
pattern once. For this reason, BASILISK runs approximately ten times as quickly as
meta bootstrapping. With 40,967 extraction patterns in the corpus, the time savings is

significant.

5.2 Limitations of BASILISK

Although BASILISK achieves higher precision than previous techniques, it has some

limitations that need to be addressed.

5.2.1 Stopping Conditions

First, BASILISK lacks a clear stopping condition in SCAT and MCAT modes. The
algorithm can be run for as many iterations as the user likes, stopping after generating a
certain number of words. Alternatively, a threshold can be used, stopping the algorithm
when word scores drop below a certain level. Currently, however, there is no sophisticated
way of letting BASILISK know that its performance has dropped below an acceptable level
or that it has found all the category members that can reasonably be found.

On the other hand, BASILISK MCAT—+ can be given a simple stopping condition that
works fairly well. The algorithm can refuse to add any word to the lexicon for a category
if it receives a negative score for that category. When a word receives a negative score
for a category, that indicates that there is greater evidence that it belongs to a different
category. Enforcing this constraint allows BASILISK to stop bootstrapping a category
when all remaining words have greater evidence of belonging to a different category.

When applying this simple constraint, BASILISK MCAT+ generates the following num-

ber of words for each category:
e building: 359 total, 93 correct, 25.9% precision

e cvent: 1000 total, 259 correct, 25.9% precision



41

human: 1000 total, 831 correct, 83.1% precision

location: 1000 total, 492 correct, 49.2% precision

time: 159 total, 35 correct, 22.0% precision

weapon: 333 total, 78 correct, 23.4% precision

These numbers are neither significantly better nor significantly worse than BASILISK
MCAT+’s performance without the stopping condition (except for location, which does
worse with the stopping condition). Whether the algorithm stopped at the correct time
for each category is a subjective decision involving a trade-off between recall and precision.
As more words are added to the lexicon, its precision generally gets worse, but its recall
can only improve. Often, it is necessary to make a decision about whether recall or
precision is more important. If recall is more important then precision can be sacrificed,
and vice versa. A good stopping condition is not always necessary if recall is more
important; however, if precision is preferred then a good stopping condition is crucial. For

this reason, developing a better stopping criterion for BASILISK may be very important.

5.2.2 Mutual Exclusivity Assumption

One assumption of this thesis is the “one sense per domain” assumption, that a
word is only used in a single sense within a limited domain. This assumption of mutual
exclusivity is true most of the time, and it exemplifies the benefit of domain-specific
lexicons as explained in Chapter 1. However, even within a limited domain, there are
significant violations of this assumption. For example, certain words can often refer to
either people or locations. An example of this usage in the MUC-4 terrorism corpus is
“Flores”, the name of a Guatemalan political leader as well as the name of a city in
Guatemala.

Ambiguity such as this can cause problems in two ways. First, since the word “Flores”
can refer to either a human or location, it can often co-occur with both Auman and
location words in extraction patterns. This can create confusion between the human and
location categories during bootstrapping. Second, ambiguous words present a problem
when scoring the final lexicons. Should “Flores” be scored as a human or a location?
For results presented in this thesis, all occurrences of each ambiguous word were found,
and the word was scored according to its most frequent usage. In this case, “Flores” was

scored as human because it most frequently refers to the Guatemalan leader Gilda Flores.
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5.2.3 Poorly Represented Categories
Another limitation of BASILISK is that it can have difficulty finding valid words for
categories that are poorly represented in the corpus. For example, BASILISK performs
poorly on the time category, for which there are only 112 unique words in the texts.
BASILISK’s performance is better than previous techniques, but even at its best, BASILISK
only achieves precision of about 30% for the time category. Since BASILISK relies heavily
on co-occurrence of words within many extraction patterns, sparse data can cause its

performance to suffer.

5.2.4 Correlation Between Categories

BASILISK’s performance can also suffer when there is a systematic correlation between
categories such that members of each category tend to occur within the same extraction
patterns. This phenomenon can be demonstrated with the vehicle category. Originally,
vehicle was one of the categories I used during experimentation. It is the least represented
category in the corpus, with only 89 unique words. When running in MCAT mode with the
vehicle category, BASILISK’s performance on the building category decreased noticeably.
Upon further investigation, I discovered that many building words had been stolen by the
vehicle category early in the bootstrapping process. More investigation showed that this
was occurring because both building and vehicle words are often extracted by patterns
having to do with attacks against a target, such as “destroyed <X>". In the MUC-4
terrorism corpus, both buildings and vehicles are often damaged in attacks, and so there
is a systematic correlation between the two categories that was not obvious at first.
Although buildings and vehicles are clearly separate semantic categories in a general
sense, they end up as submembers of a conceptual target category in the terrorism
domain. Normally, BASILISK is very good at harnessing the mutual exclusivity of semantic
categories to prevent systematic confusion such as this. However, in this case, vehicle
was able to steal words from the building category because of the systematic correlation
between the two categories and the relative scarcity of both. Because neither of the
categories is well represented in the corpus, BASILISK was unable to take advantage of its
major strength, the collective evidence over many extraction patterns. For this reason, the
categories to be used must be carefully chosen by the user. Generally, BASILISK performs

best with categories that are well represented and not correlated in any systematic way.
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5.3 Future Work

Future research in this area should address the limitations of BASILISK, such as its
sensitivity to category selection and its poor performance in low-frequency categories.
Research may also be devoted to finding a better method for harnessing multiple cate-
gories simultaneously. Although the methods presented in this thesis perform fairly well,
the improvements provided by BASILISK MCAT+ are small and somewhat inconsistent.
Developing a method to take greater advantage of multiple categories should be a fruitful
area for future research. Also, it would be a useful experiment to port BASILISK to a
different domain than the MUC-4 terrorism newswire articles, to prove its generality.

Although BASILISK focuses on generating semantic lexicons with high precision, it
may be useful to explore opportunities to generate extraction patterns as well. Ex-
traction patterns themselves are especially useful for information extraction. The most
straightforward way of generating extraction patterns might be to score and rank them
according to the RlogF function and the contents of BASILISK’s final lexicons. However,
adapting BASILISK to produce extraction patterns more intelligently may be a worthwhile

pursuit.

5.4 Conclusions

This thesis claims that precision of automatically-generated semantic lexicons can
be improved by utilizing collective evidence over a body of extraction patterns and by
generating lexicons for multiple categories simultaneously.

Chapter 3 introduced a new algorithm, BASILISK, that uses statistics from many
extraction patterns to choose words for a semantic lexicon. The results from that section
provide strong evidence to substantiate the first claim.

Chapter 4 introduced methods for extending BASILISK and meta bootstrapping to
generate lexicons for multiple categories simultaneously. The results from that section
provide evidence to substantiate the second claim. Significantly, it was shown that taking
advantage of both claims together can provide a greater benefit than using either one

alone.



APPENDIX

SEED WORDS

Figure A.1 shows the seed words used for each category for all algorithms described
in this thesis. The ten most frequently-occurring words for each category were chosen as

seed words.

Building: embassy office headquarters church offices house home residence hospital
airport

Event: attack actions war meeting elections murder attacks action struggle
agreement
Human: people guerrillas members troops cristiani rebels president terrorists

soldiers leaders

Location: country el_salvador salvador united_states area colombia city countries
department nicaragua

Time: time years days november hours night morning week year day

Weapon: weapons bomb bombs exrplosives arms missiles dynamite rifles materiel
bullets

Figure A.1. Seed Words



APPENDIX

PRECISION RESULTS

Table B.1 and Table B.2 present precision data for all algorithms described in this
thesis. The “Total” column represents the number of words generated, in increments of
100. Underneath the name of each algorithm are two numbers. The first number is the
number of correct lexicon entries of the first NV words hypothesized by that algorithm,
where N is the number in the “Total” column. The second number, in parentheses, shows
the corresponding precision of the lexicon (i.e., the first column divided by the “Total”

column).



building

Total METABOOT BASILISK METABOOT BASILISK BASILISK

SCAT SCAT MCAT MCAT MCAT+
100 21 (21.0%) | 35 (35.0%) | 26 (26.0%) | 34 (34.0%) | 39 (39.0%)
200 28 (14.0%) 4 (32.0%) 1(25.5%) 0 (35.0%) 2 (36.0%)
300 30 (10.0%) 9 (26.3%) 0(23.3%) | 86 (28.7%) | 87 (29.0%)
400 31 (7.7%) 4 (21.0%) 1 (20.3%) 3 (23.3%) 3 (23.3%)
500 3 (6.6%) 4 (16.8%) 6 (17.2%) 7 (19.4%) | 100 (20.0%)
600 6 (6.0%) 84 (14.0%) | 92 (15.3%) | 102 (17.0%) | 105 (17.5%)
700 8 (5.4%) 6 (12.3%) 5 (13.6%) | 102 (14.6%) | 105 (15.0%)
800 39 (4.9%) 0 (11.3%) 6 (12.0%) 109 (13.6%)
900 0 (4.4%) 2 (10.2%) 8 (10.9%)
1000 3 (4.3%) 92 (9.2%) 99 (9.9%)

event

Total METABOOT BASILISK METABOOT BASILISK BASILISK

SCAT SCAT MCAT MCAT MCAT-+
100 61 (61.0%) | 61 (61.0%) | 64 (64.0%) | 64 (64.0%) | 61 (61.0%)
200 89 (44.5%) | 103 (51.5%) | 102 (51.0%) | 102 (51.0%) | 114 (57.0%)
300 | 113 (37.7%) | 145 (48.3%) | 138 (46.0%) | 147 (49.0%) | 143 (47.7%)
400 | 137 (34.3%) | 173 (43.2%) | 158 (39.5%) | 176 (44.0%) | 163 (40.7%)
500 | 146 (29.2%) | 196 (39.2%) | 179 (35.8%) | 200 (40.0%) | 186 (37.2%)
600 | 153 (25.5%) | 214 (35.7%) | 197 (32.8%) | 214 (35.7%) | 208 (34.7%)
700 | 162 (23.1%) | 226 (32.3%) | 209 (29.9%) | 238 (34.0%) | 227 (32.4%)
800 | 172 (21.5%) | 247 (30.9%) | 221 (27.6%) | 253 (31.6%) | 240 (30.0%)
900 | 181 (20.1%) | 261 (29.0%) | 230 (25.6%) | 266 (29.6%) | 256 (28.4%)
1000 | 190 (19.0%) | 272 (27.2%) | 245 (24.5%) | 276 (27.6%) | 266 (26.6%)

human

Total METABOOT BASILISK METABOOT BASILISK BASILISK

SCAT SCAT MCAT MCAT MCAT-+
100 36 (36.0%) | 76 (76.0%) | 39 (39.0%) | 76 (76.0%) | 84 (84.0%)
200 53 (26.5%) | 163 (81.56%) | 84 (42.0%) | 161 (80.5%) | 173 (86.5%)
300 94 (31.3%) | 254 (84.7%) | 145 (48.3%) | 251 (83.7%) | 259 (86.3%)
400 | 134 (33.5%) | 340 (85.0%) | 217 (54.2%) | 334 (83.5%) | 350 (87.5%)
500 | 143 (28.6%) | 427 (85.4%) | 310 (62.0%) | 420 (84.0%) | 431 (86.2%)
600 | 176 (29.3%) | 508 (84.7%) | 381 (63.5%) | 499 (83.2%) | 516 (86.0%)
700 | 195 (27.9%) | 582 (83.1%) | 457 (65.3%) | 576 (82.3%) | 604 (86.3%)
800 | 224 (28.0%) | 658 (82.3%) | 516 (64.5%) | 660 (82.5%) | 681 (85.1%)
900 | 238 (26.4%) | 725 (80.6%) | 571 (63.4%) | 724 (80.4%) | 763 (84.8%)
1000 | 278 (27.8%) | 795 (79.5%) | 619 (61.9%) | 795 (79.5%) | 829 (82.9%)

Table B.1. Precision Results
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location
Total METABOOT BASILISK METABOOT BASILISK BASILISK
SCAT SCAT MCAT MCAT MCAT+
100 54 (564.0%) | 89 (89.0%) | 67 (67.0%) | 90 (90.0%) | 84 (84.0%)
200 99 (49.5%) | 175 (87.5%) | 131 (65.5%) | 171 (85.5%) | 175 (87.5%)
300 | 142 (47.3%) | 244 (81.3%) | 191 (63.7%) | 244 (81.3%) | 257 (85.7%)
400 | 200 (50.0%) | 303 (75.7%) | 242 (60.5%) | 300 (75.0%) | 324 (81.0%)
500 | 237 (47.4%) | 342 (68.4%) | 304 (60.8%) | 349 (69.8%) | 371 (74.2%)
600 | 256 (42.7%) | 387 (64.5%) | 366 (61.0%) | 385 (64.2%) | 429 (71.5%)
700 | 293 (41.9%) | 414 (59.1%) | 422 (60.3%) | 447 (63.9%) | 474 (67.7%)
800 | 302 (37.8%) | 430 (53.7%) | 459 (57.4%) | 485 (60.6%) | 509 (63.6%)
900 | 306 (34.0%) | 457 (50.8%) | 498 (55.3%) 540 (60.0%)
1000 | 310 (31.0%) | 475 (47.5%) | 532 (53.2%)
time
Total METABOOT BASILISK METABOOT BASILISK BASILISK
SCAT SCAT MCAT MCAT MCAT-+
100 9 (9.0%) 28 (28.0%) 9 (9.0%) 28 (28.0%) | 30 (30.0%)
200 13 (6.5%) 30 (15.0%) 9 (4.5%) 33 (16.5%) | 33 (16.5%)
300 5 (5.0%) 30 (10.0%) 10 (3.3%) 33 (11.0%) | 37 (12.3%)
400 8 (4.5%) 30 (7.5%) 11 (2.8%) 33 (8.3%) 37 (9.2%)
500 1 (4.2%) 32 (6.4%) 15 (3.0%) 34 (6.8%) 37 (7.4%)
600 3 (3.8%) 33 (5.5%) 16 (2.7%) 34 (5.7%) 40 (6.7%)
700 25 (3.6%) 33 (4.7%) 18 (2.6%) 34 (4.9%) 41 (5.9%)
800 5 (3.1%) 33 (4.1%) 18 (2.2%) 35 (4.4%) 43 (5.4%)
900 6 (2.9%) 37 (4.1%) 19 (2.1%) 35 (3.9%) 45 (5.0%)
1000 6 (2.6%) 37 (3.7%) 19 (1.9%) 35 (3.5%) 45 (4.5%)
weapon
Total METABOOT BASILISK METABOOT BASILISK BASILISK
SCAT SCAT MCAT MCAT MCAT-+
100 23 (23.0%) | 47 (47.0%) | 32 (32.0%) | 49 (49.0%) | 42 (42.0%)
200 24 (12.0%) 9 (29.5%) 9 (24.5%) 3 (31.5%) 2 (31.0%)
300 28 (9.3%) 4 (21.3%) 0 (20.0%) 1(23.7%) 3 (24.3%)
400 29 (7.2%) 4 (16.0%) 9 (17.2%) 7 (19.3%) 8 (19.5%)
500 29 (5.8%) 69 (13.8%) | 70 (14.0%) | 80 (16.0%) | 85 (17.0%)
600 30 (5.0%) 9 (11.5%) 6 (12.7%) 2 (13.7%) 7 (14.5%)
700 31 (4.4%) 1 (10.1%) 9 (11.3%) 5 (12.1%) 7 (12.4%)
800 33 (4.1%) 71 (8.9%) 1 (10.1%) 5 (10.6%) 8 (11.0%)
900 33 (3.7%) 73 (8.1%) 84 (9.3%)
1000 33 (3.3%) 73 (7.3%) 92 (9.2%)
Table B.2. Precision Results
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APPENDIX

RECALL RESULTS

Table C.1 presents recall data for all algorithms described in this thesis. The “Total”
column represents the number of words generated. Recall is only shown for depths 100,
500, and “All”. The “All” results represent recall at the end of 200 iterations of the
algorithm, which may have generated as many as 1000 words. An algorithm may have
generated fewer than 1000 words for reasons described in Section 4.1.2. The total number

of category words in the corpus is listed next to each category’s name in the table.



building (188 total words)

Total | METABOOT BASILISK METABOOT BASILISK BASILISK
SCAT SCAT MCAT MCAT MCATH
100 | 21 (11.2%) | 35 (18.6%) | 26 (13.8%) | 34 (18.1%) | 39 (20.7%)
500 | 33 (17.6%) | 84 (44.7%) | 86 (45.7%) | 97 (51.6%) | 100 (53.2%)
ATl | 43 (22.9%) | 92 (48.9%) | 99 (52.7%) | 102 (54.3%) | 109 (58.0%)
event (501 total words)
Total | METABOOT | BASILISK | METABOOT | BASILISK BASILISK
SCAT SCAT MCAT MCAT MCATH
100 | 61 (12.2%) | 61 (12.2%) | 64 (12.8%) | 64 (12.8%) | 61 (12.2%)
500 | 146 (29.1%) | 196 (39.1%) | 179 (35.7%) | 200 (39.9%) | 186 (37.1%)
ALl | 100 (37.9%) | 272 (54.3%) | 245 (48.9%) | 276 (55.1%) | 266 (53.1%)
human (1856 total words)
Total | METABOOT BASILISK METABOOT BASILISK BASILISK
SCAT SCAT MCAT MCAT MCATH
100 | 36 (1.9%) | 76 (41%) | 39 (2.1%) | 76 (4.1%) | 84 (4.5%)
500 | 143 (7.7%) | 427 (23.0%) | 310 (16.7%) | 420 (22.6%) | 431 (23.2%)
ALl | 278 (15.0%) | 795 (42.8%) | 619 (33.4%) | 795 (42.8%) | 829 (44.7%)
location (1018 total words)
Total | METABOOT BASILISK METABOOT BASILISK BASILISK
SCAT SCAT MCAT MCAT MCATH
100 54 (5.3%) 89 (8.7%) 67 (6.6%) 90 (8.8%) 84 (8.3%)
500 | 237 (23.3%) | 342 (33.6%) | 304 (29.9%) | 349 (34.3%) | 371 (36.4%)
All | 310 (30.5%) | 475 (46.7%) | 532 (52.3%) | 512 (50.3%) | 564 (55.4%)
time (112 total words)
Total | METABOOT | BASILISK | METABOOT | BASILISK BASILISK
SCAT SCAT MCAT MCAT MCATH
100 | 90 (8.0%) | 28 (25.0%) | 9 (8.0%) | 28 (25.0%) | 30 (26.8%)
500 | 21 (18.8%) | 32 (28.6%) | 15 (13.4%) | 34 (30.4%) | 37 (33.0%)
Al | 26 (232%) | 37 (33.0%) | 19 (17.0%) | 35 (31.2%) | 45 (40.2%)
weapon (147 total words)
Total | METABOOT BASILISK METABOOT BASILISK BASILISK
SCAT SCAT MCAT MCAT MCATH
100 | 23 (15.6%) | 47 (32.0%) | 32 (21.8%) | 49 (33.3%) | 42 (28.6%)
500 | 29 (19.7%) | 69 (46.9%) | 70 (47.6%) | 80 (54.4%) | 85 (57.8%)
ATl | 33 (224%) | 73 (497%) | 92 (62.6%) | 88 (59.9%) | 88 (59.9%)

Table C.1. Recall Results
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APPENDIX

CONFUSION RESULTS

Table D.1 and Table D.2 present confusion data for all algorithms described in this
thesis. “Confusion” between categories refers to mistakes made when the algorithm
chooses a word for a category although it really belongs to a different category. For
example, if the word “Utah” is added to the human lexicon, then there is confusion
between the human and location categories.

The data shown represent confusion after 500 words. Each major heading represents
the category for which a word was added to the lexicon. The value of the “True Category”
column represents the true category membership of the misclassified word. To use the
example above, if BASILISK MCAT+ had chosen “Utah” for its human lexicon, then the

value in the human table (BASILISK MCAT+ column, location row) would be incremented.



building
True METABOOT | BASILISK | METABOOT | BASILISK | BASILISK
Category SCAT SCAT MCAT MCAT MCAT+
event 36 9 14 12 9
human 25 48 7 33 38
location 235 207 93 108 89
time 32 1 10 7 5
weapon 1 5 1 0 1
event
True METABOOT | BASILISK | METABOOT | BASILISK | BASILISK
Category SCAT SCAT MCAT MCAT MCAT+
building 6 0 1 0 0
human 55 20 24 14 10
location 36 9 6 10 6
time 22 4 6 3 2
weapon 7 5 0 0 2
human
True METABOOT | BASILISK | METABOOT | BASILISK | BASILISK
Category SCAT SCAT MCAT MCAT MCAT+
building 10 2 1 2 1
event 28 2 8 3 3
location 26 3 9 5 6
time 18 3 3 3 2
weapon 5 3 1 4 2

Table D.1. Confusion Results
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location
True METABOOT | BASILISK | METABOOT | BASILISK | BASILISK
Category SCAT SCAT MCAT MCAT MCAT+
building 16 14 9 6 3
event 53 24 11 9 6
human 20 23 33 22 22
time 34 5 16 5 3
weapon 1 1 0 0 0
time
True METABOOT | BASILISK | METABOOT | BASILISK | BASILISK
Category SCAT SCAT MCAT MCAT MCAT+
building 9 1 3 4 1
event 59 163 45 37 37
human 155 28 21 88 17
location 36 64 11 39 31
weapon 9 5 1 3 3
weapon
True METABOOT | BASILISK | METABOOT | BASILISK | BASILISK
Category SCAT SCAT MCAT MCAT MCAT+
building 10 72 6 6 6
event 60 15 17 15 14
human 136 55 80 32 37
location 32 36 20 9 13
time 26 0 0 0 0

Table D.2. Confusion Results
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