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Stéphane Meystre , Member 09/20/2017
Date Approved

and by Ross Whitaker , Chair/Dean of

the Department/College/School of Computing

and by David B. Kieda , Dean of The Graduate School.



ABSTRACT

Extracting information from electronic health records is a crucial task to acquire empirical

evidence relevant to patient care. In this dissertation research, I aim to improve two clinical

information extraction tasks: medical concept extraction and relation classification.

First, my research investigates methods for creating effective concept extractors for

specialty clinical notes. I present three new specialty area datasets consisting of Cardiology,

Neurology, and Orthopedics clinical notes manually annotated with medical concepts. I

analyze the medical concepts in each dataset and compare them with the widely used i2b2

2010 corpus. Then, I create several types of concept extraction models and examine the

effects of training supervised learners with specialty area data versus i2b2 data. I find

substantial differences in performance across the datasets, and obtain the best results for all

three specialty areas by training with both i2b2 and specialty data. I also explore strategies

to improve concept extraction on specialty notes with ensemble methods. I compare two

types of ensemble methods (voting and stacking) and a domain adaptation model, and show

that a stacked learning ensemble of classifiers trained with i2b2 and specialty data yields

the best performance.

Next, my research aims to improve relation classification using weakly supervised learning.

Due to limited labeled data and extremely unbalanced class distributions, medical relation

classification systems struggle to achieve good performance on less common relation types,

which capture valuable information that is important to identify. I present two clustering-

based instance selection methods that acquire a diverse and balanced set of additional training

instances from unlabeled data. The first method selects one representative instance from

each cluster containing only unlabeled data. The second method selects a counterpart for

each training instance using clusters containing both labeled and unlabeled data. These new

instance selection methods for weakly supervised learning achieve substantial performance

gains for the minority relation classes compared to supervised learning, while yielding

comparable performance on the majority relation classes.



For my wife, Jaeshin.
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CHAPTER 1

INTRODUCTION

Natural language processing (NLP) has played an important role in automated electronic

health records (EHR) mining. It has the potential to facilitate the analysis of massive

EHRs and the acquisition of relevant patient information for improved data quality and

decision making. The Centers for Disease Control (CDC) and Prevention survey in 2013 [109]

reported that 78% of office-based physicians used some type of EHR system in the United

States. Physician adoption of basic EHR systems was just 18% in 2001 so it has significantly

increased. As manual curation of these EHRs is extremely expensive and time-consuming, a

need for NLP technology is still growing in the medical community. Kaufman et al. [124]

showed that incorporating NLP for EHR documentation was more effective than standard

keyboard-and-mouse data entry in terms of documentation time, documentation quality, and

usability. An evidence-based decision support tool utilizing EHRs, IBM Watson for Oncology

(WFO) agreed 79% of the time with its human counterparts, Manipal multidisciplinary

tumor board (MMDT), in diagnosing nonmetastatic disease [234].

EHRs contain important medical information related to patient care management. Health

care professionals enter a patient’s medical history and information about their care at

a health care provider. A patient’s diseases, symptoms, treatments, and test results are

encoded in these notes in an unstructured manner. Meystre et al. [168] explained that

some issues complicate the application of NLP on EHRs, such as ungrammatical phrases,

prevailing usage of abbreviations and acronyms, and misspelled words. In this dissertation,

the terms EHR, EMR (electronic medical record), and clinical note are used synonymously.

EHRs come in a variety of note types and are entered by health care professionals from

varying backgrounds. In this research, I put the EHRs into two categories: broad medical

texts and specialty notes. Broad medical texts, such as discharge summaries and progress

notes, describe a patient’s overall care and their content can cover a diverse set of topics
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cutting across many areas of medicine. Broad medical texts have the advantage of being

relatively well formatted, and they typically follow general documentation standards. The

Joint Commission on the Accreditation of Healthcare Organizations (Hospital Accreditation

Standards, IM.6.10, Elements of Performance 7) [119] recommends that a discharge summary

should include the following information:

• The reason for hospitalization

• Significant findings

• Procedures performed, care, treatment, and services provided

• The patient’s condition at discharge

• Information provided to the patient and family, as appropriate

Specialty notes are authored by medical specialists or medical-related occupations in the

specialty divisions. In contrast to broad medical texts, specialty notes conform to varying

documentation standards, with little overlap between specialties. They contain information

emphasizing specific medical problems, specialized laboratory results, and clinical procedures.

Specialty areas can be defined in several ways. They are often classified by organ system,

patient group, or medical procedures. In the AMA (American Medical Association) physician

specialty group and codes [7], 27 specialty areas are grouped and subspecialty areas are

also listed for each specialty group. The contents of EHRs may vary across specialties.

Physicians with a particular specialty need different information for each patient. The EHRs

generated from Orthopedics are more likely to focus on the treatments for joint and muscle

injuries, while the Cardiology notes would contain the more detailed descriptions of heart

structure and function. Some contents might be missing from broad medical texts but they

are recorded in specialty notes. Kripalani et al. [137] reported that 65% of test results

pending at discharge were missing from discharge summaries in their observational studies.

The restricted interaction between specialties may cause the variation of clinical language

across specialty domains. Patterson and Hurdle [196] and Friedman et al. [90] demonstrated

that clinicians in different clinical domains use specific sublanguages.

NLP techniques combining linguistic, statistical and heuristic methods have been applied

to process unstructured texts. As a subfield of clinical NLP, information extraction (IE) has
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been leveraged to extract structured information such as medical concepts from unstructured

EHRs. Medical concept extraction (MCE) typically consists of two main steps: detection

of the phrases that refer to medical entities, and classification of the semantic category for

each detected medical entity. Leaman et al. [143] addressed that rich terminology describing

medical concepts make MCE in the clinical domain challenging. Medical domain knowledge

and sophisticated information extraction methods are often intergrated to achieve high levels

of performance.

Labeled data need to be employed to train supervised machine learning algorithms for the

MCE task. However, accessing clinical text corpora is more restricted than other biomedical

text sources for reasons of confidentiality and de-identification requirements. In addition,

most publicly available corpora of EHRs consist of broad medical texts. Annotated text

collections representing specialty notes are less attainable. The reason for less availability

of annotated specialty notes would be related to security or confidentiality. Grinspan et al.

[95] addressed that confidentiality, workflow, and different needs for digitized information

cause the variability of EHR use among specialties and the restricted exchange of clinical

data across specialty areas. For the EHRs generated from certain specialties, additional

protections are required when the notes contain particularly sensitive information of patient

confidentiality. For example, psychiatry notes contain mental disorders related to patient

privacy that needs to be protected more than other types of information. Therefore, the

data annotated for the exclusive purpose of the intended users tends to be less sharable with

external institutions. Chapman et al. [35] recognized six barriers to NLP development in

the clinical domain and I believe that they especially apply to specialty areas. The barriers

addressed by Chapman et al. [35] are as follows:

• Lack of access to shared data

• Lack of annotated datasets for training and benchmarking

• Insufficient common conventions and standards for annotations

• The formidability of reproducibility

• Limited collaboration

• Lack of user-centered development and scalability
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My research goal aims to provide more flexible and robust integration of MCE models

by ensemble-based approach on specialty notes with the limited amount of labeled data.

I exploit stacked generalization [276], which is a meta-learning ensemble-based machine

learning method, for the specialty areas. Stacked generalization uses the outputs of multiple

learners to take advantage of their complementary strengths and diversities. I create multiple

components learned from broad medical texts and specialty notes using a variety of IE

techniques. Then, I combine broad medical components and specialty area components in a

single ensemble to improve MCE on targeted specialty areas.

Medical concept extraction is a fundamental problem that can serve as the stepping

stone for high-level tasks, such as inferring a medical concept’s assertion, which is contextual

information related to polarity, temporality, and relevance to the patient. The assertion

information can play an important role in medical relation classification, another example

necessitating MCE. For this research, I create a supervised assertion classifier to identify

the assertion type of medical problems. For weakly supervised learning preparation of the

medical relation classification task, the assertion classification model is applied to classify

the assertion of each medical problem concept extracted from unlabeled data.

Medical relation classification (MRC) is one of the main tasks in this dissertation research.

MRC involves involves recognizing different types of relationships between pairs of medical

concepts. For instance, a relation can be extracted between a lab test and the test outcome

it revealed. Identifying relations between concepts is essential to provide accurate and

complete information about the concepts.

Classifying relations between pairs of medical concepts in clinical texts is a crucial task to

acquire empirical evidence relevant to patient care. For example, extracting relations between

mentions of a medication and mentions of allergy symptoms enables differentiation between

situations when a medication causes the symptoms and situations when a medication is

prescribed to alleviate symptoms.

When the amount of labeled data is small, achieving good performance on less common

“minority” relation types is challenging. But infrequent relations can capture valuable

information that is important to identify. For example, when a treatment is generally

considered safe, it may result in side effects. Although a side effect may be rare for the

specific treatment, recognizing it and providing a proper treatment is important to prevent
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the unwanted encounters. My second research goal aims to improve medical relation

classification in EHRs with an emphasis on minority classes by exploiting large amounts

of unlabeled clinical texts, which are readily available in abundant quantity. I present two

instance selection methods for more accurate classification of minority classes in the MRC

task. These methods selectively choose unlabeled instances for self-training in an iterative

weakly supervised learning framework. Both methods apply a clustering algorithm to group

instances into clusters based on similarity measures. In the following sections, I give an

overview of my research contributions for MCE and MRC.

1.1 Medical Concept Extraction for Specialty Notes
MCE is a challenging problem of growing interest to both the NLP and medical informatics

communities. My research starts with the MCE task defined for the 2010 i2b2 Challenge

[263]. This task involves extracting three types of medical concepts: problems (e.g., diseases

and symptoms), treatments (e.g., medications and procedures), and tests.

The dominant research of MCE in the clinical domain has primarily been focused on

broad medical texts. Most publicly available corpora of clinical medical notes consist of

broad medical texts (e.g., i2b2 Challenge Shared Tasks [241, 259–263] and ShARe/CLEF

eHealth Shared Tasks [125, 242]). I use the 2010 i2b2 corpus as broad medical texts. This

corpus consists of discharge summaries and progress notes from various divisions in three

different medical institutions.

There has been relatively little research on MCE for more specialized clinical texts.

Studies focused on radiology and pathology reports are an important exception, but I

would argue that they also cover a broad set of clinical conditions. Considering the current

situation, creating corpora or text collections representing more diverse specialty areas

would be valuable. A contribution of this research is that I created a new annotated data

set of specialty notes from the BLUlab corpus. The BLUlab corpus is a large corpus of

de-identified EHRs drawn from multiple clinical settings at the University of Pittsburgh

Medical Center. I used the specialty area categorizations classified by Doing-Harris et al. [72].

They divided the BLUlab corpus into nine specialty groups for their specialty sublanguages

research across institutions. For my research, I extracted three specialty areas from the

corpus: cardiology, neurology, and orthopedics. To keep compatibility with the 2010 i2b2
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corpus, two independent medical experts annotated the medical concepts using the 2010

i2b2 Challenge guidelines [3].

I investigate methods for creating MCE systems that will perform well on specialty area

notes including ensemble learning for the MCE task with both broad medical texts and

specialty area notes. The IE models and ensemble based methods are briefly described in

the following section.

1.1.1 Information Extraction Models

I explore several classification methods, including rule-based, knowledge-based, and

multiple machine learning models. Each method is capable of automated recognition of

medical concepts without manual medical expertise. Four types of IE models that use a

diverse set of extraction techniques are developed.

• MetaMap: I use a well-known knowledge-based system, MetaMap [10], that assigns

UMLS Metathesaurus semantic concepts to phrases. The UMLS semantic types

covering the types of medical concepts are effectively identified without any manual

effort.

• Rules: I create a set of probability-associated rules involving word or phrase frequency

aligned to medical concepts. These rules are compiled by harvesting information from

the annotated training data. Domain expertise for the development of the rules is not

required.

• Contextual Classifier: I create a supervised learning classifier with contextual features.

I train a support vector machine (SVM) classifier with a linear kernel for multiclass

classification.

• Sequential Classifier: I train sequential taggers using linear chain conditional random

fields (CRF) supervised learning models. In contrast to the contextual classifier

mentioned above, the CRF classifiers use a structured learning algorithm that explicitly

models transition probabilities from one word to the next.

I examine these IE models and evaluate their performance on both broad medical texts

and specialty notes. I investigate how well MCE models perform on specialty notes when
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trained on a broad medical corpus and then when trained on the same type of specialty

data.

1.1.2 Stacked Generalization for Medical Concept Extraction

For certain NLP tasks that already reach mature performance by a single classifier,

ensemble methods have been used to further improve performance. These approaches are

capable of producing more accurate predictions by regulating less accurate outputs from

individual classifiers. They have been applied to overcome the shortcoming of an individual

IE method dependent on a specific algorithm.

I explore two types of ensemble architectures that use the medical concept extraction

methods described above as components of the ensemble. I created a voting ensemble, as a

simple but often effective ensemble method, and a stacked generalization ensemble.

My stacked ensemble trains a meta-classifier with features derived from the predictions

and confidence scores of a set of diverse component classifiers. Figure 1.1 shows the

architecture of the stacked generalization ensemble. This ensemble architecture can be

beneficial in two ways: (1) it can exploit multiple models that use different extraction

techniques, and (2) it can exploit multiple models trained with different types of data.

I combine broad medical data and specialty data to outperform models trained on either

type of data alone, when the amount of specialty data is limited. The stacked ensemble

provides effective integration of any set of MCE models because it automatically controls

the influence of each MCE model.

1.2 Exploiting Unlabeled Data for Relation Classification
Given a pair of medical concepts found in a sentence, a relation classification system

must determine the type of relation that exists between the two concepts. My research

focuses on the relation classification task introduced in 2010 for the i2b2 Challenge Shared

Tasks [263]. This task involves recognizing eight types of relations between pairs of three

types of medical concepts: problems, treatments, and tests. Note that this task aims to

classify relations of given reference standard concepts.

The most successful methods used for relation classification include various supervised

machine learning algorithms [263]. Extremely skewed class distributions pose substantial
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challenges for supervised machine learning because only a small number of labeled examples

are available for training. As a result, machine learning classifiers can achieve high accuracy

for the dominant classes but often perform poorly with the minority classes. Manually

annotating more data is not a viable solution because of the high cost of manual annotation

by medical experts. Also, because the minority classes are relatively rare, each batch of

new annotations would provide only a relatively small number of new examples. There is a

substantial cost for low reward.

As this time-consuming manual annotation effort poses a limited benefit, weakly super-

vised learning has been pursued to extend the amount of training data more efficiently. To

take advantage of the large amounts of unlabeled clinical notes that are available, I explore

an iterative weakly supervised learning framework. My research explores the idea of grouping

both labeled and unlabeled instances together into clusters and using similarity measures

to obtain new training instances by cluster analysis. I use the clustering-based instance

selection methods to acquire a diverse and balanced set of additional training instances from

unlabeled data. Figure 1.2 shows the process for a learning mechanism for medical relation

classification exploiting unlabeled data. First, the relation classifier is trained only with

labeled data. Second, the classifier is applied to the unlabeled data so that each unlabeled

instance receives a predicted label. Third, new instances from unlabeled data are obtained

through my new instance selection methods. Finally, the classifier is retrained with them.

1.3 Claims and Contributions
There are two claims that are to be made for this dissertation:

1. Ensemble methods with a combination of models, some trained on broad medical texts

and others trained on specialty area texts, can improve medical concept extraction on

specialty notes.

Models trained with a combination of broad medical data and specialty data perform

better than models trained on either type of data alone, when the amount of specialty

data is limited. I present a way to combine multiple models that use different extraction

techniques, and multiple models trained with different types of data. For this research,

I create MCE models that use a diverse set of extraction techniques. Compared to

MCE models trained on a broad medical corpus or trained on the same type of specialty
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data, an ensemble containing MCE models trained on broad medical texts as well as

MCE models trained on specialty area texts achieves consistently better performance

on specialty area notes.

A stacked learning ensemble with mixed domain models can achieve good performance

with a favorable recall/precision trade-off. Compared to the model trained on the

union of broad medical data and specialty data, a stacked learning ensemble consisting

of a diverse set of MCE models trained from both broad medical data and specialty

data can yield more precise extraction of medical concepts in specialty areas.

My stacked learning ensemble also offers the advantage of being able to easily

incorporate any set of individual concept extraction components. The stacked learning

ensemble, in which the meta-classifier automatically learns the beneficial effect of a

new component, can offer more extensible and efficient integration of MCE models.

2. Clustering-based instance selection from unlabeled data can improve performance on

minority classes in medical relation classification.

This research shows that clustering-based instance selection from unlabeled text data

outperforms supervised classification and traditional self-training on minority classes for

relation type classification between medical concepts. I present two instance selection

methods in weakly supervised learning specifically aimed at improving performance on

minority classes. These two methods are based on clustering unlabeled data and can

create a diverse and representative set of new instances from the unlabeled data.

The first instance selection method, called Unlabeled Data Prototypes (UDP) Selection,

selects instances from clusters containing only unlabeled data. The most representative

instance from each cluster is selected as additional training data. The second method,

called Labeled Data Counterparts (LDC) Selection, selects instances from the clusters

containing both labeled and unlabeled instances. For each labeled instance, this

method identifies its closest counterpart by selecting the unlabeled instance in the

cluster that is most similar to it.

This research also demonstrates that these new instance selection methods maintain

good performance on the majority classes. These methods produce improvements on

the majority classes with fewer selected instances than self-training. They can offer a
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robust solution for classification problems when the data has a highly skewed class

distribution, but large quantities of unannotated text data are available.

1.4 Guide to This Dissertation
The rest of this dissertation is structured as follows:

• Chapter 2 is devoted to discussing related work to this dissertation research. It describes

how concepts have been extracted in newswire articles, biomedical literature, and

clinical notes; how the assertion information of a medical concept has been determined;

and how relations between a pair of concepts have been classified in these NLP domains.

Then, this chapter explores how the components of information extraction methods

have been incorporated and how unlabeled data has been exploited.

• Chapter 3 describes medical concept extraction from specialty area clinical notes. This

chapter presents new text corpora created from three specialty areas and analyzes their

difference in content from each other and i2b2 medical notes. It discusses a variety of

information extraction models and evaluates their performance on all of these data sets.

This chapter also investigates how ensemble-based methods that combine multiple

MCE models perform on specialty notes.

• Chapter 4 describes details of assertion classification and the features used for this

task. Then, it presents the classification results with the full set of features and also

investigates the improvements resulting from the addition of each type of features.

• Chapter 5 focuses on medical relation classification and discusses the challenges of this

task. It describes data preparation for weakly supervised learning by identifying the

medical concepts in the unlabeled data and classifying the assertion of each medical

problem concept. This chapter introduces supervised classification models, self-training

with confidence-based instance selection, and two clustering-based instance selection

methods. Then, it presents the experimental results and compares the differences

between these selection methods. This chapter demonstrates that clustering-based

instance selection methods from unlabeled text data improve performance on minority

classes for relation type classification.
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• Chapter 6 summarizes this dissertation. It discusses the research contributions and

outlines directions for future research.



CHAPTER 2

RELATED WORK

In the area of clinical NLP, a large number of studies have emerged to address the

challenging task of information extraction (IE). Medical concept extraction (MCE) and

medical relation classification (MRC) tasks are analogous to entity recognition and relation

extraction tasks in the general language domain respectively. Both tasks are often considered

as subtasks of information extraction, which is defined as “the process of scanning text for

information relevant to some interest, including extracting entities, relations, and, most

challenging, events—or who did what to whom when and where” [107].

In this chapter, I present related work to this dissertation research. I describe (1) how

concepts have been extracted in newswire articles, biomedical literature, and clinical notes

(Section 2.1), (2) how the assertion information of a medical concept has been determined

(Section 2.2), and (3) how relations between a pair of concepts have been classified in these

NLP domains (Section 2.3). Then, I explore how the components of IE methods have

been incorporated and unlabeled data has been exploited with regard to these target tasks

(Section 2.4, Section 2.5).

2.1 Recognizing Concepts
I examine the question of how the semantic types of concepts have been defined for

different target domains. I briefly introduce the history of the named entity recognition

(NER) task and present influential research.

2.1.1 Named Entity Recognition From General Text

Once originated from MUC-6 (the sixth in a series of Message Understanding Conferences)

[97], NER has been a critical issue in IE along with relation extraction (RE) and coreference

resolution. The goal of NER is to extract and classify proper named or specialized entities into

predefined categories such as Person, Organization, Location, time expressions (Date, Time),
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and number expressions (Money, Percent) [97]. Collections of newswire articles written in

English or other languages have been presented for several shared tasks [41, 71, 253, 254]

on NER. In the CoNLL conferences [253, 254], four types of entities were defined: Person,

Organization, Location, and Miscellaneous names. The Automatic Content Extraction (ACE)

Program [71] called for recognizing seven types of entities: Person, Organization, Location,

Facility, Weapon, Vehicle, and Geo-Political Entity.

Since the beginning of the new millennium, there have been outstanding achievements in

the extraction of named entities (NEs) and various machine-learning algorithms have been

applied. Mikheev et al. extracted NEs from MUC-7 [170] articles using the combination

of rule-based grammars and statistical models. They conducted a series of experiments

with different settings of gazetteers, dictionary lists of people, organizations, and other NEs.

They observed that their NER system could yield satisfactory performance on Person and

Organization entities, even without gazetteers, because of the contextual clues available in

texts. For example, “XX, the CEO of YY ” as evidence XX is a person and YY is an

organization.

Recent NER systems have been framed as a sequential token-based labeling problem

with various encoding schemes to assign a class label to each word in a sequence. Borthwick

et al. [24] allowed maximum entropy models to be trained with the combined features from

training data and the outputs of other NER systems [96, 138, 152]. They reported that

incorporating the outputs of external systems outperformed the best individual classifier.

Lafferty et al. [141] presented the conditional random fields (CRF) learning method to build

a statistical model for sequential labeling. They showed CRF models could overcome the

independence assumption problems in generative models such as hidden Markov models

(HMMs) [17, 204] and provide a more robust solution over maximum entropy Markov models

(MEMMs) [160]. McCallum and Li [161] used CRFs to perform NER and their system

achieved an 84.0% F1 score on the CoNLL-2003 English test set [254].

Other machine-learning techniques also have been used for the NER task. Collins [50]

describes the perceptron algorithm [218] for training tagging models, as an alternative to

MEMMs and CRFs. Collins [51] also used the voted perceptron [88] to rerank the N-best

sequences of labels outputted from an MEMM tagger and the reranking method showed a

significant improvement over the MEMM tagger. Isozaki and Kazawa [113] and Asahara
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and Matsumoto [11] used the support vector machines (SVM) [53, 267] algorithms to extract

NEs from Japanese texts.

Some research relevant to this dissertation research can be found in semantic class

induction (SCI) methods. The goal of SCI is to construct a lexicon (dictionary), lists of

words with semantic class labels. The target entity types of SCI are less strict than NER

and include nominal noun phrases. NER classifies instances in context but SCI produces

stand-alone lexicons.

Bootstrapped learning, a form of self-training, has been widely applied to build semantic

lexicons [102, 211, 214, 248, 275]. Starting with a set of seed words, bootstrapping labels

matching entities in a corpus. It uses pattern contexts to identify new entities. This

iterative procedure often causes semantic drift [59] that occurs when the extracted entities

do not correctly represent the original semantic class. To reduce the semantic drift problem,

McIntosh and Curran [166] proposed a filtering method based on the distributional similarity

between extracted entities.

Recently, Huang and Riloff created semantic class taggers induced by bootstrapping that

exploited a domain-specific corpus for veterinary medicine [112]. Then, Qadir and Riloff

[202] proposed an ensemble method incorporating pattern-based bootstrapping, the semantic

taggers of Huang and Riloff [112], and coreference-based lexicon construction. Their results

showed that the ensemble-based approach acquired higher quality of lexicons and obtained

better semantic tagging results than the individual methods.

In this section, I covered NER for the general text domain by describing the entity types

of interest to be extracted, shared tasks focusing on the NER task, and the techniques

proposed for the task. Also, I briefly reviewed research that focused on semantic class

induction. A more comprehensive review of general text NER can be found in the review by

Nadeau and Sekine [181]. In the following two subsections, I describe the studies targeting

NER from biomedical literature and EHRs.

2.1.2 NER From Biomedical Literature

NER in biomedical natural language processing (BioNLP) has advanced from the general

text NER by sharing the algorithms and features. In BioNLP, IE has aimed at extracting

genetic information or bio-entities, such as Gene, DNA, RNA, and Protein from biomedical
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literature. NER in BioNLP can be confronted with some difficulties. As pointed out by

Tuason et al. [257] and Yeh et al. [284], (1) gene mentions are often made up of common

words instead of proper nouns, (2) new genes are continually being discovered and known

ones are renamed, (3) in many cases, they are named without following standard naming

conventions, (4) genomic databases cannot cover the entire biological entities.

Several shared tasks [105, 130, 131, 208, 284] related to BioNLP have been organized and

corpora with bio-entity annotations have been developed. The BioCreAtIvE task 1A [284]

dealt with gene name detection. The target gene entities for this task includes binding

sites, motifs, domains, proteins, promoters, and other information, but they are identified

as “names” with no distinction between them. In the Bio-Entity Recognition Task at the

JNLPBA shared task [130], five different types of bio-entities, protein, DNA, RNA, cell line,

and cell type, were targeted for NER. Although genes and proteins are the most common

entities annotated in biomedical corpora, other semantic types are also used for entity

recognition. Nerves [185] analyzed the semantic annotations from 36 biomedical corpora and

categorized the semantic types into the six following groups: gene/protein, variant/mutation,

drug/chemical, cell/anatomy, disease, and organisms.

Similar to NER in the general text domain, diverse machine-learning algorithms have

been applied for the BioNLP NER. To extract proteins or genes from the BioCreAtIvE

corpus or the JNLPBA corpus, HMMs [291, 295], MEMMs [84, 85], CRFs [164, 227], or

combinations with multiple models [235, 297] have been employed. Some NER systems

originally trained for general texts were adapted for the BioNLP domain. Zhou and Su

[296] proposed an HMM-based NER tagger for MUC-6 and MUC-7 and their tagger [297]

was altered for GENIA V3.0 corpus [129]. For the BioCreAtIvE and JNLPBA evaluation,

Finkel et al. [84, 85] customized the system developed for the CoNLL shared task [134] with

domain specific features.

I reviewed the work aimed for NER on biomedical literature and the semantic types

defined for this domain. I did not attempt a complete review of NER in BioNLP, such

reviews are available in [48, 104, 110, 232]. In next subsection, I describe the research related

to medical concept extraction from EHRs.
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2.1.3 Medical Concept Extraction From EHRs

MCE is one of the fundamental tasks to transform free narrative text data in EHRs into

structured information. Recent work in the clinical domain has demonstrated that NLP

has the potential to process EHRs for concept detection even though there exists additional

challenges due to limited access to shared data, the unstructured format of narrative texts,

and heterogeneous contents across various medical areas and health care providers.

In early NLP research for clinical notes, most systems relied on rule-based approaches.

Friedman et al. [89] created MedLEE which has been applied to chest radiology reports,

discharge summaries, and operative reports to extract and encode medical information.

MedLEE [89] uses a rule-based system that extracts medical concepts by performing a

shallow syntactic analysis and using semantic lexicons. SymText was developed by Haug et

al. [99, 100] and evolved into MPlus [44]. MPlus [44] was used to extract medical findings,

diseases, and appliances from chest radiograph reports. Heinze et al. [103] presented LifeCode

to extract demographic and clinical information from EHRs in emergency medicine and

radiology specialties. MetaMap [10] was developed to recognize Metathesaurus concepts

from biomedical texts by utilizing the UMLS (Unified Medical Language System) [22, 154].

The UMLS is a repository of health and biomedical vocabularies and standards developed

by the US National Library of Medicine [22]. MetaMap has frequently been used for EHRs

as well. Zou et al. [306] presented syntactic and semantic filters to remove the irrelevant

concept candidates in the extraction of key UMLS concepts from EHRs.

Many applications have used open standard frameworks such as UIMA (Unstructured

Information Management Architecture) [82, 83] and GATE (the General Architecture for

Text Engineering) framework [57, 58], which have improved scalability and interoperability

between different analytical components. Zeng et al. [286] built HITEx (Health Information

Text Extraction), which is a GATE pipelined system with multiple preprocessing modules,

to extract family history information, principal diagnosis, comorbidity and smoking status

from clinical notes. For the classification of subjects with rheumatoid arthritis, Liao et al.

[150] used HITEx to extract clinical information such as disease diagnoses, medications,

laboratory data, and radiology findings of erosions. Savova et al. [224] built an open-source

UIMA based IE application, cTAKES (the clinical Text Analysis and Knowledge Extraction

System), consisting of a number of components trained for the clinical domain, such as
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a drug NE recognizer, assertion classifier, constituency parser, and so forth. It has been

used for more than 20 research projects related to clinical NLP tasks including document

classification [151], drug side effect extraction [233], coreference resolution [173, 293], and

clinical question answering [31, 191]. Readers interested in clinical NLP can be referred to

the detailed reviews of earlier and recent studies by Meystre et al. [168] and Nadkarni et al.

[182].

Most current IE systems in clinical NLP use statistical machine learning approaches that

often achieve better performance than rule-based approaches that typically require manual

effort. MCE has been the focus of several shared tasks, such as the i2b2 Challenge Shared

Tasks [262, 263], the ShARe/CLEF eHealth Shared Tasks [242]. My research focuses on the

MCE task that was introduced in 2010 for the i2b2 Challenge Shared Tasks [263]. These

challenge tasks included: (1) the extraction of medical problems, tests, and treatments, (2)

classification of assertions pertaining to medical problems, and (3) relations between medical

problems, tests, and treatments. The best performance on the 2010 i2b2 concept extraction

task (1) was achieved by de Bruijn et al. [64] with 83.6% recall, 86.9% precision, and 85.2%

F1 score. They integrated many features commonly used in NER tasks including syntactic,

orthographic, lexical, and semantic information (from various medical knowledge databases).

Jiang et al. [116] trained a sequence-tagging model that consisted of three components in a

pipeline: concept taggers with local features and outputs from different knowledge databases,

post-processing programs to determine the correct type of semantically ambiguous concepts,

and a voting ensemble module to combine the results of different taggers. Their system

achieved an 83.9% F1 score. Subsequent research by Tang et al. [247] showed that clustering

and distributional word representation features achieved a higher F1 score of 85.8%.

As discussed in this subsection, some research focusing on specialty notes has been

proposed but most corpora annotated for specialty areas have not been shared with others.

Most publicly available corpora provided by some shared tasks are selected from broad

medical texts. Consequently, relatively little research on MCE from specialized clinical texts

has been conducted because of the lack of shared datasets consisting of specialty notes.

Effective integration of MCE models trained on both broad medical texts and specialty

notes is presented in this dissertation.

I reviewed which types of concepts have been extracted in each domain and what methods
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have been implemented for concept or entity recognition. The next section gives a brief

overview of research that has tackled the assertion classification problem.

2.2 Classifying a Concept’s Assertion Information
Taking into account the contextual information of a medical concept is crucial to acquire

the practical meaning of the concept entered in EHRs. When a patient has multiple medical

symptoms and they are transcribed in an unstructured manner, the contextual information

of each symptom might vary. Distinguishing negated medical concepts from positive concepts

would be important to summarize the patient’s health information and the negated concepts

need to be treated with extra care. When some clinical diagnoses are written as part of

decision support messages or reminders, they are not associated with the actual patient, but

rather serve as a recommendation. For example, “Please contact primary care provider if

the patient has recurrent fevers” does not indicate the patient’ medical problem and the

medical problem, “fevers,” should not be assigned to the patient.

Inferring the contextual information can be investigated as a multiclass problem and this

task has been recently explored in the medical domain. For local context recognition and

analysis, several NLP systems have been developed that focused on the negation or other

assertions of medical concepts. For negation classification, rule-based systems like Negfinder

[180] and NegEx [33] have been introduced. They used regular expressions with trigger terms

to determine whether a medical term was negated. NegEx [33] reached 77.8% recall and

84.5% precision for 1,235 medical problems in discharge summaries. In the BioNLP-2009

[128] and CoNLL-2010 [81, 268] Shared Tasks, detecting negations (and their scope) in

natural language text was the focus. Kilicoglu and Bergler [126] compiled negation cues

from the corpus and detected the negation using dependency-based heuristics. Morante et

al. [179] implemented two stages of negation scope detection: sentence level classification

and phrase level with memory-based learning. After recognizing the negation signals from

each sentence, they sought the full scope of these negation signals in the sentence.

Chapman et al. [34] introduced the ConText algorithm, which extended the NegEx

algorithm to detect four assertion categories: absent, hypothetical, historical, and not

associated with the patient. Uzuner et al. [264] developed the Statistical Assertion Classifier

(StAC ) and showed that a machine learning approach for assertion classification could
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achieve results competitive with their own implementation of the Extended NegEx algorithm

(ENegEx). They used four assertion classes: present, absent, uncertain in the patient, or not

associated with the patient.

Assertion classification was the focus of the 2010 i2b2 NLP challenge [263] and the defined

task consisted of choosing the status of medical problems by assigning one of six categories:

present, absent, hypothetical, possible, conditional, or not associated with the patient. The best

performing system [64] reached a microaveraged F1 score of 93.6%. Their breakdown of F1

scores on the individual classes was: present 95.9%, absent 94.2%, possible 64.3%, conditional

26.3%, hypothetical 88.4%, and not associated with the patient 82.4%. Several other studies

then used this challenge data and showed that machine learning approaches [16, 46, 133]

performed better than handcrafted rule-based systems. Kim et al. [133] used a variety

of linguistic features, including lexical, syntactic, lexico-syntactic, and contextual features

for assertion classification. They developed some features to improve the performance of

minority classes. For example, as medical problems associated with allergies are annotated as

conditional [2], five allergy-related section headers (i.e., “Allergies,” “Allergies and Medicine

Reactions,” “Allergies/Sensitivities,” “Allergy,” and “Medication Allergies”) were defined.

Some studies have been also carried out on similar specialized classification tasks, such as

tumor status [40], lung cancer stages [188], and medication prescription status classification

[167]. In the next section, I briefly introduce the relation extraction task in general text

and the BioNLP domain, and describe how the medical relation classification work in this

dissertation relates to prior research.

2.3 Classifying a Relation Between a Pair of Concepts
While concept recognition undertakes the detection of an individual entity of interest, and

assertion classification infers the contextual attribute of a concept, relation classification has

to deal with a pair of concepts. Thus, the relation classification task can be more challenging

than those tasks described in the two previous sections (Section 2.1, Section 2.2), as it has

to consider the pair of concepts and any information around them simultaneously. The

relation classification is to determine whether a pair of concepts (or entities) are in a relation,

and how they are semantically related when a relation exists between them. This task has

been commonly addressed by two approaches in supervised learning: feature-based and
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kernel-based. Using unlabeled data, weakly-supervised learning (including bootstrapping

methods) has also been applied for this task.

In this section, I discuss the application of these methods in general NLP, bioNLP, and

clinical NLP. I mainly focus on relations between exactly two concepts. (Note that the

number of semantic classes does not necessarily need to be two.) For a more comprehensive

review including higher-order relations [165], which extract complex relations between more

than two concepts, the reader can refer to [13, 77, 178].

2.3.1 Relation Extraction in General Text

Similar to the NER task, relation extraction (RE) firstly commenced in general text

NLP. This task was introduced as an NLP task for the MUC-7 (Message Understanding

Conference) [41, 158] and also added in Phase 2 of ACE (Automatic Content Extraction)

[237]. In the MUC-7, three relation types were defined: LOCATION OF, EMPLOYEE OF,

and PRODUCT OF. The relations were extended for ACE and six relation types were defined

in the ACE 2008 [12]: Physical, Part-whole, Personal-Social, ORG-Affiliation, Agent-Artifact,

and Gen-Affiliation. Subtypes were also added for each major relation type. For example,

the ORG-Affiliation relation has the following subtypes: Employment, Ownership, Founder,

Student-Alum, Sports-Affiliation, Investor-Shareholder, and Membership.

Lin and Pantel [153] defined a path as a relation between two entities. They computed

the statistics of paths derived from dependency trees in a corpus to find the similar paths

(or “inference rules”) of a given path. For example, for “X is author of Y,” “X writes Y,”

and “X co-authors Y ” were some of the paths correctly found. Miller et al. [172] used

augmented parse trees to integrate syntax and semantic information of entities and relations.

Their integrated model was jointly trained for RE and other NLP tasks to prevent the error

propagation through the system pipeline.

To create relation classifiers from supervised training data, feature-based or kernel-based

methods have been attempted with the datasets from these NLP shared tasks. In feature-

based methods [98, 115, 121, 292], Kambhatla [121] constructed maximum entropy models

employing lexical, syntactic and semantic features derived from the syntactic parse tree and

the dependency tree. GuoDong et al. [98] also examined the combination of these kinds of

features using SVM classifiers. They showed that chunking features regarding the phrase
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heads and the phrase path were very effective for RE. Jiang and Zhai [115] conducted a

thorough experimental evaluation with features used in previous work and new features

in order to study the effectiveness of these features. They reported that adding complex

features, such as complete subtrees of the syntactic parse tree, could hurt the performance

when effective features are already included.

As an alternative to feature-based methods, Zelenko et al. [285] proposed kernel methods

for RE. The kernel methods [30, 56, 285, 287, 288] focus on the construction of kernel (or

similarity) function to compute the similarity between two relation instances. They used

shallow parsing information to represent the relation instances and applied kernels that

represent the similarity of two shallow parse trees. Zhang et al. [288] presented a composite

kernel consisting of an entity kernel and a convolution parse tree kernel. They showed that

the composite kernel is capable of using effective syntactic structure features. Qian et al.

[203] pointed out that prior work using tree kernels [287, 298] may contain unnecessary

information and miss useful context-sensitive information related to predicate-linked paths.

They proposed a new method that exploits constituent dependencies to overcome these

problems.

Some studies based on weakly supervised learning have been proposed for RE. Zhang [290]

presented a bootstrapping algorithm using random feature projection. Multiple classifiers

were trained with randomly selected features from labeled data and they voted to assign

the labels of unlabeled data. Xu et al. [279] also used a bootstrapping algorithm to extract

relations by applying the rules induced from linguistic patterns from labeled data. The

patterns were derived from dependency trees containing seed examples. Chen et al. [38]

proposed graph-based weakly supervised learning using a label propagation algorithm. Sun

et al. [238] presented a weakly supervised learning method with large-scale word clustering.

They augmented the features derived from the word clusters to compensate for the absence of

lexical features in labeled data. Wang and Fan [271] collected training data using a clustering

algorithm. To minimize the manual annotations, the most representative instance with the

highest average similarity to other members of each cluster was selected for annotation.

Methods using Distant Supervision [54] have been popularly applied to RE. Distant

supervision finds examples of the targeted relations from existing knowledge databases

and uses them to generate the training instances. Freebase [23], an open large semantic
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community-curated knowledge base, has been commonly used for RE. For example, using

the fact that The Incredibles was directed by Brad Bird extracted from Freebase relations,

the entity pair of “The Incredibles” and “Brad Bird” can be annotated as a Directed by

or Director of relation when they co-occur in the same sentence. Mintz et al. [174] used

Freebase to collect training instances from Wikipedia articles with distant supervision.

Yao et al. [281] applied selectional preferences [209, 210] of relations to filter instances

extracted from Wikipedia or New York Times articles. Instances that violated the selectional

preferences were excluded to improve precision. More recent studies with distant supervision

have been proposed: extending the knowledge resources [190], applying multi-instance

multi-label learning [245], filtering out falsely labeled instances through pattens derived from

the dependency parse [246], and combining with active learning [8].

There has been some research exploiting texts on the web to extract semantic relations.

Etzioni et al. [78] developed an unsupervised IE system capable of scaling up relation

extraction by collecting information from the web. Starting with a small set of generic

extraction patterns, their system iteratively extracted entities and their relations and

then used mutual-information statistics to validate them. This task was specified as

Open Information Extraction (OIE) by Banko et al. [15]. Different than conventional

RE that focused on predefined semantic relations, OIE attempts RE with nonrestricted

(or all possible) types of relations from the web documents. Further studies using this

domain-independent unsupervised method have been conducted: by processing Wikipedia

articles [277], incorporating syntactic and lexical constraints to reduce uninformative and

incoherent extractions [79], and extracting relations expressed by verbs and other syntactic

entities as well [159].

I have discussed feature-based and kernel-based RE methods, weakly supervised ap-

proaches including Distant Supervision, and Open Information Extraction. In the next

subsection, I review the research conducted for several RE subtasks in the biomedical domain.

2.3.2 Relation Extraction From Biomedical Literature

Along with entity recognition from biomedical literature, relation extraction has been an

important topic in BioNLP as well. Biomedical literature has been used for both relation

extraction and entity recognition because new medical entities and their relationships are
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increasingly introduced in the biomedical literature but they are not often covered by

knowledge-based databases. I survey the studies related to RE from biomedical literature in

a rather different way than the previous subsection. While I discussed the RE in general

text from the methodology perspective, the analysis of RE from biomedical literature would

be focused on the specific tasks defined for BioNLP.

RE methods typically capture the relationships between pairs of biomedical entities

as well. Several shared tasks focusing on RE including protein-protein interaction (PPI )

[135, 136, 144], gene interaction [25, 183], and drug-drug interaction (DDI ) [225, 226] have

facilitated this research and more approaches have been proposed as post-shared task efforts.

Extraction of protein-protein interaction is a widely studied area in BioNLP. According

to De Las Rivas and Fontanillo [65], PPI can be defined as a physical contact with molecular

docking between proteins that occur in a cell or in a living organism. Blaschke et al. [18]

used pre-specified protein lists and action verbs to identify the sentences containing PPI

information from Medline abstracts. Pustejovsky et al. [201] created a parser to extract

inhibition-relations, for example, “the tail receptor peptide inhibits HGF-mediated invasive

growth”. They applied anaphora resolution to extract more relations by comparing syntactic

and semantic features between the anaphor and the candidate antecedents. Other research

employing shallow or full parsing information includes [195, 249, 280]. Recently, Miwa et al.

[175] combined different types of kernels based on various parse structures for PPI extraction.

They also analyzed the compatibility of five PPI corpora and showed that the corpora

could be adapted with a small effort to improve PPI extraction performance. Miyao et al.

[176] presented a comparative evaluation of state-of-the-art parsers in PPI extraction. They

obtained higher accuracy than the previous state-of-the-art results when they combined the

deep parser by Miyao and Tsujii [177] and Charniak and Johnson’s reranking parser [36].

Genic Interactions extraction was introduced in the Learning Language in Logic challenge

(LLL05 ) [183]. The task is to extract protein/gene interactions from biology abstracts. More

specifically, pairs of an agent and target with genic interactions, such as action, binding

and promoter, and regulon, need to be extracted. Fundel et al. [92] created a rule-based

system using dependency parse trees that provide non-local dependencies within sentences.

Even with a small number of simple rules applied to these trees, they achieved competitive

performance on the LLL challenge dataset. Kim et al. [132] found the shortest path between
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two entities in the dependency relations to train multiple kernels. This shortest path allowed

the kernels to be extended from flat linguistic features to structural information.

DDIExtraction-2011 [226] and DDIExtraction-2013 [225] challenge tasks aim to extract

drug-drug interactions from biomedical texts. Thomas et al. [250] obtained higher results

than any other participants in DDIExtraction-2011 by implementing the majority voting

of several kernel-based classifiers and a case-based reasoning (CBR) [5] system. The best

performance on the DDIExtraction-2013 task was achieved by Chowdhury and Lavelli [43].

They used the scope of negation cues and semantic roles to filter less informative negative

instances. For example, the sentence containing “not recommended” was removed before

both training and testing stages.

Some studies have also been conducted for extraction of other types of relations. The

relations of interest include relations between cancer drugs and genes [212], gene-disease

relations [29, 45, 147], treatment-disease relations [29, 216], and protein-residue association

[207]. The reader can find a more comprehensive survey of BioNLP relation extraction in the

reviews of Zhou and He [294] and Tikk et al. [251]. While RE in BioNLP has primarily dealt

with articles written by biomedical scholars or professionals, clinical NLP has focused on RE

from EHRs written by healthcare practitioners and professionals. In the next subsection, I

discuss the classification of relations between pairs of medical concepts occurring in EHRs.

2.3.3 Medical Relation Classification

The medical relation classification (MRC) task was defined as part of the Fourth i2b2/VA

Shared Task Challenge [263] in 2010. Although some studies [9, 215, 299] were previously

conducted with different data sets, the i2b2 2010 challenge data that is publicly available

facilitated more research on the MRC task.

My research involves MRC for pairs of medical concepts, assuming that the terms

corresponding to the two concepts have already been identified. The task is to identify how

medical problems relate to treatments, tests, and other medical problems in clinical texts.

Many sentences contain multiple pairs of concepts, so the challenge includes identifying

which pairs are related, as well as identifying the specific type of relation.

Previous MRC work has presented microaveraged F1 scores, which assess performance over

all of the positive instances regardless of which class they belong to. However, microaveraging
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obscures performance differences across the classes. For example, it is often possible for a

system to achieve a high microaveraged F1 score by performing well on the majority class

but recognizing few, if any, instances of the minority classes. My research aims to shed light

on the performance differences across relation classes, with the goal of comparing the ability

of different methods to recognize the minority classes. So I will discuss both microaveraged

and macroaveraged results in the rest of this subsection.

The MRC task has been typically cast as a feature-based supervised learning problem,

where a classifier is trained with manually annotated data. Rink et al. [213] used supervised

learning to produce the highest microaveraged F1 score, 73.7%, for this relation extraction

task. Their system utilized external resources including Wikipedia, WordNet, and the

General Inquirer lexicon [236] as part of their feature set. To improve recall, they set much

lower weights for the pairs of nonrelated concepts (i.e., negative examples) when training an

SVM classifier. Their system reached macroaveraged metrics (not officially reported in Rink

et al. [213] but calculated by taking the average of the reported recall and precision of the

different subclasses) of 51.7% recall, 55.8% precision, and 53.7% F1 score.

de Bruijn et al. [64] explored effective features also applicable to other clinical NLP tasks.

In addition to supervised classification, they applied self-training on the provided unlabeled

data. Their approach produced a 73.1% microaveraged F1 score. Macroaveraged metrics for

their submission reached 43.7% recall, 66.8% precision, and 51.2% F1 score. I calculated

these numbers based on the output of de Bruijn et al. [64]. Their subsequent research [302]

using composite-kernel learning improved the accuracy of relation classification yielding

a higher microaveraged F1 score of 74.2%. As an effort to overcome the class imbalance

problem, they used down-sampling of negative examples before training the models. D'Souza

and Ng [74] presented an ensemble approach exploiting human-supplied knowledge to set up

individual classifiers. Their weighted-voting system outperformed a single classifier using

the full set of features exploited by different ensemble members. Their best-scoring ensemble

system produced a 69.6% microaveraged F1 score. Note that their result is not directly

comparable with the works described above because of different training data sizes.

Even though several weakly supervised approaches have been proposed in general texts

and BioNLP domains for relation extraction, no study exploiting large amounts of unlabeled

clinical texts has been attempted for the MRC task. Applying self-training is an exception,
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but it has only been implemented as one-shot self-training [64]. My research specifically

aims to improve the classification of minority classes by clustering-based instance selection

from unlabeled data. Benefiting from large amounts of unlabeled data with new instance

selection methods based on similarity measures is a novel contribution of this dissertation.

So far I have described the research for concept extraction, classification of medical

assertions, and relation extraction, as can be seen in the three previous sections (Section 2.1,

Section 2.2, Section 2.3). I may now proceed to the discussion of combining the components

of IE methods in ensemble based methods and exploiting unlabeled data in weakly supervised

learning.

2.4 Combining Models
Ensemble methods that combine multiple classifiers have been widely used for many

NLP tasks and generally yield better performance than individual classifiers. For the more

effective ensembles, a diverse set of classifiers using different types of learning algorithms or

data have been used [140, 198, 258]. Dietterich [69] addressed three reasons to construct good

ensembles: to reduce the risk of using an inadequate one, provide a better approximation

by divergent models, and possibly expand the space of representable functions by the

combination of multiple models.

In this section, I describe research using ensemble methods that led to more accurate

classification. Related work using voting ensemble and stacked generalization is covered in

the next two subsections. Then, I briefly cover domain adaptation, which is also related to

my research as domain adaptation often combines multiple models either from the source

domain or the target domain.

2.4.1 Voting Ensembles

The voting ensemble has attracted NLP researchers because it can offer a convenient and

often effective way to combine multiple predictive models without retraining a new model. It

has been applied to several NLP tasks including Part-of-Speech tagging [27, 66, 265], phrase

chunking [139, 221], word sense disambiguation [28, 197], relation classification [42, 74, 250],

sentiment analysis [60, 269] and named entity recognition (NER), which is most closely

related to this dissertation work.
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In NER, Zhou et al. [295] used majority voting from multiple classifiers to achieve

better performance than any single classifier. Finkel et al. [84] combined the outputs of

forward and backward (reversing the order of the words in a sentence) sequence labeling,

which improved recall. Li et al. [149] proposed multiple combinations with the forward and

backward labeling of CRF and SVM models. They showed that the union model successfully

improved performance. Similarly, Huang et al. [111] integrated the outputs of three models

for gene mention recognition. They intersected the outputs of forward and backward labeling

SVM models and then unioned with the outputs of one CRF (conditional random fields)

model. Ekbal and Saha [76] pointed out that the weights of voting should vary among the

different semantic types in each classifier in weighted voting. They introduced a new method

of determining the weight of votes for all semantic types per classifier and their method was

evaluated for Indian languages NER.

In clinical NLP, Doan et al. [70] showed that a voting ensemble of rule-based and machine

learning systems obtained better performance than individual classifiers for medication

detection. For the MCE task, Kang et al. [122] used majority voting between seven different

systems for performance improvement. Their work is similar to my MCE voting ensemble

although they had a different tiebreaker policy. When overlapped concepts have the same

votes, they randomly select one concept while I pick the one with the highest confidence

score.

2.4.2 Stacked Generalization

Stacked generalization (SG) is another ensemble-based method for combining multiple

classifiers by training a meta-classifier using the outputs of the individual classifiers [26, 276].

It is a scheme for minimizing the prediction errors of one or more learners. Efficient

integration by the meta-classifier at the second layer is important as well as the performance

of the individual models at the first layer. In this subsection, I describe several NLP studies

using SG for better performance.

Stacked generalization is different from weighted majority voting [155] or cascading

learning [93]. Weighted majority voting generally determines a voting weight for each

individual classifier, while stacked generalization can assign different weights to different

types of predictions. Training in cascading learning requires multiple rounds of learning,
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while stacked generalization typically consists of just two stages. Also, cascading learning

does not need multiple base learners.

Ting and Witten [252] showed that SG using confidence scores from the predictions of

multiple classifiers obtained better results than the individual systems. Džeroski and Zeno

[75] showed good performance for SG on a collection of 21 datasets from the UCI Repository

of machine learning databases [186]. Nivre and McDonald [194] applied SG to dependency

parsing by integrating two different models (graph-based models and transition-based models).

Rajani et al. [205] used SG for an English Slot Filling task [243, 244]. In addition to the

outputs and confidence scores of each model, they developed new features to quantify the

reliability of individual models.

Recently, some research has used stacked generalization in the bioinformatics domain.

Wang et al. [273] used SG with two base learners for predicting membrane protein types.

Netzer et al. [184] applied SG to identify “breath gas markers” and reported improved

classification accuracy. Li et al. [148] combined multiple sequence tagging modes by

union, intersection, voting and SG methods. Their experimental results showed that the

SG approach was more effective than other ensemble methods. For extracting drug-drug

interactions, He at al. [101] presented an SG-based approach combining three individual

kernels: feature-based, graph, and tree kernels. In clinical NLP, Kilicoglu et al. [127] used

stacked generalization for document-level classification to identify rigorous, clinically relevant

studies.

Although SG is another attractive ensemble technique, it has been applied less than

voting ensembles because it needs to train a meta-classifier that uses the outputs over

the training data. I propose an SG ensemble to combine multiple components for better

performance, especially more precise extraction of medical concepts in specialty areas. To

our knowledge, this is the first work that combines broad medical components and specialty

area components in an SG ensemble for MCE.

2.4.3 Domain Adaptation

Our work is also related to supervised domain adaptation, which can be applied when

some labeled data for the target domain is available. Many algorithms for efficient domain

adaptation have been proposed, and domain adaptation-based models have been shown
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to improve performance for some tasks when limited annotated data is available for the

target domain. For named entity detection, Florian et al. [86] introduced a method that

builds on a source domain model and uses its predictions as features to train the target

domain model. Chelba and Acero [37] used the feature weights of the source domain model

as a Gaussian prior for initializing each feature in the target domain model. They applied

their approach to recover the correct capitalization of uniformly cased text. Foster and

Kuhn [87] linearly interpolated source and target domain models for machine translation.

Daumé III [63] presented a feature augmentation method that can learn trade-offs between

source/target and general feature weights.

Jiang and Zhai [114] proposed several adaptation heuristics with a unified objective

function: (1) removing misleading training instances in the source domain, (2) assigning

more weights to labeled target instances than labeled source instances, (3) augmenting

training instances with target instances with predicted labels. They evaluated the proposed

method on three adaptation problems in NLP, POS tagging, NE type classification, and

spam filtering. The results showed that their method capturing domain differences explicitly

outperforms regular weakly-supervised and supervised learning methods. They also showed

that adding more target domain data with high weights is much more useful for improving

performance than excluding misleading training examples from the source domain.

Blitzer et al. [20] introduced structural correspondence learning (SCL) to automatically

induce correspondences among features from different domains. SCL identifies correspon-

dences among features from different domains by modeling their correlations with pivot

features. Their method showed performance gains on part of speech tagging for varying

amounts of the source and target training data. Blitzer et al. [19] extended the SCL

algorithm to sentiment analysis and also showed how A-distance, a measure of domain

similarity, correlates well with the potential for adaptation of a classifier from one domain to

another. Xiao and Guo [278] applied the combination of SCL [20] and feature augmentation

based [63] domain adaptations to sequence labeling. Their results showed that the proposed

domain adaptation method outperforms a number of comparison methods for cross-domain

sequence labeling tasks including syntactic chunking and NER.

For comparison to my ensemble methods, I employ the feature augmentation method [63]

to combine the data from the source domain (broad medical texts) and the target domain
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(specialty notes). The outputs of multiple models trained on both source and target domains

are also exploited in voting and SG ensembles.

According to the research discussed above, I can say with fair certainty that ensemble

based and domain adaptation approaches have been contributory to various NLP tasks.

As pointed out by prior studies [198, 258], the diversity and accuracy of a new component

should be considered to make the component more complementary. With these issues in

mind, I now shift the emphasis away from combining models to selecting instances to train

a new model.

2.5 Exploiting Unlabeled Data
In this section, I discuss the methods that employ labeled and unlabeled data in the

learning process. Annotating data is as an expensive job, especially in the biomedical and

clinical domains because of the need for domain experts. Consequently, most systems are

trained with relatively small amounts of labeled text, even though much larger amounts of

unlabeled text are readily available. To build a better model than only with labeled data,

considerable studies have been focused on selecting the beneficial instances from unlabeled

data. Weakly supervised learning, also called semi-supervised learning, active learning, or

combining the two approaches have been applied to improve the performance of several NLP

tasks.

To improve medical relation classification, I exploit large amounts of unlabeled clinical

texts for self-training, which is a form of weakly supervised learning. However, my new

methods select the instances not merely by a classifier’s confidence scores, but by using

similarity measures to consider representativeness and diversity, which have been critical

factors in active learning. In the following subsections, I briefly describe several methods of

weakly supervised learning and active learning related to this dissertation research.

2.5.1 Weakly Supervised Learning

Weakly supervised learning has been shown to benefit from training on both labeled

and unlabeled data for several NLP tasks including word sense disambiguation [282], web

document classification [21], NER [52], noun phrase chunking [199], parsing [163], question

answering [206], and relation extraction (discussed in Section 2.3). Self-training is one of the
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popular weakly supervised learning methods. Starting with a small set of seed labeled data,

a learner uses its own predictions on unlabeled data to retrain the model. The predicted

instances that satisfy a selection criterion are collected as new training instances for the next

iterations. This procedure of automatically labeling new training examples is performed

repeatedly until a stopping criterion is met (e.g., for a fixed number of iterations or until no

new instances can be labeled). As seen in Section 2.3, a significant number of studies have

demonstrated that relation extraction applying self-training can yield satisfactory results.

Depending on the target task, a well-performing classifier is often needed for self-training

when the confidence scores produced by the classifier are taken into account for instance

selection. Rosenberg et al. [217] also pointed out that the choice of the initial seeds has a

large effect on performance. I apply self-training with confidence-based instance selection to

compare to my two clustering-based selection methods.

Co-training [21] also starts with a set of labeled data but expands the training data with

two (or possibly multiple) classifiers. The classifiers in co-training are iteratively retrained

with unlabeled examples collected by the other classifiers. Blum and Mitchell [21] showed

that for successful co-training with two separate classifiers, each classifier should already

make good classifications, and they should be conditionally independent given the class label.

Later, some research [6, 14] showed that co-training with classifiers that are not conditionally

independent still can improve performance over a supervised learner. More examples of

co-training applications can be found in [47, 52, 120, 169, 187, 199, 222, 270].

NLP researchers also have used graph-based learning methods in which labeled and

unlabeled instances are represented as vertices in a connected graph. Label propagation

algorithms are one of the major graph-based methods. In the label propagation framework,

the information of labeled instances is iteratively propagated to nearby vertices until the

labels of unlabeled instances are all determined. The assumption of this approach is that a

labeled instance can share the label with any unlabeled instances by propagating the label

information to neighboring instances across related edges. Some studies focused on label

propagation were reported in [38, 193, 256, 303].

Other weakly supervised learning approaches include transductive learning [117, 118],

generative mixture models [67, 68, 94, 192], and distant supervision [54, 174, 281]. For a more

comprehensive review of weakly supervised learning, the reader can refer to Zhu’s survey
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papers [301, 304].

2.5.2 Active Learning

Many NLP researchers may agree that creating a high-quality manually annotated corpus

is important but often more complicated than deciding on the learning algorithm. To reduce

the laborious manual annotation, active learning has focused on how to collect informative

samples from unlabeled data and provide them to the oracle (e.g., a human expert) for

labeling. The main interest of active learning is to prioritize the instances to be annotated

for classification to select instances that will be most valuable for the classifier to learn from.

Uncertainty Sampling [146] is a popular selection strategy. The most uncertain example

is selected in this method. The uncertainty can be measured by prediction confidence,

margin score, or entropy [108]. Uncertainty sampling has been applied to several NLP

tasks including text classification [145, 146, 255] and sequence labeling [55, 230]. In clinical

NLP, Chen et al. [39] applied uncertainty sampling to phenotyping tasks and showed that

uncertainty sampling outperformed random sampling.

Query by Committee (QBC) [231] is another active learning strategy which is based on

disagreement between multiple learners. The example which the learners most disagree

on is selected in this method. Disagreement between learners in the committee (ensemble)

can be quantified with entropy or several similarity functions including Kullback-Leibler

divergence, or Jensen-Shannon divergence. Examples of QBC applications can be found in

[49, 61, 162, 219, 230].

Other instance selection measures such as Expected Gradient Length and Variance

Reduction have been suggested although they may be computationally expensive. Expected

Gradient Length [230] selects the instance that causes the maximal change to the current

model. In Variance Reduction [219, 289], the instance that minimizes standard error is

selected.

The approaches mentioned above rely on the instance selection metric (e.g., uncertainty)

and treat each instance from unlabeled data independently. Alternatively, some active

learning approaches consider the correlation between instances [91, 189, 240, 300]. These

methods often incorporate clustering algorithms to group instances and select the prototype

instances in each cluster. For this dissertation research, I similarly apply clustering algorithms
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to group instances into clusters. I group both labeled and unlabeled instances together into

clusters to get a diverse and balanced set of additional training instances.

In active learning, the oracle is assumed to be never wrong and always can answer the

question without any cost. Proactive learning [73] was proposed to relax these unrealistic

assumptions and focuses on jointly selecting the optimal oracle and instances. There has

also been some research [106, 162, 274, 305] to combine active learning and weakly supervised

learning.

In this subsection, I introduced some studies of active learning and explained how my

clustering-based instance selection methods were motivated by active learning. For a more

comprehensive review of active learning, the reader can refer to [228, 229, 239, 272].



CHAPTER 3

MEDICAL CONCEPT EXTRACTION
ACROSS DIFFERENT TYPES OF

CLINICAL NOTES

In this chapter, I focus on extracting medical concepts in EHRs. I investigate methods

for creating medical concept extraction (MCE) systems that will perform well on specialty

area notes. For this research, I created three new text corpora consisting of medical notes

from three specialty areas: cardiology, neurology, and orthopedics. I present an analysis

of how they differ in content (semantic concepts and formatting) from each other and i2b2

medical notes. I will refer to the i2b2 notes as broad medical texts because they describe a

patient’s overall care and their content can cover a diverse set of topics cutting across many

areas of medicine.

I examine a variety of information extraction (IE) models and evaluate their performance

on all of these data sets. I investigate how MCE models perform on specialty notes (1) when

trained on a broad medical corpus, (2) when trained on the same type of specialty data,

and (3) when trained on a combination of both broad medical and specialty data.

Another goal of this research is to explore the use of stacked generalization learning for

the medical concept extraction task. Stacked generalization provides an easily extensible

and adaptable framework for benefiting from an ensemble of extraction models. I explore

Voting and Stacked Learning ensembles to combine multiple MCE models and conclude

that they can be beneficial by exploiting (1) multiple models that use different extraction

techniques, and (2) multiple models trained with specialty area data as well as multiple

models trained with broad medical data.

3.1 Data Sets and Annotated Concepts
My research starts with the medical concept extraction (MCE) task defined for the 2010

i2b2 Challenge [263]. This task involves extracting three types of medical concepts: Problems



37

(e.g., diseases and symptoms), Treatments (e.g., medications and procedures), and Tests.

The 2010 i2b2 corpus consists of 349 training documents and 477 test documents manually

annotated by medical professionals. This test set contains 45,009 annotated medical concepts.

For this research, I created new text collections representing three specialized areas of

medicine: cardiology, neurology, and orthopedics. 200 clinical notes from the BLUlab corpus

for each specialty area were annotated.1Doing-Harris et al. [72] divided the BLUlab corpus

into nine specialty groups and their specialty area annotations were used for this research.

Each specialty data set consists of different subtypes of notes. Table 3.1 shows the five most

prevalent subtypes in each specialty data set.

For this research, two people with medical expertise manually annotated the specialty

notes using the 2010 i2b2 Challenge guidelines [3]. One annotator had previously annotated

data for the official 2010 i2b2 Challenge data, and the other annotator had equivalent medical

knowledge.2After joint discussion on 10 practice documents, I measured their interannotator

agreement on 40 new documents (one-third for each area) annotated by both annotators

during the pilot phase using Cohen’s kappa [36], and their IAA was κ = .67. Table 3.2

shows interannotator agreement for each batch (10 documents per batch).

Each of the annotators then labeled 100 new documents for each specialty area, producing

a total of 600 annotated specialty area texts. These texts contain 17,783 annotated concepts

for cardiology, 11,019 concepts for neurology, and 12,769 concepts for orthopedics.

Table 3.3 shows the number of annotated concepts of each type in the i2b2 test data and

my three specialty data sets, as well as the average number of concepts per document. For

example, the Cardiology data contains 7,474 Problem concepts, and the average number

of Problem concepts per text is 37, which is similar to the i2b2 data (39). However, the

Neurology and Orthopedics data sets contain only 25 Problem concepts per document, on

average. For Treatment concepts, the neurology notes contain fewer concepts than the i2b2

data but the orthopedics notes contain more. The prevalence of Test concepts varies greatly:

the i2b2 and cardiology texts have many Test concepts per document, but they are much

1The BLUlab corpus is a collection of de-identified clinical notes drawn from multiple clinical settings at
the University of Pittsburgh. The dataset was available for research to investigators with local Institutional
Review Board approval, but unfortunately the University of Pittsburgh has withdrawn the corpus for new
studies. However interested researchers can collaborate with previously approved sites.

2They are both registered nurses (RNs).
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Table 3.1: Five Most Prevalent Note Subtypes in Each Specialty Area Data Set
Data Note subtypes
Cardiology Cardiology (surgery) discharge summary

Cardiology (surgery) consultation report
Cardiology operative report
Cardiology history and physical examination
Angio report

Neurology Neurosurgery discharge summary
Neurosurgery transfer summary
Neurology consultation report
Neurology history and physical examination
Neurosurgery death summary

Orthopedics Orthopedic (surgery) operative report
Trauma discharge summary
Orthopedic (surgery) discharge summary
Orthopedic surgery transfer summary
Orthopedics consultation report

Table 3.2: Cohen’s kappa for Each Batch of 10 Documents
Batch κ

1 .64
2 .69
3 .67
4 .67

Table 3.3: The Numbers of Concepts in Each Data Set
Categories i2b2 Test Cardiology Neurology Orthopedics

Total Avg Total Avg Total Avg Total Avg
Problem 18,550 39 7,474 37 4,971 25 5,022 25
Treatment 13,560 28 5,706 29 3,815 19 6,494 33
Test 12,899 27 4,603 23 2,233 11 1,253 6
All Concepts 45,009 94 17,783 89 11,019 55 12,769 64
# Sentences 45,052 94 21,255 106 15,339 77 16,855 84
# Documents 477 200 200 200
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less common in the neurology notes (11 per text) and orthopedics notes (6 per text).

The fifth row of Table 3.3 compares the number of sentences in the data sets. The i2b2

test data contains 45,052 sentences (94 per file, on average). The cardiology notes were

generally longer with 106 sentences per text, while the neurology and orthopedics notes were

generally shorter.

I also examined, qualitatively, the types of sections in each data set to gain more insight

about content differences between specialist notes and the more general i2b2 notes (broad

medical texts). Table 3.4 shows the five most frequent section titles in each data set. Many

section titles, such as “Hospital course,” are common across all of the data sets. However, I

found section titles that are much more frequent in some types of specialty area notes. For

example, sections related to “Procedures” and “Operations” occurred most frequently in

orthopedics notes. “Consultation” sections were common in the cardiology notes but rare in

the i2b2 notes. Appendix A provides more section headers that frequently appear in each

dataset.

Although some of the same section titles occur in both broad medical notes and specialty

notes, their contents can differ. For example, in the sections titled “Procedures”, orthopedics

notes typically contain more detailed information than discharge summaries. Appendix B

illustrates specialty notes that are similar to the ones in our collection.

3.2 Concept Extraction Models
I developed four types of concept extraction models that use a diverse set of extraction

techniques. I will first describe each model and then present my ensemble-based learning

framework.

3.2.1 MetaMap

I used a widely-used knowledge-based system called MetaMap [10]. MetaMap is a

rule-based program that assigns UMLS Metathesaurus semantic concepts to phrases in

natural language text. Unlike my other IE systems, MetaMap is not trained with machine

learning, so it is not dependent on training data. Instead, MetaMap is a complementary

resource that contains a tremendous amount of external medical knowledge.

I encountered one issue with using this resource for this task. MetaMap can assign a large
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Table 3.4: Five Most Frequent Section Titles in Each Data Set
Data Section titles
i2b2 Test HOSPITAL COURSE

HISTORY OF PRESENT ILLNESS
PHYSICAL EXAMINATION
PAST MEDICAL HISTORY
ALLERGIES

Cardiology PHYSICAL EXAMINATION
ALLERGIES
PAST MEDICAL HISTORY
SOCIAL HISTORY
HISTORY OF PRESENT ILLNESS

Neurology HOSPITAL COURSE
REASON FOR ADMISSION
HISTORY OF PRESENT ILLNESS
DISCHARGE MEDICATIONS
DISCHARGE INSTRUCTIONS

Orthopedics HOSPITAL COURSE
PROCEDURES
DISCHARGE INSTRUCTIONS
DESCRIPTION OF OPERATION
COMPLICATIONS
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set of semantic categories, many of which are not relevant to the i2b2 concept extraction

task. However, it is not obvious how to optimally align the MetaMap semantic categories

with our task’s semantic categories because their coverage can substantially differ.

Therefore I built a statistical model based on the concepts that MetaMap detected in the

training data. I collected all of MetaMap’s findings in the training data, aligned them with

the gold standard medical concepts, and calculated the probability of each MetaMap semantic

category mapping to each of this task’s three concept types (Problem, Treatment, and Test).

Then I assigned a MetaMap semantic type to one of our concept types if the semantic type is

ranked among the top 30% of semantic types based on Probability(concept type | sem type).3

For example, “sosy” (“Sign or Symptom” in MetaMap) was mapped to the Problem concept

type because it had a high probability of being aligned with labeled problems in the data

set (i.e., Prob(Problem | sosy) was high). Table 3.5 shows the semantic types that we

ultimately used for concept extraction. Please refer to Appendix C for the mapping between

abbreviations and the full semantic type names. I used MetaMap 2013v2 with the 2013AB

NLM relaxed database.4

3.2.2 Rules

I used the training data to automatically create simple rules. The idea is to exploit the

training data to create a simple rule-based system without any manual effort.

First, I computed Prob(concept | word) and Prob(concept type | word) for each word in

the training data, where concept type = {Treatment, Test, Problem}. Note that Prob(concept

| word) is the sum of Prob(Treatment | word), Prob(Test | word), and Prob(Problem | word).

Next, I selected words that had frequency ≥ 3 and Prob(concept | word) ≥ .80. For each

selected word, I chose the concept type with the highest probability and created a rule (e.g.,

diabetes → Problem).

Given a new text, I then found all words that matched a rule and labeled them as

concepts using the concept type assigned by the rule. When two or more labeled words were

contiguous, I treated them as a single concept. For multiword concepts, I calculated the

3Higher F1 score was achieved with the top 30% of semantic types on the i2b2 training data than with
other values (top 10%, 20%, 40%, etc.).

4I used the following MetaMap options with the following arguments:
-C -V NLM -y -i -g --composite phrases 3 --sldi
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Table 3.5: MetaMap Semantic Types Used for Medical Concept Extraction
Category MetaMap semantic types
Problem acab, anab, bact, celf, cgab, chvf, dsyn, inpo, mobd, neop, nnon,

orgm, patf, sosy

Treatment antb, carb, horm, medd, nsba, opco, orch, phsu, sbst, strd, topp,
vita

Test biof, bird, cell, chvs, diap, enzy, euka, lbpr, lbtr, mbrt, moft,
phsf, tisu
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average P(concept type | word) across the words in the concept. The concept type with the

highest average probability was assigned to the concept.

3.2.3 Contextual Classifier (SVM)

I created a supervised learning classifier with contextual features. I applied the Stanford

CoreNLP tool [157] to our data sets for tokenization, lemmatization, part-of-speech (POS)

tagging, and named entity recognition (NER). I trained a support vector machine (SVM)

classifier with a linear kernel for multiclass classification using the LIBLINEAR (Library for

Large Linear Classification) software package [80].

I reformatted the training data with IOB tags (B: at the beginning, I: inside, or O:

outside of a concept). I defined features for the targeted word’s lexical string, lemma, POS

tag, affix(es), orthographic features (e.g., Alphanumeric, HasDigit), named entity tag, and

pairwise combinations of these features. The feature set used to create the SVM model, as

well as the CRF models described later, is as follows.

• Word Features:

– w0 (current word)

– w−1 (previous word), w1 (following word)

– w−2 (second previous word), w2 (second following word)

• Bi-grams of Words:

– [w−1, w0] (bi-gram of previous word and current word), [w−2, w−1]

– [w0, w1], [w1, w2]

• Lemmas Features:

– l−3 (lemma of third previous word), l−2, l−1, l1, l2, l3

• Affixes Features:

– Prefixes and suffixes of current word, up to a length of 5. For example, the word

“disease” would have features “d”, “di”, “dis”, “dise”, and “disea” for prefixes,

and “e”, “se”, “ase”, “ease”, and “sease” for suffixes.
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• Orthographic Features:

– 15 features based on regular expressions for w0, w−1, w1. I used the orthographic

features defined in [164] with a slight modification. For example, “[A-Z].∗” is a

regular expression to capture whether the first letter of a word is capitalized (Init

Caps).

• POS Features:

– p0 (POS tag of current word), p−2, p−1, p1, p2

• Bi-grams of POS tags:

– [p−1, p0] (POS tags of previous word and current word), [p−2, p−1]

– [p0, p1], [p1, p2]

• Lemma + POS:

– [l0, p0] (lemma of current word and POS tag of current word)

• NER class:

– n0 (e.g., PERSON, LOCATION, DATE, TIME)

I set the cost parameter to be c = 0.1 (one of LIBLINEAR’s parameters) after ex-

perimenting with different values by performing 10-fold cross validation on the training

set.

3.2.4 Sequential Classifier (CRF)

I trained several sequential taggers using linear chain conditional random fields (CRF)

supervised learning models. In contrast to the contextual classifier mentioned above, the CRF

classifiers use a structured learning algorithm that explicitly models transition probabilities

from one word to the next. The CRF models used the same feature set as the SVM models.

For each data set, I implemented two different variations of sequential classifiers. I

trained CRF classifiers with both forward (CRF-fwd) and backward tagging (by reversing

the sequences of words) (CRF-rev) [84, 139]. As a result, each medical concept had different

IOB representations. For example, the IOB tags of “positive lymph nodes” by forward
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and backward tagging were “positive/B-problem lymph/I-problem nodes/I-problem” and

“positive/I-problem lymph/I-problem nodes/B-problem”, respectively.

I used Wapiti [142], which is a simple and fast discriminative sequence labeling toolkit,

to train the sequential models. As with the SVM, 10-fold cross validation was performed on

the training set to tune Wapiti’s CRF algorithm parameters. I set the size of the interval

for the stopping criterion to be e = 0.001. For regularization, L1 and L2 penalties were set

to 0.005 and 0.4, respectively.

3.3 Ensemble Methods
I explored two types of ensemble architectures that use the MCE methods described

previously as components of the ensemble. I created a voting ensemble, as a simple but

often effective ensemble method, and a stacked generalization ensemble, which trains a

meta-classifier with features derived from the outputs of its component models.

Three different types of ensembles were created for both architectures: (1) ensembles

consisting of MCE models trained on the broad medical data, (2) MCE models trained on

specialty data, and (3) a mix of MCE models, some trained from broad medical data and

others trained from specialty data. For comparison to (3), I also trained a CRF model using

the union of the broad medical data and specialty data. I investigated how they perform

differently and which advantages my ensembles can offer over the union approach.

3.3.1 Voting Ensemble Method

This ensemble collects the phrases labeled by a set of MCE components and outputs all

phrases that received at least three votes (i.e., were labeled by at least three components). I

found that three votes worked consistently well. However, that is a disadvantage of voting

ensemble: determining the voting threshold can be difficult. The empirical discussion will

be examined in Section 3.4.

In the case of overlapping phrases, I choose the one with the highest confidence, based on

the normalized confidence scores of the MCE models. For each MCE model, each confidence

score was divided by the highest score produced by that model for normalization.
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3.3.2 Stacked Generalization Method

I created a meta-classifier by training an SVM classifier with a linear kernel based on the

predictions from the individual classifiers. Figure 3.1 shows the architecture of the stacked

learning ensemble.

First, to create training instances for a document, all of the concept predictions from the

individual IE models are collected. I then use a variety of features to consider the degree

of agreement and consistency between the IE models. For each concept predicted by an

IE model, it is compared with all other distinct concepts predicted in the same sentence.

For each pair of concepts, the following eight matching criteria are applied to create eight

features:

• If the text spans match

• If the text spans partially match (any word overlap)

• If the text spans match and concept types match

• If the text spans partially match and the concept types match

• If the text spans have the same start position

• If the text spans have same end position

• If one text span subsumes the other

• If one text spans is subsumed by the other

For example, with two concepts from a sentence “avoid overdosing on insulin before exercise”,

C1: “overdosing on insulin” (Problem)

C2: “overdosing” (Treatment)

“No” is assigned to ‘if the text spans match’. “Yes” and “No” to ‘if the text spans partially

match’ and ‘if the text spans partially match and the concept types match, respectively.

Features are also defined to count how many different models produced a predicted

concept, and features are defined for predictions produced by just a single model (indicating

which model produced the predicted concept). To make sure that the meta-classifier was
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neither trained nor applied to the same document, I performed a procedure similar to 10-fold

cross validation on the training set to obtain predictions for each classifier.

3.4 Evaluation of MCE Models and Ensemble Methods
The input for this task is clinical texts. Medical concept annotations from the gold

standard data are used to train the clssifiers. Figure 3.2 illustrates a sample text with gold

concept annotations.

The text files are formatted to have one sentence per line. The concept annotation file

contains medical concepts, one concept per line. The concept annotation format specified in

the 2010 i2b2 Challenge Annotation File Formatting [1] is as follows:

c="concept text" offset||t="concept type"

where

c represents a mention of a concept.

concept text is filled in with the actual text from the text file.

offset represents the beginning and end line and word numbers that span the concept.

t represents the semantic type of the concept mentioned.

concept type is replaced with problem, treatment, or test.

An offset is formatted as the line number followed by a colon followed by the word number.

The starting offset and ending offset are separated by a space.

3.4.1 Evaluation Metrics

I used three metrics to evaluate medical concept extraction: recall, precision, and F1

score. From the counts of true positives (TP), false negatives (FN ), and false positives (FP),

Recall and Precision can be computed as follows:

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(3.1)

The F1 score is defined by taking the harmonic mean of recall and precision [266]:

F1 = 2 precision× recall
precision+ recall

=
2 TP

2 TP + FP + FN
(3.2)

Each metric was microaveraged across all concepts in the evaluation set. For all
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 1 
 . 
 . 
 . 
 . 
 . 
 2 
 . 
 . 

The patient is a 64-year-old male with a long standing history of 
peripheral vascular disease who has had multiple vascular procedures 
in the past including a fem-fem bypass , a left fem pop as well as 
bilateral TMAs and a right fem pop bypass who presents with a 
nonhealing wound of his left TMA stump as well as a pretibial ulcer 
that is down to the bone . 
The patient was admitted to obtain adequate pain control and to have 
an MRI / MRA to evaluate any possible bypass procedures that could be 
performed . 

(a) A Sample Text (Excerpted from https://www.i2b2.org/NLP/Relations/assets/doc3.txt)

	

	

c="peripheral vascular disease" 1:12 1:14||t="problem" 
c="multiple vascular procedures" 1:18 1:20||t="treatment" 
c="a fem-fem bypass" 1:25 1:27||t="treatment" 
c="a left fem pop" 1:29 1:32||t="treatment" 
c="bilateral tmas" 1:36 1:37||t="treatment" 
c="a right fem pop bypass" 1:39 1:43||t="treatment" 
c="a nonhealing wound of his left tma stump" 1:47 1:54||t="problem" 
c="a pretibial ulcer" 1:58 1:60||t="problem" 
c="adequate pain control" 2:6 2:8||t="treatment" 
c="an mri / mra" 2:12 2:15||t="test" 
c="bypass procedures" 2:20 2:21||t="treatment" 

(b) A Sample Concept Annotations (Excerpted from https://www.i2b2.org/NLP/Relations/assets/doc3.com)

Figure 3.2: A Sample Text With Concept Annotations
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experiments shown in this chapter, a labeled phrase was scored as correct if it was

assigned the correct concept type and its text span exactly matched the gold standard text

span, disregarding articles and possessive pronouns (e.g., “his”). The reader can refer to

Appendix D for additional partial match results.

3.4.2 Statistical Significance Testing

I used a two-tailed paired t test across the F1 scores for all test documents. Each F1

score was calculated for each document and then averaged across all test documents. The

significance level, α, was set at 5%.

3.4.3 Performance of Individual MCE Models

I conducted an extensive set of experiments to evaluate the performance of each individual

MCE model and voting and stacked generalization ensembles. I also experimented with

models trained using the broad medical (i2b2) texts, using our specialty area texts, and

using a mixture of both.

I evaluated performance using the i2b2 training and test sets as well as our three sets of

specialty area notes: cardiology, neurology, and orthopedics (described in Section 3.1). The

specialty area models (Sp) were trained and evaluated using 10-fold cross validation on my

specialty notes data. First, I present experimental results for each individual MCE model.

Table 3.6 shows the performance of each MCE model based on Recall, Precision, and F1

score.

MetaMap: The MetaMap row shows low scores for MetaMap on all data sets. As

explained before, MetaMap suffers from boundary mismatch errors due to the difference

between the i2b2 annotations and MetaMap’s concept boundary definitions. I also observed

that MetaMap often did not recognize acronyms and abbreviations in the clinical notes.

Rules: The Rules (i2b2) rows show results for the simple rules harvested from the

i2b2 training data. Not surprisingly, these rules performed better on the i2b2 test set than

on the specialty notes, but the scores were low across the board. The Rules (Sp) rows

show results (averaged during cross-validation) for the rules harvested from the training

folds for a specialty area and evaluated on the test folds for the same specialty area. These

rules also performed poorly.

SVM: The machine learning classifiers performed substantially better. The SVM (i2b2)
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Table 3.6: Results of Individual MCE Models
Model Recall Precision F1 score

i2b2 (Broad Medical) Evaluation
MetaMap 36.0 47.3 40.9
Rules (i2b2) 38.5 48.4 42.9
SVM (i2b2) 80.6 76.9 78.7
CRF-fwd (i2b2) 81.4 86.1 83.7
CRF-rev (i2b2) 82.3 86.4 84.3
CRF-rev (i2b2180) 78.7 84.2 81.4

Cardiology Specialty Area Evaluation
MetaMap 31.1 40.0 35.0
Rules (i2b2) 33.1 37.9 35.3
Rules (Sp) 32.6 38.6 35.3
SVM (i2b2) 64.5 59.4 61.8
SVM (Sp) 65.5 59.4 62.3
CRF-fwd (i2b2) 65.2 67.9 66.5
CRF-rev (i2b2) 65.8 68.0 66.9
CRF-rev (i2b2180) 63.3 66.5 64.9
CRF-fwd (Sp) 63.8 69.3 66.4
CRF-rev (Sp) 65.2 69.1 67.1
CRF-rev (i2b2+Sp) 68.7 70.3 69.5

Neurology Specialty Area Evaluation
MetaMap 29.4 34.6 31.8
Rules (i2b2) 29.2 35.3 32.0
Rules (Sp) 30.9 33.0 31.9
SVM (i2b2) 59.4 55.7 57.5
SVM (Sp) 60.2 53.8 56.8
CRF-fwd (i2b2) 61.3 65.8 63.5
CRF-rev (i2b2) 61.7 65.7 63.6
CRF-rev (i2b2180) 59.6 64.8 62.1
CRF-fwd (Sp) 59.2 64.6 61.8
CRF-rev (Sp) 60.5 64.6 62.5
CRF-rev (i2b2+Sp) 64.6 66.8 65.7

Orthopedics Specialty Area Evaluation
MetaMap 22.6 26.3 24.3
Rules (i2b2) 21.4 26.2 23.5
Rules (Sp) 26.8 27.9 27.3
SVM (i2b2) 45.7 41.6 43.5
SVM (Sp) 56.6 49.1 52.6
CRF-fwd (i2b2) 47.4 56.3 51.5
CRF-rev (i2b2) 48.2 55.8 51.7
CRF-rev (i2b2180) 44.8 53.3 48.7
CRF-fwd (Sp) 55.4 62.3 58.6
CRF-rev (Sp) 56.0 60.6 58.2
CRF-rev (i2b2+Sp) 59.3 62.5 60.9
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row shows results for the SVM model trained on i2b2 data, which produced an F1 score

of 78.7% on the i2b2 test set but substantially lower F1 scores on the specialty datasets.

The SVM (Sp) row shows results for the SVMs trained and tested on specialty area data.

Performance substantially improved on the Orthopedics notes (from 43.5% to 52.6% F1

score) but did not change much for the other specialty areas.

CRF: Both the CRF-fwd and CRF-rev models trained on i2b2 data performed better

than the SVM models. The CRF-fwd (Sp) and CRF-rev (Sp) rows show results for

CRF models trained on specialty area data. Performance on the Cardiology and Neurology

notes was similar when trained on specialty (Sp) data, but performance on the Orthopedics

notes substantially improved.

Since the i2b2 training data is much larger than my specialty area training data, I

performed another experiment using only 180 randomly selected i2b2 training texts, to

match the amount of specialty area training data (under 10-fold cross-validation, each

fold trains with 180 documents). The CRF-rev models performed a little better than the

CRF-fwd models, so I conducted this experiment only with the CRF-rev model (shown as

CRF-rev (i2b2180)). The performance of these models is lower than when using all of the

i2b2 training data as one would expect. More importantly, these experiments demonstrate

that training on specialty area data consistently performs better than training on i2b2 data

when using comparable amounts of training data.

The CRF-rev (i2b2+Sp) row shows the results for training the CRF-rev model using

the union of the i2b2 and specialty area data. Performance improved for all three specialty

areas by training with the combined data sets (i.e. merging two datasets). The broad i2b2

data clearly provides added value. This CRF-rev model (CRF-rev (i2b2+Sp)) obtained

the best results among the individual MCE models. However, the F1 scores for the three

specialty areas range from 60.9% to 69.5%, which is substantially lower than the 84.3% F1

score achieved for the i2b2 test set.

3.4.4 Performance of Voting and Stacked Ensembles

I also evaluated the performance of the voting and stacked ensemble architectures, which

were populated with five types of MCE components: Rules, MetaMap, SVM, CRF-fwd, and

CRF-rev models. For both the voting and stacked architectures, I created three different
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types of ensembles: (1) i2b2 ensembles consisting of MCE models trained on the i2b2 data,

(2) Sp ensembles consisting of MCE models trained on specialty data, and (3) i2b2+Sp

ensembles consisting of MCE models trained with i2b2 data and MCE models trained with

specialty data. Consequently, the i2b2+Sp ensembles include nine different classifiers (two

models each of Rules, SVM, CRF-fwd, CRF-rev, and one MetaMap model, because it does

not use training data).

Table 3.7 shows the performance of these ensembles, as well as the EasyAdapt domain

adaptation method [63], which I implemented as another point of comparison. For EasyAdapt,

I used a CRF-rev classifier with the feature set augmented for broad medical (i2b2) notes as

the source domain and specialty area notes as the target domain. For the sake of comparison,

the first row of Table 3.7 displays again the results obtained for the best individual MCE

model from Table 3.6, which was the CRF-rev classifier trained with both i2b2 and specialty

data. Comparing the first two rows, the readers see that training a CRF-rev model with

combined i2b2 and specialty area data outperforms the domain adaptation model on all

three data sets.

Among the voting ensembles, the i2b2+Sp ensemble produced the best F1 scores. The

voting ensemble trained only on specialty notes (Sp) produced much higher precision than

the CRF-rev model. A voting ensemble appears to be an effective way to improve precision

on specialty notes when a limited amount of annotated specialty data is available, although

with some cost to recall.

The voting threshold is a key parameter for voting ensembles that can dramatically affect

performance. The voting threshold can serve as a recall/precision knob to obtain different

trade-offs between recall and precision. In Figure 3.3, I show voting (i2b2+Sp) results for

cardiology with voting thresholds ranging from two to eight. The curves show that precision

increases as the threshold gets higher, but recall drops simultaneously. When the voting

threshold exceeds six, recall drops precipitously.

For stacked learning, every stacked ensemble outperformed its corresponding voting

ensemble. The best stacked ensemble (i2b2+Sp) included MCE models trained on i2b2 data

as well as MCE models trained on specialty data, producing slightly higher F1 scores than

the CRF-rev models for all three specialty areas. Using a paired t test to measure statistical

significance, the F1 score performance of the i2b2+Sp Stacked ensemble is significantly
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Table 3.7: Results of Ensemble Methods
Model Cardiology Neurology Orthopedics

Rec Pre F Rec Pre F Rec Pre F
CRF-rev (i2b2+Sp) 68.7 70.3 69.5 64.6 66.8 65.7 59.3 62.5 60.9
EasyAdapt 66.1 69.5 67.8 62.0 65.4 63.7 57.7 62.0 59.8
Voting (i2b2) 61.0 73.0 66.5 56.2 70.4 62.5 40.7 64.2 49.8
Voting (Sp) 58.3 77.8 66.7 52.9 74.3 61.8 47.3 73.0 57.4
Voting (i2b2+Sp) 69.4 69.8 69.6 64.5 66.0 65.3 56.6 62.5 59.4
Stacked (i2b2) 65.7 69.0 67.3 61.8 66.9 64.3 47.8 57.6 52.3
Stacked (Sp) 63.4 73.9 68.2 57.4 70.9 63.4 52.3 70.2 60.0
Stacked (i2b2+Sp) 66.0 75.1 70.2 61.5 72.4 66.5 54.6 70.8 61.6

Sc
or

e 
(%

)

0

30

60

90

Voting threshold
2 3 4 5 6 7 8

Recall Precision F1 score

Figure 3.3: Results of the Voting Ensemble for Varying Voting Thresholds (Cardiology)
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better than EasyAdapt and all of the voting ensembles at the p < .05 significance level, but

not significantly better than the CRF-rev (i2b2+Sp) model.

However, the results show that the stacked ensemble produces higher precision than the

CRF-rev model (70% → 75% for cardiology; 67% → 72% for neurology; 63% → 71% for

orthopedics), with correspondingly smaller decreases in recall (69% → 66% for cardiology;

65% → 62% for neurology; 59% → 55% for orthopedics). My conclusion is that the stacked

ensembles consistently produce MCE models with a favorable recall/precision trade-off.

I performed ablation tests for both the voting and stacked generalization ensembles to

evaluate the impact of each IE model on the ensembles. An ablated ensemble was tested by

removing a single model from the ensemble. Table 3.8 shows the F1 score for each ablated

ensemble and the difference from the F1 score of the full Stacked (i2b2+Sp) ensemble. I

only report the result of ensembles for Cardiology.

Every IE model except MetaMap, Rules (i2b2), and Rules (Sp) contributed to the

performance of the voting ensemble. Adding any CRF model or SVM (Sp) resulted in better

performance of the stacked ensemble. For the voting ensemble, the F1 score dropped the

most when the CRF-rev (Sp) model was removed. For stacked generalization, removing the

SVM (Sp) model had the biggest impact.

3.4.5 Practical Issues

I measured the time for each MCE model to extract medical concepts from the test

set. Table 3.9 shows the times that four different MCE models and the stacked ensemble

spent with the Cardiology data (200 text files). Two stacked ensembles were measured: the

full stacked (i2b2+Sp) ensemble that includes nine different classifiers (as explained in the

previous subsection) and an ablated ensemble without MetaMap. The time was averaged

per document. All measurements were performed on a MacBook Pro with a 2.5 GHz Intel

Core i7 processor and 16 GB of memory.

All individual models except MetaMap and the stacked ensemble recognized the medical

concepts in less than 100 milliseconds. MetaMap was the bottleneck and spent 1 minute 56

seconds to process each document. Consequently, the stacked (i2b2+Sp) took 1 minute 56.4

seconds.
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Table 3.8: The Ablation Tests of Voting and Stacked Ensembles (Cardiology)
Ablated Model Voting Stacked

F1 score Impact F1 score Impact
MetaMap 69.6 0.0 70.2 0.0
Rules (i2b2) 70.0 0.4 70.4 0.2
Rules (Sp) 69.9 0.3 70.2 0.0
SVM (i2b2) 69.1 -0.5 70.2 0.0
SVM (Sp) 68.4 -1.2 69.3 -0.9
CRF-fwd (i2b2) 68.7 -0.9 70.1 -0.1
CRF-fwd (Sp) 68.1 -1.5 69.7 -0.5
CRF-rev (i2b2) 68.7 -0.9 70.0 -0.2
CRF-rev (Sp) 68.0 -1.6 69.8 -0.4

Table 3.9: Prediction Time per Document
Model Time
MetaMap 1m 56s
Rules 0.006s
SVM 0.051s
CRF 0.071s
Stacked (i2b2+Sp) 1m 56.4s
Stacked (i2b2+Sp) without MetaMap 0.4s

m = Minute and s = Second
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3.4.6 Discussion and Analysis

The main conclusion of my research is that models trained with a combination of broad

medical data and specialty data consistently perform better than models trained on either

type of data alone, when the amount of specialty data is limited. I also find that a stacked

ensemble consisting of a diverse set of MCE models using different types of extractors

achieves overall performance comparable to the best individual classifier in my experiments,

but offers two advantages. First, the stacked ensemble yields a recall/precision balance that

favors precision, which may benefit applications that place a premium on high precision.

Second, the stacked ensemble can be easily augmented with additional components as new

resources become available because the meta-classifier automatically learns how to use them

simply by retraining the meta-classifier component. In contrast, adding new components

to voting ensembles can require a change in voting strategies, and voting ensembles do not

provide a way to learn weights to optimally control the influence of different component

models.

To demonstrate this advantage over voting, I added a second copy of the Rule (Sp)

component as an additional system in the voting (i2b2+Sp) ensemble for the cardiology

specialty. Voting between the ten (= 9 + 1) systems using the original threshold of three

dropped the F1 score by -2.6%. Adding a third copy of the Rule (Sp) component (producing

11 component systems) decreased the F1 score by -6.9% (absolute).

In the same scenarios, the stacked learning ensemble proved to be much more robust,

showing almost no change in performance (0.1% with 10 system and 0% with 11 system).

Figure 3.4 shows the F1 scores of voting and stacked ensembles when copies of the Rule (Sp)

component are added one by one. The gray-colored curve with triangle dots represents the

voting ensemble. It shows the sharpest decline in F1 scores as each copy of the Rule (Sp) is

added. The black-colored curve with circle dots represents the stacked ensemble. The F1

score increased from 70.2% to 70.4% even with five extra copies of the Rule (Sp) model in

the ensemble, demonstrating the robustness of a stacked learning architecture.

Another finding of this research is that performance on all three types of specialty areas

is much lower than performance on the broad medical (i2b2) texts. Clearly, there is ample

room for improvement for medical concept extraction from specialty area clinical notes and

more work is needed on this topic. To better understand the strengths and weakness of
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my models, I manually inspected their output. I observed that my ensemble methods are

particularly successful at identifying more accurate concept boundaries than the individual

MCE models (e.g., identifying “severe chest pain” as a Problem concept instead of just

“severe” or “chest pain”).

I also analyzed the false negative errors by the CRF-rev models trained with i2b2 data and

those trained with specialty data. Table 3.10 shows the results of this manual analysis, which

were based on one test fold (20 notes) for each specialty area. The first row of Table 3.10

corresponds to the percentage of false negative errors due to unseen vocabulary. These

concepts were misclassified when none of the words in a concept occurred in the training

data. For example, the cardiology concepts thoracoscopy and cardioplegia never appeared

in the i2b2 training data. Unseen concepts accounted for roughly the same percentage of

errors when training with i2b2 data or specialty data, but note that the i2b2 training set is

roughly twice as large as each specialty area training set.

The second row of Table 3.10 corresponds to false negatives for concepts containing at

least one seen word and one unseen word. The table shows more false negatives in this

category for the models trained with i2b2 data than the models trained with specialty data.

For example, for the Treatment concept aortic crossclamping, crossclamping never appeared

in the i2b2 training data but it did appear in the cardiology training data. This type of

error was most common in the orthopedics data (51% of the errors), which suggests that

the orthopedics notes contain many vocabulary terms that are not present in the i2b2 data.

The third row of Table 3.10 corresponds to false negatives for concepts containing all seen

words, but at least one rarely seen word (frequency ≤ 3). For example, in the cardiology

data, the concepts psa data and r-wave were not identified by the i2b2 trained model. The

model trained with cardiology data could not extract nystatin and oximeter, even though

they occurred (infrequently) in the cardiology training data.

The last row of Table 3.10 corresponds to false negatives for concepts consisting entirely

of words that occurred > 3 times in the training data. Many false negative errors fell into

this category. Generally, there were more false negative errors of this type for the models

trained with specialty data than those trained with i2b2 data, presumably because the

vocabulary is more homogenous in the specialty areas, so more words simply fall into the

seen category.
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Table 3.10: False Negatives (Percentage) by CRF-rev(i2b2) and CRF-rev(Sp) Models
Error types Cardiology Neurology Orthopedics

i2b2 Sp i2b2 Sp i2b2 Sp
All unseen 5 6 6 6 8 4
At least one unseen word 31 21 37 21 51 19
At least one word rarely seen 16 17 14 17 14 19
All seen 48 56 43 56 27 58
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I observed that many errors were due to incorrect phrase boundaries of medical concepts.

For example, only the word hepatitis was labeled in the phrase “hepatitis c.” I also witnessed

some tricky errors due to contextual differences in the words surrounding medical concepts.

For example, a Treatment concept lidocaine is often prescribed for usage on skin (“treated

with lidocaine jelly for pain control”). However, in the cardiology data, it is usually applied

by infiltration (“Lidocaine 20 cc was infiltrated into the tissues”).

3.5 Improvements to the Broad Medical (i2b2) Concept
Extraction

In Chapter 5, I present research on relation classification for the broad medical domain. I

used this concept extraction work to identify concepts on unannotated texts for the relation

classification work. In this section, I describe further improvements to the broad medical

concept extractor to benefit that work for the i2b2 domain.

For weakly supervised learning of medical relation classification (Chapter 5), I used the

stacked learning ensemble (Stacked (i2b2)) to identify the medical concepts in the unlabeled

data (i.e., MIMIC II Clinical Database [220]). For this preparation, I made some changes in

the stacked ensemble.

The first revision I made was the addition of skip-gram features and word embedding

features to the feature set of the SVM and CRF classifiers. Word embeddings have contributed

to several NLP tasks by providing an alternative representation of information in vector

spaces. I used the Word2Vec software [171] to perform K-means clustering on the word

embeddings. I created 1,000 clusters of semantically related words within the unlabeled

data with default parameters of Word2Vec. I used the cluster identifier of each word in a

sentence as a feature. Next, in addition to the CRF-fwd and CRF-rev models, I created

two versions of CRF classifiers both with MetaMap output as features. The revised i2b2

ensembles include seven different classifiers (MetaMap, Rules, SVM, CRF-fwd, CRF-fwd w/

MetaMap, CRF-rev, and CRF-rev w/ MetaMap).

The concepts annotated by the i2b2 annotation guidelines [3] include modifying articles,

pronouns, and prepositional phrases. When applying MetaMap to the training set, I observed

that there is a huge difference between the i2b2 annotations and MetaMap’s concept boundary

definition, especially with respect to articles and pronouns. MetaMap typically excludes
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modifying articles, pronouns, and prepositional phrases. For example, for “a cyst in her

kidney,” only “cyst” was extracted by MetaMap. Therefore I added a postprocessing step

that uses three simple heuristics to adjust concept boundaries to reduce mismatch errors.

Although these rules were originally compiled for use with MetaMap, I ultimately decided

to apply them to all of the IE models. The three heuristic rules are:

• I include the preceding word contiguous to a detected phrase when the word is a

quantifier (e.g., “some” ), pronoun (e.g., “her”), article (e.g., “the’), or quantitative

value (e.g., “70%”). I manually compiled the lists of common quantifiers, pronouns,

and articles.

• I include a following word contiguous to a detected phrase when the word is a closed

parenthesis (“)” ) and the detected phrase contains an open parenthesis (“(” ).

• I exclude the last word of a detected phrase when the word is a punctuation mark

(e.g., period, comma).

Finally, I added more features to the feature set of the stacked ensemble. I created a

feature for the confidence score of each predicted concept: the number of word tokens in a

prediction, and whether the prediction contains a conjunction or prepositional phrase. I

also created a feature that counts how many times the same phrase was predicted to be a

concept in other sentences in the same document.

Table 3.11 shows the performance of other state-of-the-art systems for medical concept

extraction alongside the results from the stacked learning ensemble (stacked (i2b2) revised).

For comparison with these systems, I report the results of class exact match on the i2b2 test

set. In class exact match, both the text span and semantic category must exactly match

the reference annotation. I used the i2b2 Challenge evaluation script to compute recall,

precision, and F1 scores. The stacked ensemble produces higher recall and precision than all

of the other systems. The F1 score of the stacked ensemble is comparable to the F1 score of

the best previous system by Tang et al. [247].

3.6 Conclusion
I analyzed the differences in content between broad medical and specialty area notes.

Interestingly, orthopedics specialty notes exhibit the most unique language when compared
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Table 3.11: Comparison of Other State-of-the-Art Systems With My Stacked Ensemble on
the i2b2 Test Set

System Recall Precision F1 score
de Bruijn et al. [64] 83.6 86.9 85.2
Kang et al. [122] 81.2 83.3 82.2
Tang et al. [247] 84.3 87.4 85.8
Stacked Ensemble 84.4 89.1 86.7
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to other specialty notes or broad medical texts.

When a limited amount of annotated specialty area data is available, my research shows

that training concept extractors with both broad medical data and specialty area data

produces MCE models that achieve better performance on specialty notes than training

with either type of data alone. In addition, my research found that a stacked ensemble with

mixed domain models, including different types of MCE models as well as models trained

on different types of data, achieves good performance and offers some advantages over other

approaches. Stacked learning offers the advantage of being able to easily incorporate any set

of individual concept extraction components because it automatically learns how to combine

their predictions to achieve the best performance.

I found that even though the best individual model (CRF-rev (i2b2+Sp)) and the stacked

ensemble produce similar F1 scores, they exhibit different behaviors with respect to the

underlying recall and precision of their output. The stacked ensemble (i2b2+Sp) extracts

medical concepts more precisely than the CRF-rev (i2b2+Sp) model trained on the union of

the two datasets. Consequently, my results suggest that an individual MCE model may be

preferable for applications where recall is more important than precision, while the stacked

ensemble may be preferable for applications where precision is more important than recall.

I also observed that MCE performance on specialty texts is substantially lower than

state-of-the-art performance on broad medical texts. A promising direction for future work

is to explore semisupervised methods to exploit larger collections of unannotated specialty

area notes for training.



CHAPTER 4

MEDICAL ASSERTION CLASSIFICATION

In this chapter, I focus on the medical assertions classification task. I present an NLP

system that classifies the assertion type of medical problems in clinical notes. Given a

medical problem mentioned in a clinical text, an assertion classifier must look at the context

and choose the status of how the medical problem pertains to the patient by assigning one

of six labels: present, absent, hypothetical, possible, conditional, or not associated with the

patient. This task was introduced with medical concept extraction in 2010 for the i2b2

Challenge Shared Tasks [263]. In the i2b2 Challenge data, two types of assertions (present

and absent) are frequently mentioned while the other four types (hypothetical, possible,

conditional, and not associated with the patient) are less common. Even though the minority

classes are not common, they are extremely important to identify accurately (e.g., a medical

problem not associated with the patient should not be assigned to the patient).

The assertion information potentially plays a valuable role in medical relation classification

which is one of the main tasks in this dissertation research. Each medical problem’s assertion

has to be annotated when the concept is extracted from unlabeled data and its assertion

information is needed to classify the relations associated with the concept. Therefore, this

assertion task can act as a bridge between concept extraction and relation classification

for successful application of weakly supervised learning to medical relation classification

(discussed in Chapter 5).

I approach the assertion classification task as a supervised learning problem. The classifier

is given a medical term within a sentence as input and must assign one of the six assertion

categories to the medical term based on its surrounding context. First, I describe the each

category of assertion with examples provided in the 2010 i2b2 Challenge assertion annotation

guidelines [2]. For each category, medical problem concepts in the assertion category appear

underlined.
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1. Present: problems associated with the patient are present.

• patient had a stroke

• the patient experienced the drop in hematocrit

2. Absent: an assertion that the problem does not exist in the patient. It also includes

mentions where it is stated that the patient had a problem, but no longer does.

• patient denies pain

• his dyspnea resolved

3. Possible: an assertion that the patient may have a problem, but there is uncertainty.

• This is very likely to be an asthma exacerbation

• Doctors suspect an infection of the lungs

• We are unable to determine whether she has leukemia

4. Conditional: an assertion that the patient experiences the problem only under

certain conditions.

• Patient has had increasing dyspnea on exertion

• Penicillin causes a rash

• Patient reports shortness of breath upon climbing stairs

5. Hypothetical: an assertion that the patient may develop the medical problems.

• If you experience wheezing or shortness of breath

• Ativan 0.25 to 0.5 mg IV q 4 to 6 hours prn anxiety

6. Not associated with the patient: an assertion that the medical problem is

associated with someone who is not the patient.

• Family history of prostate cancer

• Brother had asthma
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I create an SVM classifier with a variety of linguistic features, including lexical, syntactic,

lexico-syntactic, contextual, and word embedding features. This study is the subsequent

research to Kim et al. [133]. I retrain the SVM model after replacing the preprocessing

module and adding new features including word embedding features. In the following

sections, I will describe the methods I used for assertion classification and present the

experimental results and feature contribution analysis.

4.1 Assertion Classification System
I built a UIMA [82, 83] based assertion classification system with multiple preprocessing

components, as depicted in Figure 4.1. The architecture includes a concept importer to

parse the concept annotation file with the i2b2 format shown in Figure 3.2, an assertion

importer, a section detector, a tokenizer, a lemmatizer, a part-of-speech (POS) tagger, and

a context analyzer (local implementation of the ConText algorithm [34]).

I applied the Stanford CoreNLP tool [157] for tokenization, lemmatization, and POS

tagging. I used the sentence boundaries that have already been provided by the i2b2

committee (one sentence per line). When a sentence ends with a colon and all words in the

sentence are capitalized, the sentence is annotated as a section header.

The assertion classifier uses features extracted by the subcomponents to represent

training and test instances. I used the LIBLINEAR software package [80] for multiclass SVM

classification with a linear kernel. I tuned the following SVM parameters by 10-fold cross

validation on the training set: the cost parameter c was set 0.1 after trials with specified

subsets of LIBLINEAR parameters, and the weight of each assertion class was set 0.9, 1.0,

1.0, 1.3, 1.2, and 1.5 for present, absent, hypothetical, possible, conditional, and not associated

with the patient respectively. This tuning procedure to minimize the misclassification errors

was performed with all features that will be explained in the next section.

4.2 Feature Set Description
I transformed the corpus into a collection of instances to train models for assertion

classification. The assertion classifiers used five types of features listed below, which I

developed by manually examining the training data:

• Contextual Features:
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– I incorporated the ConText algorithm [34] at the sentence level to detect four con-

textual properties in the sentence for a medical problem term, C : absent(negation),

hypothetical, historical, and not associated with the patient. The algorithm assigns

one of three values to each contextual property: true, false, or possible. Specifically,

four features with three possible values each were defined.

– The ConText algorithm can fail to capture contextual properties because it does

not consider the distance between contextual cue (e.g., negation) words and the

medical problem term. To reduce incorrect contextual property assignment, I also

created a second set of ConText algorithm properties restricted to the six-word

context window around the medical problem term (three words on the left and

three words on the right).

– The ConText properties were also captured for the medical problem preceding C,

if any.

– I identified the section headers that are followed by one or more sentences

exclusively containing certain minority assertion classes. Three binary features

were defined for hypothetical, conditional, and not associated with the patient to try

to improve performance on those specific classes. For instance, according to the

assertion annotation guidelines [2], problems associated with allergies were defined

as conditional. So I created one binary feature that is true if C is underneath the

section header containing terms related to allergies (e.g., “Medication allergies”).

Appendix E provides the complete lists of the section headers identified for

hypothetical, conditional, and not associated with the patient classes.

• Lexical Features:

– For each word contained in the medical term, C, I defined lexical features that

include the lowercase version of the word, a canonical form (lemma), and a lemma

bi-gram.

– Lemma of head word in C

– Lemmas of five words preceding C, and those of five words following it
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– Lowercase version of words in a context window of size five

– Lemma bi-grams of three words preceding C, and those of three words following

it

– Lemma and lowercase forms of the nearest words before and after C

– Combination of head lemma and the nearest preceding word lemma, and same

combination for the nearest following word lemma

– Finally, I created a binary feature that is true if the medical term contains a word

with a negative prefix.1

• Lexico-syntactic Features:

– I defined features representing words corresponding to several POS in the same

sentence as the medical term. The value for each feature is the lemmatized word

string. To mitigate the limited window size of lexical features, I defined one

feature each for the nearest preceding and following adjective, adverb, preposition,

and verb; and one additional preceding adjective, preposition, and verb; and one

additional following preposition and verb.

– I also defined two binary features that check for the presence of a comma or

question mark adjacent to the medical term.

• Syntactic Features:

– POS tags of the words in the medical term

– POS tags of the five words preceding the medical term and the five words following

it

• Word Embedding Features:

– I used word embedding features derived from the Word2Vec [171] clusters that

were computed for medical concept extraction (Section 3.5). I used the cluster

identifier of each word in a context window of size three around the medical term.

1Negative prefixes: ab, de, di, il, im, in, ir, re, un, no, mel, mal, mis. In retrospect, some of these are too
general and should be tightened up in the future.
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– The cluster identifier of head word

– The cluster identifiers of two preceding and two following verbs derived for

lexico-syntactic features

As described above, considering clinical text properties, several features were newly

designed with the minority classes in mind. In the next section, I analyze the contributions

of each feature type in detail.

4.3 Evaluation of Assertion Classification Model
The input for this task is clinical texts and concept annotations. For gold annotations,

the assertion of each problem concept was manually labeled by medical experts. Figure 4.2

illustrates a sample text with concepts and assertions.

The assertion annotation file contains medical problems with their assertions, one medical

assertion per line. The assertion annotation format specified in the 2010 i2b2 Challenge

Annotation File Formatting [1] is as follows:

c="concept text" offset||t="concept type"||a="assertion value"

where

c, offset, and t are defined as in Section 3.4.

a represents the assertion of the concept.

For example, in the sentence “No pleural effusion or pneumothorax,” two medical problems,

“pleural effusion” and “pneumothorax,” have absent assertions.

4.3.1 Assertion Data Set

I evaluated performance on the assertion data from the 2010 i2b2 Challenge test set.

The training set includes 349 clinical notes, with 11,967 assertions of medical problems. The

test set includes 477 texts with 18,550 assertions. Table 4.1 shows the distribution of each

assertion type in the training and test data. Two of the assertion categories (present and

absent) accounted for nearly 90% of the instances in the data set, while the other four classes

were relatively infrequent.

I do not attempt weakly-supervised learning for assertion classification as regarded as

beyond the scope of this dissertation research. However, considering the imbalanced dataset,
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 1 
 . 
 2 
 3 
 4 
 5 
 . 
 6 
 7 

She had a liver function test and amylase and lipase postoperatively 
and she had a digoxin level of 1.0 on 06/04/05 . 
The patient had a CBC on admission of 14.1 with a hematocrit of 33.8 . 
Her CBC remained stable on 06/05/05 . 
She had a white blood cell of 7.7 , hematocrit of 30.6 . 
The patient had a MRSA nasal culture obtained on 06/03/05 , which 
revealed rare staphylococcus aureus . 
The patient had a chest x-ray on admission , which was clear . 
No pleural effusion or pneumothorax .	

(a) A Sample Text (Excerpted from https://www.i2b2.org/NLP/Relations/assets/doc2.txt)

	

	

c="a liver function test" 1:2 1:5||t="test" 
c="amylase" 1:7 1:7||t="test" 
c="lipase" 1:9 1:9||t="test" 
c="a digoxin level" 1:14 1:16||t="test" 
c="a cbc" 2:3 2:4||t="test" 
c="a hematocrit" 2:10 2:11||t="test" 
c="her cbc" 3:0 3:1||t="test" 
c="a white blood cell" 4:2 4:5||t="test" 
c="hematocrit" 4:9 4:9||t="test" 
c="a mrsa nasal culture" 5:3 5:6||t="test" 
c="rare staphylococcus aureus" 5:13 5:15||t="problem" 
c="a chest x-ray" 6:3 6:5||t="test" 
c="pleural effusion" 7:1 7:2||t="problem" 
c="pneumothorax" 7:4 7:4||t="problem" 

(b) A Sample Concept Annotation (Excerpted from https://www.i2b2.org/NLP/Relations/assets/doc2.con)

	

	

c="rare staphylococcus aureus" 5:13 5:15||t="problem"||a="present" 
c="pleural effusion" 7:1 7:2||t="problem"||a="absent" 
c="pneumothorax" 7:4 7:4||t="problem"||a="absent" 

(c) A Sample Assertion Annotation (Excerpted from https://www.i2b2.org/NLP/Relations/assets/doc2.ast)

Figure 4.2: A Sample Text With Concept and Assertion Annotations

Table 4.1: Assertion Types Distribution
Assertion type Training Test

Count Percent Count Percent
Present 8,051 67.3 13,025 70.2
Absent 2,535 21.2 3,609 19.5
Possible 535 4.5 883 4.8
Conditional 103 0.9 171 0.9
Hypothetical 651 5.4 717 3.9
Not patient 92 0.8 145 0.8
All 11,967 100.0 18,550 100.0
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the weakly-supervised learning approach, which I apply to medical relation classification in

Chapter 5, might be beneficial to this assertion task. Extending the assertion classification

model to weakly supervised learning will be discussed more in Chapter 6.

4.3.2 Evaluation Metrics

I used three metrics to evaluate assertion classification: recall, precision, and F1 score,

a harmonic mean of recall and precision (giving equal weight to each) [266]. Each metric

was microaveraged or macroaveraged across each assertion in the test set. Microaveraged

metrics are computed by globally counting the total true positives, false negatives and

false positives, whereas macroaveraged metrics are locally computed for each assertion class

and then averages them. In other words, macroaveraged metrics give equal weight to each

assertion class, whereas microaveraged metrics give equal weight to each assertion instance.

Given the extremely unbalanced distribution of assertion types in the data set, I provided

the results of both microaveraged that favors the dominant classes and macroaveraged that

can be more appropriate for unbalanced class distribution. I used the official i2b2 Challenge

evaluation script to calculate microaveraged measures. For macroaveraged measures, a new

script was created to obtain average values for each assertion type.

4.3.3 Results for Assertion Classification

I have conducted a set of experiments to evaluate the performance of SVM-based classifiers.

In the next subsection, I present the classification results when the classifier was trained

with the full set of features described above. Then, I show how each feature class contributes

to assertion classification.

The supervised learning system trained with the i2b2 training data showed quite good

performance, with 94.5% microaveraged F1 score. The best performing system in the 2010

i2b2 Challenge achieved an F1 score of 93.6%. Please note that each score of microaveraged

metrics is identical to each other, that is, Recall = Precision, because the counts of system

predictions are always corresponding to the number of assertions in the reference standard.

The macroaveraged F1 score was 81.4%, much lower because of weak recall rates of some

minority classes, especially 26.9% recall for conditional. Table 4.2 shows the results produced

with the supervised classifier. The assertion classifier reached over 95% F1 score for two

dominant classes: present and absent. For other minority classes including not patient



74

Table 4.2: Results Produced With the Supervised Assertion Classifier
Assertion type Recall Precision F1 score
Present 98.0 95.1 96.5
Absent 95.6 95.7 95.6
Possible 59.3 81.2 68.6
Conditional 26.9 78.0 40.0
Hypothetical 87.9 91.0 89.4
Not patient 80.0 95.9 87.2
Macroavg 74.6 89.5 81.4
Microavg 94.5 94.5 94.5
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(named for Not associated with the patient), the classifier obtained high precision, mostly

over 80%, with variable recall.

4.3.4 Analysis and Discussion

I use the prediction confusion matrix to explain the performance of the assertion classifier

for each assertion type on the test set. Table 4.3 displays counts of true positives (bolded),

false positives, and false negatives of each category in a confusion matrix. Most of the

conditional assertions were frequently misclassified as present with 114 false negatives and 13

false positives. For possible, the classifier produced 325 false negatives predicted as present.

Several not patient assertions were misclassified as present or absent assertions.

I performed ablation tests for the assertion classifiers to measure the contribution of each

of the five subsets of features explained above. An ablated classifier was tested by excluding

the feature set specified in each row header in Table 4.4. The columns named “Impact”

in Table 4.4 shows the F1 score difference between the ablated classifier and the complete

system.

As shown in Table 4.4, adding any feature set resulted in better performance of the

assertion classifier. Removing the lexical features showed the sharpest decline in both

macroaveraged and microaveraged F1 scores. More specifically, the lexical features increased

macroaveraged and microaveraged F1 scores by 4.2 (= 81.37% − 77.17%) and 1.5 (=

94.50%− 93.05%) respectively. The macroaveraged F1 score dropped much more than

microaveraged F1 score when contextual or lexical features were removed. Apparently, this

indicates they were more beneficial for minority classes while other features had less impact

on the minority classes. Removing word embedding features led to the macroaveraged F1 of

80.7% and the microaveraged F1 of 94.3%.

Table 4.5 shows the detailed results of each ablated classifier for each feature type. The

columns named “Rec,” “Pre,” and “F1” in Table 4.5 present the recall, precision, and F1

scores, respectively, obtained by each ablated classifier. The contextual features contributed

to the performance on all assertion types. Removing the contextual features had the biggest

impact on not patient type. The recall of not patient decreased from 87.2% to 62.8%

without the contextual features. The contextual features helped also detect more conditional

cases. Allergy-related section headers, for example, “Allergies,” “Allergies and Medicine
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Table 4.3: Confusion Matrix of Assertion Predictions
Classified as

Gold Present Absent Possible Conditional Hypothetical Not patient
Present 12,765 119 89 13 39 0
Absent 144 3,449 13 0 1 2
Possible 325 16 524 0 18 0
Conditional 114 5 2 46 4 0
Hypothetical 63 4 17 0 630 3
Not patient 16 13 0 0 0 116
True positives (the diagonal elements) are bolded.

Table 4.4: Features Contribution to Assertion Classification
Feature Macroaveraged Microaveraged

F1 score Impact F1 score Impact
- Contextual 78.1 -3.3 94.1 -0.5
- Lexical 77.2 -4.2 93.1 -1.5
- Lexico-syntactic 81.0 -0.3 94.3 -0.2
- Syntactic 80.6 -0.7 94.3 -0.2
- Word embedding 80.7 -0.7 94.3 -0.2
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Table 4.5: Features Contribution for Each Assertion Type
Feature Rec Impact Pre Impact F1 Impact
All
Present 98.0 95.1 96.5
Absent 95.6 95.7 95.6
Possible 59.3 81.2 68.6
Conditional 26.9 78.0 40.0
Hypothetical 87.9 91.0 89.4
Not patient 80.0 95.9 87.2
- Contextual
Present 97.8 -0.2 94.8 -0.3 96.3 -0.2
Absent 94.9 -0.6 95.2 -0.4 95.1 -0.5
Possible 59.3 0.0 79.0 -2.2 67.8 -0.8
Conditional 24.6 -2.3 70.0 -8.0 36.4 -3.6
Hypothetical 86.9 -1.0 91.0 -0.1 88.9 -0.6
Not patient 62.8 -17.2 90.1 -5.8 74.0 -13.2
- Lexical
Present 97.5 -0.5 93.7 -1.4 95.6 -1.0
Absent 93.4 -2.2 93.8 -1.9 93.6 -2.0
Possible 52.2 -7.1 79.4 -1.9 63.0 -5.6
Conditional 6.4 -20.5 78.6 0.6 11.9 -28.1
Hypothetical 84.5 -3.4 88.5 -2.6 86.5 -3.0
Not patient 80.0 0.0 91.3 -4.5 85.3 -1.9
- Lexico-syntactic
Present 98.0 0.0 94.9 -0.2 96.4 -0.1
Absent 95.5 0.0 95.7 0.0 95.6 0.0
Possible 56.7 -2.6 79.3 -2.0 66.1 -2.5
Conditional 26.3 -0.6 79.0 1.0 39.5 -0.5
Hypothetical 87.6 -0.3 91.4 0.4 89.5 0.0
Not patient 80.7 0.7 95.9 0.0 87.6 0.4
- Syntactic
Present 98.0 0.0 94.8 -0.2 96.4 -0.1
Absent 95.2 -0.4 95.4 -0.2 95.3 -0.3
Possible 57.5 -1.8 80.3 -1.0 67.0 -1.6
Conditional 26.3 -0.6 73.8 -4.2 38.8 -1.2
Hypothetical 87.5 -0.4 91.7 0.6 89.5 0.1
Not patient 79.3 -0.7 95.8 0.0 86.8 -0.4
- Word embedding
Present 97.9 -0.1 94.9 -0.2 96.4 -0.1
Absent 95.4 -0.2 95.4 -0.3 95.4 -0.2
Possible 58.0 -1.4 80.9 -0.4 67.6 -1.0
Conditional 25.7 -1.2 78.6 0.6 38.8 -1.2
Hypothetical 87.6 -0.3 90.5 -0.6 89.0 -0.4
Not patient 76.6 -3.5 96.5 0.6 85.4 -1.8
Rec = Recall, Pre = Precision, and F1 = F1 score
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Reactions,” “Allergies/Sensitivities,” “Allergy,” and ‘Medication Allergies,” were associated

with conditional assertions. The precision of conditional decreased from 78.0% to 70.0%

without the contextual features.

The lexical features also contributed to the performance on each assertion type. As

discussed above, The F1 score of each assertion type dropped the most when the lexical

features were removed except not patient. The lexical features gave 28.1%, 5.6%, and 3.0%

higher F1 scores for conditional, possible, and hypothetical assertions respectively. The

negative prefix features increased performance on the absent type.

The lexico-syntactic features did not help for absent and hypothetical assertions. The

possible class benefitted the most from the lexico-syntactic features, with a 2.6% recall gain. I

observed that many possible concepts were preceded by a question mark (‘?’) in the training

corpus. Similar to the lexico-syntactic features, the syntactic features increased performance

on the possible assertions. The syntactic features allowed more precise classification on

conditional assertions, with a 4.2% precision gain.

The word embedding features helped more than lexico-syntactic and syntactic features

for not patient assertions. These features provided different representation of words for

more generalization to unseen words from the training corpus. Overall, each type of feature

contributed to the performance of the assertion classifier. I also provide another table in

Appendix F for the reader who would like to see the results grouped by assertion categories.

My assertion classifier compares favorably to three state-of-the-art systems. Table 4.6

shows the F1 scores of other state-of-the-art systems for medical assertion classification. Two

systems were created for participation in the 2010 i2b2/VA Challenge [46, 64] and one as

postchallenge effort [16]. de Bruijn et al. [64] reached a macroaveraged F1 score of 77.4%

(the highest macroaveraged F1 score reported in [64]). Clark et al. [46] produced a 80.2%

macroaveraged F1 score (not officially reported in [46] but computed by taking the numbers

in the confusion matrix from [46]). My SVM-based classifier (the last row of Table 4.6)

obtained a slightly higher F1 score than other systems in both micro and macroaveraging.

4.4 Conclusions
I created an SVM-based assertion classifier that achieves state-of-the-art performance

on assertion labeling for clinical texts. In this chapter, I described the features used for
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Table 4.6: Comparison With Other State-of-the-Art Systems for Assertion Classification
System Macroaveraged Microaveraged
de Bruijn et al. (2011) [64] 77.4 93.6
Clark et al. (2011) [46] 80.2 93.4
Bejan et al. (2013) [16] 80.0 94.2
My SVM classifier 81.4 94.5
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this task, presented the experimental results on the i2b2 test set, and investigated the

improvements resulting from the addition of each type of features. My analysis showed

that the contextual or lexical features contributed the most to the system’s performance.

Especially, the conditional assertion type benefitted the most from lexical features. However,

performance on the minority classes still lags behind the dominant classes, so more work is

needed in this area. I discuss potential future directions for research on assertion classification

in Chapter 6.

The assertion classification model was needed for weakly supervised learning preparation

of the medical relation classification task which I will discuss in the next chapter. I apply

the trained model to classify the assertion of each medical problem concept extracted from

unlabeled data.



CHAPTER 5

EXPLOITING UNLABELED TEXTS FOR
MEDICAL RELATION CLASSIFICATION

Medical relation classification is the main topic of this chapter. Given a pair of medical

concepts found in a sentence, a relation classification system must determine the type

of relation that exists between the two concepts. My research focuses on the relation

classification task introduced in 2010 for the i2b2 Challenge Shared Tasks [263]. This task

involves recognizing eight types of relations between pairs of three types of medical concepts:

problems, treatments, and tests. Note that this task aims to classify relations of given

reference standard concepts.

A key challenge of this task is the extremely skewed class distribution across relation

types. For example, five types of relations are defined between problems and treatments, but

two of them (None and TrAP (treatment administered for problem)) account for 86% of the

instances in the i2b2 Challenge data. Four relation types (TrCP (treatment causes problem),

TrIP (treatment improves problem), TrWP (treatment worsens problem), and TrNAP

(treatment not administered because of problem)) are distributed across the remaining 14%

of the data. Each of these “minority” relations appears in just 2-6% of the data. Identifying

these minority relations is extremely important from a practical perspective because they

hold valuable information. For example, the dominant relations between problems and

treatments are TrAP (administration of a treatment) and None (no relation at all). In

contrast, the minority relations (TrCP, TrIP, TrWP, TrNAP) represent situations were a

treatment causes, improves, worsens, or is contraindicated for a problem, which are arguably

the most important types of situations to recognize.

Classifiers trained with supervised learning can perform relatively poorly on minority

classes because there are few examples in labeled training data. Exploiting unlabeled data for

training presents an opportunity to improve performance on these classes. Self-training that
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solely depends on the confidence score would not guarantee the satisfactory classification of

minority classes when most of the confident examples come from majority classes. I present

two instance selection methods that can offer a more robust solution when the labeled data

has a skewed class distribution and acquiring good quality minority class instances is difficult.

The proposed instance selection methods are specifically aimed at improving performance

on minority classes. To surmount the traditional self-training problem that primarily selects

instances of dominant classes, these new methods can select a diverse and representative set

of new instances from the unlabeled data.

The first instance selection method, called Unlabeled Data Prototypes (UDP) Selection,

selects instances from clusters containing only unlabeled data. The most representative

instance from each cluster is selected as additional training data. The second method, called

Labeled Data Counterparts (LDC) Selection, selects instances from clusters containing both

labeled and unlabeled instances. For each labeled instance, this method identifies its closest

counterpart by selecting the unlabeled instance in the cluster that is most similar to it.

In this chapter, I introduce the types of medical relations that need to be classified

and outline the distribution of labeled data. Then, I explain how I extract the medical

concepts from unlabeled data and classify the assertions of medical concepts by application

of my MCE system (Chapter 3) and assertion classification model (Chapter 4). Next, I

present an SVM model which will be used as a baseline and a component in my weakly

supervised framework. Then, I present my weakly supervised learning model. I explain how

the examples of unlabeled data and labeled data are clustered together and elaborate on the

two instance selection methods. Finally, I show the experimental results and compare the

differences between these selection methods.

5.1 Labeled Data Description
First, I describe each type of relation that exists between two concepts. The examples

provided for the relations are excerpted from the 2010 i2b2 Challenge relation annotation

guidelines [4]. For each relation type, concepts involved in the relation type appear underlined.

• Medical problem—treatment (Pr–Tr) relations:

1. Treatment improves medical problem (TrIP).
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– hypertension was controlled on hydrochlorothiazide

– infection resolved with antibiotic course

2. Treatment worsens medical problem (TrWP).

– the tumor was growing despite the available chemotherapeutic regimen

– culture taken from the lumbar drain showed Staphylococcus aureus resistant

to Nafcillin

3. Treatment causes medical problem (TrCP).

– Penicillin causes rash .

– hypothyroidism following near total thyroidectomy

4. Treatment is administered for medical problem (TrAP).

– He was given Lasix periodically to prevent him from going into CHF .

– Dexamphetamine 2.5 mg. p.o. q. A.M. for depression

5. Treatment is not administered because of medical problem (TrNAP).

– Relafen which is contraindicated because of ulcers .

– Colace 100 milligrams po q day , hold for loose stools .

6. Relation that does not fit into one of the above defined relationships (NoneTrP).

• Medical problem—test (Pr–Te) relations:

1. Test reveals medical problem (TeRP).

– an echocardiogram revealed a pericardial effusion

– An abdominal ultrasound was performed showing no stones .

2. Test conducted to investigate medical problem (TeCP).

– a VQ scan was performed to investigate pulmonary embolus

– chest x-ray done to rule out pneumonia

3. Relation that does not fit into one of the above defined relationships (NoneTeP).

• Medical problem—medical problem (Pr–Pr) relations:
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1. Medical problem indicates medical problem (PIP).

– Azotemia presumed secondary to sepsis

– a history of noninsulin dependent diabetes mellitus , now presenting with

acute blurry vision on the left side .

2. Relation that does not fit into PIP relationship (NonePP).

I used the i2b2/VA 2010 Shared Task corpus for this research, which consists of a training

set of 349 annotated clinical notes and a test set of 477 annotated clinical notes. This test

set contains 45,009 annotated medical concepts with 9,069 relations that occur in the same

sentence. Table 5.1 shows the distribution of each relation type in the training and test data.

The test set contains 6,949 Pr–Tr pairs that occur in the same sentence, of which

3,463 are positive examples (participate in a relation) and 3,486 are negative examples

(NoneTrP). Pr–Te relations include 3,620 positive and 2,452 negative examples (NoneTeP).

Pr–Pr relations include 1,986 positive and 11,190 negative examples (NonePP). As seen

in Figure 5.1, the class distributions across Pr–Tr and Pr–Te relation types are extremely

skewed.

Among Pr–Tr relations, four “minority” classes, TrCP, TrIP, TrWP, TrNAP, are

distributed across 14% of the data. Each of these relations appears in just ∼2–6% of the

data. Among the Pr–Te relations, TeCP is the minority class, accounting for <10% of the

instances. My goal is to improve relation classification with an emphasis on these minority

classes by exploiting large amounts of unlabeled clinical texts. Since there is only one type of

Pr–Pr relation (PIP), I focused exclusively on the Pr–Tr and Pr–Te relations in my efforts.

5.2 Data Preparation for Weakly Supervised Learning
For this dissertation research, I also used texts from the MIMIC II Clinical Database

[220], which contains various types of clinical notes: discharge summaries, nursing progress

notes, cardiac catheterization notes, ECG reports, radiology reports, and echocardiography

reports. From this data set, I used 26,485 discharge summaries after filtering out notes with

insufficient text content (<500 Bytes).

For weakly supervised learning preparation, I had to identify the medical concepts in

the unlabeled data and classify the assertion of each medical problem concept. For concept
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Table 5.1: Relation Types Distribution
Relation type Training Test

Count Percent Count Percent
Pr–Tr
TrIP 107 2.5 198 2.8
TrWP 56 1.3 143 2.1
TrCP 296 6.9 444 6.4
TrAP 1422 32.9 2487 35.8
TrNAP 106 2.5 191 2.7
NoneTrP 2329 54.0 3486 50.2
Pr–Te
TeRP 1733 48.6 3032 49.9
TeCP 303 8.5 588 9.7
NoneTeP 1533 43.0 2452 40.4
Pr–Pr
PIP 1239 14.4 1986 15.1
NonePP 7349 85.6 11190 84.9

NoneTrP 
50.2%

  TrNAP 
2.7%

  TrAP 
35.8%

  TrCP 
6.4%

  TrWP 
2.1%  TrIP 

2.8%

NoneTeP 
40.4%

  TeCP 
9.7%

  TeRP 
49.9%

Figure 5.1: Distribution of Treatment and Test Relation Types in the Test Set
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extraction, I used the stacked learning ensemble described in Chapter 3. From the texts,

4,108,054 medical concepts were extracted with 1,121,405 treatments, 1,306,556 tests, and

1,680,093 medical problems. For assertion classification of medical problems, I used the

assertion classifier described in Chapter 4. The assertion classifier was trained with the

i2b2 training data. The classifier assigned to each medical problem concept extracted from

the the unlabeled data one of six labels: present, absent, hypothetical, possible, conditional,

or not associated with the patient. Using the predicted concepts assigned to the unlabeled

data, I created a large set of relation pairs to generate feature vectors for weakly supervised

learning and clustering.

I used CLUTO [123], a data clustering software that has been widely used in various tasks,

to create clusters containing both labeled (i2b2 training) and unlabeled data: 517,689 pairs

of Problem and Treatment concepts and 455,272 pairs of Problem and Test concepts. The

same feature vectors generated for SVM classification (to be discussed in Section 5.3) were

reused with the clustering algorithm. The similarity between two instances was computed

as the cosine between the instance vectors. Given two instance vectors, A and B, the cosine

similarity is calculated as follows:

cos(A,B) =

n∑
i=1

AiBi√
n∑

i=1
Ai

2
√

n∑
i=1

Bi
2

(5.1)

To determine the number of clusters, I use the root-mean-square standard deviation (RMSSD).

RMSSD is a measure of homogeneity within clusters and large RMSSD values indicate that

clusters are not homogeneous [156]. Given a set of clusters, C = {c1, c2, ..., cn}, RMSSD is

defined as follows:

RMSSD(C) =

√√√√√√√√
n∑

i=1

∑
x∈ci

‖x − mi‖2

n∑
i=1

(ti − 1)
,

where ci = the ith cluster,

mi = center of ci,

ti = number of instances in ci,

‖X‖2 = X>X

(5.2)
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I ran a series of clustering processes with different numbers of clusters, K, and calculated

the RMSSD for each K. I tried 20 different cluster sizes aimed at having the average number

of members per cluster range from 40 to 800 (i.e., K = the number of instances × n, n =

1/800, 2/800, ..., 19/800, 20/800). When I set n to 1/800 and 20/800 (= 1/40), I expected

that on average 800 and 40 members would exist in each cluster, respectively.

The curves of RMSSD are generally either upward or downward. I used the shift point

of the curves to determine the appropriate number of clusters. For each of the Pr–Tr and

Pr–Te, I then detected the shift point (also known as the “Knee” point) of its RMSSD curve

based on the Satopää et al. [223] method. Figure 5.2 shows the RMSSD curve of Pr–Tr

clusters. According to [223], the Knee points are the local minima when the RMSSD curve is

rotated θ degrees counterclockwise about (xmin, ymax) through the line drawn by connecting

the points (xmin, ymax) and (xmax, ymin). In Figure 5.2, the point (xmin, ymax) is (647,

0.837) and (xmax, ymin) is (12940, 0.748). Depending on the curve, the local minima can be

more than one but only one minimum existed in both RMSSD curves of Pr–Tr and Pr–Te

clusters.

The cluster sizes of 4,529 and 3,414 were identified as the Knee points for the Pr–Tr

and Pr–Te relation clusters respectively. In the following paragraphs, I will describe my

supervised classification models and then present the instance selection methods based on

clustering unlabeled data.

5.3 Supervised Relation Classification
I created three supervised learning classifiers (one for each category of concept pairs:

Pr–Tr, Pr–Te, and Pr–Pr) using a rich set of features. I applied the Stanford CoreNLP

tool [157] for tokenization, lemmatization, POS tagging, and phrase chunking. The system

architecture for supervised relation classification is depicted in Figure 5.3.

5.3.1 Feature Set Description

I trained SVM classifiers with a linear kernel using the LIBLINEAR software package [80].

The multiclass SVM classifiers use six types of features associated with a pair of concepts

<C1, C2>:

• Assertion Features:
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Figure 5.2: RMSSD Curve of Pr–Tr Clusters
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Figure 5.3: System Architecture for Supervised Relation Classification.
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– For each medical problem concept, I create a feature for the assigned assertion

type.

• Context Features:

– To compensate for the absence of assertions for treatment and test concepts, I

incorporated the ConText algorithm [34] at the sentence level to detect three types

of contextual properties for each concept: negation, hypothetical, and historical.

– I also created a second set of ConText algorithm properties restricted to the

six-word context window around C1 and C2 (three words on the left of C1 and

three words on the right of C2).

• Distance Features: These features were designed to help the classifiers distinguish

between concept pairs in close proximity that probably have a relation and distant

pairs that probably have no relation between them.

– I created features to represent the distance between concepts C1 and C2 by

counting the number of words.

– Features that specify whether the distance is the shortest or the farthest relative

to other relations in the same sentence.

– I created three features to measure the number of treatment, test, and problem

concepts appearing before or after the pair.

– Three features that specifiy whether any Pr–Tr, Pr–Te, and Pr–Pr relations exist

between C1 and C2.

– I created features that represent the sequence of chunk tags between C1 and C2.

• Lexical Features:

– I created lexical features for the words contained in C1 and C2.

– Bi-grams of words contained in C1 and C2.

– The head words of C1 and C2

– Two preceding and two following words for each of C1 and C2



90

– The words between the two concepts

– Also, I defined features for verbs that precede, follow, or occur between the

concepts.

• Syntactic Features:

– POS tags of two words on the right of C1 and POS tags of two words on the left

of C2.

• Word Embedding Features:

– In the same way as for assertion classification (Section 4.2), I used the cluster

identifier of each word between the two concepts as a feature.

– I also used the cosine similarity of the word embedding vectors for the heads of

C1 and C2.

5.3.2 Training SVM Models

I randomly selected 149 (= 349− 200, about 40% of the training set) documents from

the training set as held-out data. I tuned LIBLINEAR’s parameters to maximize the

microaveraged F1 score with the held-out data. After experimenting with different values on

the development data, I set the cost parameter c to 0.06 for Pr–Tr, and 0.02 for Pr–Te and

Pr–Pr. Also, the weights of negative examples were set to 0.2 for Pr–Tr and Pr–Te and

0.3 for Pr–Pr. The lower the weight for instances with no relation, the higher recall was

obtained on held-out data.

Although the classifiers showed good performance under the microaveraged scoring

metrics, performance on the minority classes was weak. As shown earlier, the class

distributions are extremely skewed and the minority classes are relatively rare. To reduce the

performance gap between the dominant classes and the minority classes, I also experimented

with retraining the model by assigning higher weights to the minority classes to increase

the importance of minority classes being classified correctly. It did not yield an increase

in macroaveraged F1 score and more detailed results will be reported in Section 5.5. To

improve performance across the different relation classes, I extend my methods to weakly

supervised learning described in the following paragraphs.
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5.4 Exploiting Unlabeled Data for Relation Classification
To take advantage of the large amounts of unlabeled clinical notes that are available, I

explored an iterative weakly supervised learning framework. I developed two novel methods

for instance selection that are specifically aimed at improving performance on minority

classes. My general framework involves the following steps:

1. A classifier is trained with supervised learning using the labeled training data.

2. The classifier is applied to the unlabeled data so that each unlabeled instance receives

a predicted label.

3. A subset of the unlabeled instances is selected and then added to the set of labeled

data (using the classifier’s predictions as the labels).

4. The classifier is retrained using the (larger) set of labeled data.

This process repeats until a stopping criterion is met (e.g., for a fixed number of

iterations or until no new instances can be labeled). Figure 5.4 shows the process for a

learning mechanism for medical relation classification exploiting unlabeled data.

This paradigm is generally known as self-training, where the most common method for

instance selection (step 3) sorts the instances based on the confidence scores produced by

the classifier (i.e., confidence in the predicted labels) and then selects the most confidently

labeled instances. This traditional self-training approach, however, tends to select instances

of the dominant classes much more often than the minority classes because the classifier is

more confident in its predictions for the dominant classes.

This issue motivated me to explore new methods for instance selection that try to create

a diverse and representative set of new instances from the unlabeled data. Consequently, I

developed two new methods for instance selection that first cluster the unlabeled data to

identify groups of similar instances. Both methods generate clusters and assign labels to the

instances in the same way.

First, the labeled and unlabeled instances are combined into a single dataset and the

clustering algorithm (described in Section 5.2) is applied. Once the classifier predicts the

label of each unlabeled instance, I consider the instances with a high confidence score as

candidates for selection. In each iteration, I sort the instances based on the confidence scores
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produced by the classifier and an instance is a candidate for selection when it is ranked in

the top 25% per class.

5.4.1 Unlabeled Data Prototypes Selection

The first instance selection method, called Unlabeled Data Prototypes (UDP) Selection,

selects instances from clusters containing only unlabeled data.

1. I disregard clusters that contain labeled instance.

2. I compute the purity of each cluster and identify clusters where the highly confident

cluster members have the same positive (participate in a relation) relation type (i.e.,

cluster purity = 1). Any instances that were already added to the set of labeled data

are excluded from the calculation of cluster purity.

3. I discard clusters with purity < 1 because the instances are similar but the classifier’s

predictions are inconsistent, so the predictions are suspect.

4. The most representative instance from each cluster is then selected as additional

training data, based on average cosine similarity (defined in Equation 5.1) with other

cluster members. An instance is excluded from the selection when it is exactly similar

(i.e. cosine similarity = 1) to any instances that were already added to the set of

labeled data.

The intuition behind this approach is twofold: (1) The instances in these clusters are

different from the training instances, because no labeled instance was put in these clusters.

Therefore, they could represent some new type of information found in the unlabeled data.

(2) Choosing one representative instance from each cluster ensures that the set of selective

instances will be diverse. This method is illustrated in Figure 5.5(a). Gray-colored instances

represent unlabeled data.

5.4.2 Labeled Data Counterparts Selection

Assuming that unlabeled data will be similar to labeled data when they coexist in the

same cluster, my second method, called Labeled Data Counterparts (LDC) Selection, selects

instances from the clusters containing both labeled and unlabeled instances.

1. I disregard clusters that contain no labeled instance.
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Figure 5.5: Clustering-Based Instance Selection
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2. For each instance labeled with a positive relation type in the original training data,

the unlabeled instance most similar to it in the same cluster is selected. Similar to

UDP, an instance is excluded from the selection when it is exactly similar to any

instances in the labeled data.

My intuition is that this approach will acquire new training instances that share features

with the original labeled data and maintain the similar class distribution. This method is

illustrated in Figure 5.5(b). Black-colored instances represent labeled data and gray-colored

instances represent unlabeled data. In the next sections, I compare the performance of

self-training with confidence-based instance selection against my new UDP and LDC instance

selection methods.

5.5 Evaluation of Relation Classification
The input for this task is clinical texts, concept annotations, and assertion annotations.

Relations from the reference standard data are used to train the classifiers. Figure 5.6

illustrates a sample text with concepts, assertions, and relations.

The relation annotation file contains two medical concepts with their relation, one relation

per line. The relation annotation format specified in the 2010 i2b2 Challenge Annotation

File Formatting [1] is as follows:

c="concept text" offset||r="relation type"||c="concept text" offset

where

c and offset are defined as in Section 3.4.

r represents the type of relation the two concepts have.

The second c and offset represent the other concept in the relation.

5.5.1 Evaluation Metrics

I used three metrics to evaluate relation classification: recall, precision, and F1 score.

Each metric was microaveraged or macroaveraged across each relation in the test set. I

used the official i2b2 Challenge evaluation script to calculate microaveraged measures. For

macroaveraged measures, I created a new script to average the scores across relation types.

The macroaveraged F1 score is the harmonic mean of the macroaveraged recall and precision.
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 1 
 2 
 3  
... 
 9 
 . 
 . 
10 
 . 

PRINCIPAL DIAGNOSIS : 
Wolfe-Parkinson White Syndrome . 
ASSOCIATED DIAGNOSIS : 
... 
He has a history of chest pain and in January 1993 underwent a cardiac 
catheterization at Ph University Of Medical Center which revealed an 
occluded right coronary artery and a 40-50% proximal stenosis . 
He subsequently had an echocardiogram in December 1994 which showed 
normal left ventricular size and systolic function . 

(a) A Sample Text (Excerpted from https://www.i2b2.org/NLP/Relations/assets/doc1.txt)

	

	

c="wolfe-parkinson white syndrome" 2:0 2:2||t="problem" 
... 
c="chest pain" 9:5 9:6||t="problem" 
c="a cardiac catheterization" 9:12 9:14||t="test" 
c="an occluded right coronary artery" 9:23 9:27||t="problem" 
c="a 40-50% proximal stenosis" 9:29 9:32||t="problem" 
c="an echocardiogram" 10:3 10:4||t="test" 

(b) A Sample Concept Annotation (Excerpted from https://www.i2b2.org/NLP/Relations/assets/doc1.con)

	

	

c="wolfe-parkinson white syndrome" 2:0 2:2||t="problem"||a="present" 
... 
c="chest pain" 9:5 9:6||t="problem"||a="present" 
c="an occluded right coronary artery" 9:23 9:27||t="problem"||a="present" 
c="a 40-50% proximal stenosis" 9:29 9:32||t="problem"||a="present" 

(c) A Sample Assertion Annotation (Excerpted from https://www.i2b2.org/NLP/Relations/assets/doc1.ast)

	

	

c="a cardiac catheterization" 9:12 9:14||r="TeCP"||c="chest pain" 9:5 9:6 
c="a cardiac catheterization" 9:12 9:14||r="TeRP"||c="an occluded right 
coronary artery" 9:23 9:27 
c="a cardiac catheterization" 9:12 9:14||r="TeRP"||c="a 40-50% proximal 
stenosis" 9:29 9:32 

(d) A Sample Relation Annotation (Excerpted from https://www.i2b2.org/NLP/Relations/assets/doc1.rel)

Figure 5.6: A Sample Text With Concept, Assertion, and Relation Annotations
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5.5.2 Statistical Significance Testing

I used paired t test to measure statistical significance [283]. The null hypothesis assumes

that the two methods are not significantly different. The alternative hypothesis assumes

that there is a significant difference between the two methods. The significance level, α, was

set at 5%.

As recommended by [283], I ran 1,048,576 trials to calculate the statistical significance

between two methods for each metric. For each trial:

1. The outputs of the two methods for each test instance are paired up.

2. Randomly swap the two output, based on a virtual “coin toss” (50/50 chance of

swapping).

3. Check how the shuffle produces a difference in the metric of interest (e.g., recall,

precision, or F1 score).

Finally, compare the two sets of results and calculate the statistical significance for the

metric of interest.

I have conducted an extensive set of experiments to evaluate the performance of supervised

classifiers and weakly supervised learning with different instance selection methods. I

evaluated performance on the relation data from the 2010 i2b2 Challenge test set. In the

next subsection, I present the classification results of supervised classifiers and compare

them with weakly supervised learning results.

5.5.3 Supervised Learning Results

Table 5.2 shows the results produced with the supervised classifiers, which were trained

to optimize for microaveraged measures. This baseline supervised learning system was

trained with the i2b2 training data and achieved microaveraged scores of 74.9% recall, 73.7%

precision, and 74.3% F1 score.

As the state-of-the-art in medical relation classification, Zhu et al. [302] research produced

a 74.2% microaveraged F1 score on the 2010 i2b2 Challenge dataset. Although the supervised

classifiers achieve overall performance comparable to state-of-the-art relation classification

systems, performance on the minority classes lags far behind the dominant classes. The

F1 score of TrWP was only 7.6% with a recall of 4.2%. Most of the TrWP instances were
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Table 5.2: Results Produced With the Supervised Relation Classifiers
Relation type Recall Precision F1 score
ALL 74.9 73.7 74.3
Treatment Avg. 67.4 68.9 68.2
TrIP 31.8 63.6 42.4
TrWP 4.2 42.9 7.6
TrCP 52.3 59.5 55.6
TrAP 79.9 71.2 75.3
TrNAP 25.1 49.5 33.3
Test Avg. 82.9 81.5 82.2
TeRP 90.3 82.7 86.3
TeCP 45.1 71.4 55.3
PIP 73.2 67.9 70.4
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misclassified because of the very low prevalence of their cases. For example, consider a

TrWP case from the test set, “She has a known diagnosis of myelodysplasia that has become

recalcitrant to Procrit”. The medical problem myelodysplasia, the treatment Procrit, and

possibly a keyword recalcitrant never appeared in the training data. The lower performance

on minority classes is more apparent when focusing on macroaveraged scores. Based on

macroaveraging, this system reached 50.2% recall, 63.6% precision, and 56.1% F1 score.

I also experimented with decreasing the weights of negative examples to help increase

recall on minority classes. This did not yield an increase in macroaveraged F1 score because

of a substantial drop in precision. For instance, when I set the weight of negative examples

to 0.04 (decreasing the weight by five from 0.2) for both Pr–Tr and Pr–Te relations, the

system reached 55.4% macroaveraged recall, 54.5% precision, and 55.0% F1 score. Adjusting

the importance of different relation types by assigning different weights also did not affect

performance very much. When I increased the weights of TrIP, TrWP, and TrNAP by one

hundred to 1, and 30 times for TrCP to 1 considering the distribution of relation types in

the labeled data, the classifiers achieved a recall gain of 1.8 (from 50.2% to 52.0%), but with

a corresponding precision loss of 1.9 (from 63.6%to 61.7%) in macroaveraging.

5.5.4 Comparing Supervised and Weakly Supervised Learning Results

I evaluated the performance of self-training with traditional confidence-based instance

selection (called Self-training below), and instance selection with my new UDP and LDC

methods. I ran all of the weakly supervised learning methods for 20 iterations.1The number

of iterations was determined after experimenting on held-out data.

For self-training, I only selected positive examples (pairs of concepts with relations) from

the unlabeled data to augment the labeled data. For each iteration, I added K newly labeled

examples, where K = the number of positive examples in the original training data. My

intention was to be conservative in adding new examples with predicted labels to maintain

the importance of the original labeled data. To maintain the same class distribution, I

imposed that the number of newly labeled examples for each positive class should not exceed

the number of examples in the original training data.

1The number of iterations was determined after experimenting on held-out data. The overall macroaver-
aged F1 score showed a downward trend after 20 iterations.
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Table 5.3 shows results for each class and macroaveraged F1 scores for the Pr–Tr and

Pr–Te relations. For each relation type, the best results appear in boldface. Results that

are significantly different from the supervised learning results at the 95% significance level

are preceded by an asterisk (*). Table 5.4 shows the macroaveraged overall recall, precision,

and F1 score of each method.

Self-training with confidence-based instance selection produced the best F1 score on the

TrCP and TrNAP classes. For TrWP and TeCP, self-training’s performance was significantly

different than supervised learning. Self-training yielded the overall average recall, precision

and F1 score of 54.5%, 60.0% and 57.1%, respectively (second row in Table 5.4).

Both the UDP and LDC instance selection methods produced higher macroaveraged F1

scores than self-training. The UDP method (third column of Table 5.3) produced the best

F1 score of 49.3% on the TrIP class. The F1 scores for TrIP and TeCP were significantly

higher than for supervised learning. The LDC method (last column of Table 5.3) produced

the highest F1 scores on most of the relation classes. It obtained the best macroaveraged

F1 scores for Treatment and Test. For TrIP, TrWP, TeRP, and TeCP, the performance

of LDC method was significantly better than supervised learning. The LDC method also

produced improvements on the majority classes (TrAP and TeRP). There was no sacrifice

on the majority classes.

Finally, I tried to combine the UDP and LDC methods. New instances were selected

separately by the UDP and LDC methods and then the combined set of instances was

added to the labeled data. However, this system produced an F1 score of 58.0% (last row in

Table 5.4), so did not outperform the LDC method on its own.

Figure 5.7 shows the macroaveraged F1 scores per epoch. The gap between the supervised

learning (the straight line at 56.1%) and each instance selection method indicates the

performance difference between them. The solid gray line with circle dots represents the

LDC method. The LDC produced higher F1 scores than UDP or self-training methods

in each iteration. The LDC method produced the best overall macroaveraged F1 score of

58.5%. The dashed gray line with triangle dots represents the combination of UDP and

LDC methods. It got slightly lower F1 scores than LDC in most epochs. The black dashed

line with diamond dots stands for the UDP method and the black solid line with square

dots represents self-training method. The UDP method reached 57.9% macroaveraged F1
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Table 5.3: F1 Score of Each Method on the Test Set
Relation type Supervised Self-training UDP LDC
Treatment Avg. 46.2 48.0 48.9 49.7
TrIP 42.4 46.0 *49.3 *47.4
TrWP 7.6 *16.3 12.3 *19.2
TrCP 55.6 56.8 55.5 53.1
TrAP 75.3 75.4 75.8 75.8
TrNAP 33.3 35.4 33.1 33.6
Test Avg. 72.0 72.6 72.8 73.1
TeRP 86.3 86.3 86.3 *86.7
TeCP 55.3 *58.5 *59.2 *59.5

Table 5.4: Overall Macroaveraged Scores for Each Method on the Test Set
Method Recall Precision F1 score
Supervised 50.2 63.6 56.1
Self-training 54.5 60.0 57.1
UDP 55.0 61.1 57.9
LDC 54.9 62.5 58.5
UDP+LDC 54.9 61.4 58.0
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Figure 5.7: Macroaveraged F1 Score of Each Method per Epoch
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score. Self-training did not outperform other instance selection methods during iterations.

It produced a macroaveraged F1 score of 57.1%.

Table 5.5 shows the performance of other state-of-the-art systems for medical relation

classification compared to the results from the LDC method. Two systems were created for

participation in the 2010 i2b2/VA Challenge [64, 213] and one was subsequent research [302]

to [64]. Macroaveraged scores were not reported in [302]. My LDC method (the last row of

Table 5.5) obtained a higher macroaveraged F1 score than other systems with a comparable

microaveraged score.

5.5.5 Timing Analysis

I calculated the times for training supervised classification models (1st row in Table 5.6),

predicting medical relations with the supervised classifiers (2nd row in Table 5.6), clustering

labeled and unlabeled instances (3rd row in Table 5.6), and selecting a subset of the unlabeled

instances by the UDP or LDC methods (4th and 5th rows in Table 5.6, respectively). All

measurements were performed on a MacBook Pro with a 2.5 GHz Intel Core i7 processor

and 16 GB of memory. The training set, test set, and unlabeled data include 349, 477, and

26,485 text files, respectively. Clusters contained 517,689 pairs of problem and treatment

concepts and 455,272 pairs of problem and test concepts.

Training supervised classification models took 1.1 seconds. The supervised classifiers

spent about 0.4 seconds predicting the relations on the i2b2 test set. Clustering took about

28 minutes but it was needed only once before the iterative instance selection process (UDP

or LDC ) started. Both the UDP and LDC methods selected new training instances within

3 minutes in each iteration. About one hour was needed for 20 iterations of both methods

to apply the relation classifiers to the unlabeled data, select new instances, and retrain the

classifiers.

5.5.6 Analysis and Discussion

I performed ablation testing of the supervised learning system to evaluate the impact

of each feature set based on microaveraged and macroaveraged scores, separately. If some

features have more impact for macroaveraged scores than microaveraged scores, then my

hypothesis is that they are especially important features for minority classes. The row header

in Table 5.7 specifies the feature set that has been ablated. The columns named “Impact”
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Table 5.5: F1 Scores of Other State-of-the-Art Systems for Relation Classification
System Macroaveraged Microaveraged
Rink et al. (2011) [213] 53.7 73.7
de Bruijn et al. (2011) [64] 51.2 73.1
Zhu et al. (2013) [302] N/A 74.2
LDC 58.5 74.3

Table 5.6: Task Time Measurement
Model Time
Supervised Classifier (Training) 1.1s
Supervised Classifier (Test) 0.4s
Clustering 28m
UDP 2m 42s
LDC 2m 44s

m = Minute and s = Second

Table 5.7: Features Contribution to Relation Classification
Feature Macroaveraged Microaveraged

F1 score Impact F1 score Impact
All 56.1 74.3
- Assertion 55.4 -0.7 73.8 -0.5
- Contextual 55.4 -0.7 74.2 -0.1
- Distance 55.2 -0.9 72.4 -1.9
- Lexical 49.0 -7.1 70.1 -4.2
- Syntactic 56.6 0.5 74.1 -0.2
- Word embedding 55.8 -0.3 73.8 -0.5
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in Table 5.7 present the F1 score difference between the ablated classifier and the complete

system.

Every feature set contributed to the performance of the supervised classifiers except that

syntactic features did not increase macroaveraged F1 score. The macroaveraged F1 score

dropped the most when the lexical features were removed. This suggests that exploiting

unlabeled data could be especially beneficial for the minority classes by bringing in new

lexical features. The F1 scores of TrIP, TrNAP, and TeCP decreased from 42.4%, 33.3%,

and 55.3% to 29.4%, 21.9%, and 42.4% respectively without the lexical features.

Next, I want to see how my self-training design that only selects positive examples and

maintains the original class distribution compares to self-training that can add negative

examples and does not consider the class distribution for newly added instances. So I created

a self-training system with the latter design for comparison. After the first iteration, I

computed the class distribution of the newly added instances. I realized that no instances

of any minority class was found among the instances of either Pr–Tr or Pr–Te relations.

Furthermore, TrAP instances only took up 0.7% of the selected instances. The remaining

99.3% of the data was all negative examples. For Pr–Te relations, I found 41% to be TeRP

instances but no TeCP instances.

I also carried out an empirical analysis of self-training with confidence-based instance

selection (my self-training design) to better understand its limitations. After clustering

the unlabeled data, I counted the number of instances selected from each cluster during

the first iteration. I found that most instances were selected from a small subset of the

clusters: about 10% of the clusters provided over 78% of the newly selected unlabeled

instances. This shows that selecting instances based only on confidence scores tends to

yield a relatively homogenous set of new instances that is low in diversity. In other words,

although self-training was able to keep the class distribution, the diversity of new instances

for each class was low.

The two methods proposed in this dissertation research showed potential for overcoming

these self-training limitations. The representative examples identified as prototype instances

by UDP would be dissimilar to each other because they occurred in different clusters. In

LDC, the labeled instances play an essential role in maintaining the diversity of newly

added instances because each labeled instance selects the most similar unlabeled instance.
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When the labeled instances are distributed across many clusters, the LDC method can

contribute diverse addition because newly labeled instances would have the same diversity

as the original labeled instances. I examined how the labeled instances are scattered around

the clusters. 43.9% of clusters contained one or more labeled instances for Pr–Tr and 48.9%

clusters for Pr–Te. They contained 2.2 labeled instances on average for Pr–Tr and 2.1 on

average for Pr–Te. These clusters were used for the LDC method while the others (56.1%

for Pr–Tr and 51.1% for Pr–Te) were considered for the UDP method.

Figure 5.8 shows the number of unlabeled instances that were added by each instance

selection method during the first iteration. The white column represents the self-training

method. In self-training, no examples of NoneTrP or NoneTeP were selected. For the other

relation types, the same number of examples as the original training data were added to

maintain the class distribution. The gray column represents the UDP method. In UDP,

similar to self-training, no examples of NoneTrP or NoneTeP were selected because an

instance was allowed for selection only when it came from clusters where all members agreed

to one positive relation type. The number of selected instances by the UDP method was less

than that of other methods. This is because clusters with purity < 1 were excluded from

the selection. The black column represents the LDC method. The LDC method allowed

some negative examples to be added. An unlabeled instance can be selected when it is the

most similar to any labeled instance, including negative instances. The number of selected

instances by the LDC method was less than that of self-training because (1) LDC excluded

unlabeled instances that were exactly similar to any labeled instance or (2) more than one

labeled instances might pick the same unlabeled instance. Note that the LDC method

outperformed self-training with fewer new instances.

Table 5.8 displays the Recall, Precision, and F1 results of LDC instance selection along

with the total counts of true positives (TP) and the number and percentage of true positive

gains (compared to supervised learning) in the rightmost column. The numbers in parentheses

in the Recall, Precision, and F1 columns indicate the difference between the supervised

classifier and the LDC method. Results significantly different from supervised learning at

the 95% significance level are preceded by an asterisk (*).

Table 5.8 shows that most of the minority classes benefitted substantially from the LDC

method. The largest percentage gain came for TrWP where LDC correctly identified 17
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Figure 5.8: The Number of Unlabeled Instances Added During the First Iteration

Table 5.8: Results of LDC With Comparison to the Supervised Learning Model
Relation Recall Precision F1 score TP TP Gain (%)
Minority
TrIP *38.9 (+7.1) 60.6 (−3.0) *47.4 (+5.0) 77 14 (+22.2)
TrWP *11.9 (+7.7) 50 (+7.1) *19.2 (+11.6) 17 11 (+183.3)
TrCP *65.1 (+12.8) *44.9 (−14.6) 53.1 (−2.5) 289 57 (+24.6)
TrNAP 23.6 (−1.6) *58.4 (+9.0) 33.6 (+0.3) 45 -3 (−6.3)
TeCP *57.7 (+12.6) *61.4 (−10.0) *59.5 (+4.2) 339 74 (+27.9)
Majority
TrAP *80.8 (+0.9) 71.3 (+0.2) 75.8 (+0.5) 2009 23 (+1.2)
TeRP *88.5 (−1.8) *85.0 (+2.4) *86.7 (+0.4) 2682 -55 (−2.0)
TP = True positive
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instances but the supervised learner only produced six true positives, resulting in a gain

of 11 (183.3%). The majority classes also achieved slightly higher F1 scores. The LDC

method appears to be an effective way to improve recall on minority relation classes while

maintaining good performance on the majority classes.

Table 5.9 displays counts of true positives (in the diagonal line), false positives, and false

negatives for each Pr–Tr relation type produced by LDC in a confusion matrix. For the

minority classes, the LDC method primarily produced false negatives that were predicted as

TrAP or NoneTrP. For example, Most of the TrWP relations were misclassified as TrAP

with 55 false negatives or as NoneTrP with 45 false negatives. Similarly, many TrNAP

relations were misclassified as TrAP with 58 false negatives or NoneTrP relations with 50

false negatives.

5.6 Conclusion
I showed that clustering-based instance selection from unlabeled text data could improve

performance on minority classes for relation type classification between medical concepts.

Experimental results show that my clustering-based methods outperformed supervised

classification, traditional self-training from unlabeled texts, and previous state-of-the-art

systems based on macroaveraged scores. Importantly, overall microaveraged scores were also

comparable, so these new instance selection methods maintain good performance on the

majority classes. I believe that this approach offers a more robust solution for classification

problems when the data has a highly skewed class distribution, acquiring manual annotations

is expensive, but large quantities of unannotated text data are available.
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Table 5.9: Confusion Matrix of LDC Method Predictions
Classified as

Gold TrIP TrWP TrCP TrAP TrNAP NoneTrP
TrIP 77 1 14 57 1 48
TrWP 7 17 18 55 1 45
TrCP 1 1 289 59 4 90
TrAP 22 7 91 2009 9 349
TrNAP 1 1 36 58 45 50
NoneTrP 19 7 196 578 17 2669
True positives (the diagonal elements) are bolded.



CHAPTER 6

CONCLUSION AND FUTURE WORK

In this chapter, I summarize my research on improving clinical information extraction

from EHRs with multiple domain models and clustering-based instance selection. I report

the findings and discuss contributions of my research. Then, I outline future work which

can be considered.

6.1 Conclusions
In this section, I discuss claims, contributions, and key findings. This dissertation

research demonstrates that combining IE models can improve medical concept extraction.

It also shows that clustering-based instance selection methods can improve medical relation

classification.

• Claim 1: Ensemble methods with a combination of models trained on broad medical

and specialty area texts can improve medical concept extraction on specialty notes.

When a limited amount of annotated specialty area data is available, this research

demonstrates that combining broad medical data and specialty area data can produce MCE

models that achieve better performance on specialty notes than training with either type

of data alone. I investigated the performance of MCE models on specialty notes (1) when

trained on a broad medical corpus, (2) when trained on the same type of specialty data, and

(3) when trained on a combination of models trained on both broad medical and specialty

data. When training with a comparable amount of annotated data, I found that training

with specialty texts outperformed training with broad medical texts. I achieved better

performance for all three specialty areas by using a combination of both broad medical i2b2

data and specialty area models for training.

Another conclusion of this research is that a stacked ensemble with mixed domain

models achieved good performance and offered some advantages over other approaches. I
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investigated ensemble-based methods for medical concept extraction with a diverse set

of information extraction models. The experimental results confirmed that ensemble

architectures consistently outperformed individual IE models. The model trained on the

union of the broad medical data and specialty data extracted more medical concepts.

However, this model might not be the preferable solution when precision is more important

than recall. For example, in medical relation classification, accurately extracted concepts

are indispensable to select useful relation instances from abundant unlabeled data. My

stacked learning ensemble produced higher precision by adjusting the influence of different

component models.

The results also showed that the stacked learning ensemble has a significant practical

advantage over the voting ensemble. The stacked learning ensemble was able to easily

incorporate any set of individual concept extraction components because it automatically

learned how to combine their predictions to achieve the best performance. Unlike previous

research only employing the predictions and the confidence probabilities of individual models,

my stacked generalization is firstly trained with a rich set of meta-features for more accurate

medical concept extraction. Features dealing with the degree of agreement and consistency

between the IE models were created to capture more concepts and detect their boundaries

more precisely. This ensemble-based approach provided more flexible and robust integration

of MCE models on specialty notes with a limited amount of labeled data.

As discussed in Chapter 2, the dominant research of MCE in the clinical domain has

primarily been focused on broad medical texts. With relatively little research on MCE for

specialized clinical texts, this research created new text collections that represent specialized

areas of medicine: cardiology, neurology, and orthopedics. The new corpora to account for

each specialty area were manually annotated by medical experts and used for training and

evaluation of my approaches. For interested researchers who already have local Institutional

Review Board approval to the BLUlab corpus, I am willing to cooperate with them by

providing our reference annotations.

• Claim 2: Clustering-based instance selection from unlabeled data can improve perfor-

mance on minority classes in medical relation classification.

To take advantage of the large amounts of unlabeled clinical notes that are available, I
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explored an iterative weakly supervised learning framework. Because of extremely skewed

class distributions, my supervised relation classifiers achieved high accuracy for the majority

classes but performed poorly with the minority classes.

It motivated me to present new methods for instance selection: Unlabeled Data Prototypes

(UDP) Selection and Labeled Data Counterparts (LDC) Selection. UDP selects instances

from clusters containing only unlabeled data to represent some new type of information

found in the unlabeled data. This method also ensures that the set of representative

examples identified as prototype instances will be diverse. LDC selects instances from the

clusters containing both labeled and unlabeled instances. This method can acquire new

training instances that share features with the original labeled data and maintain the similar

class distribution. These two methods are specifically aimed at improving performance on

minority classes. They are based on clustering unlabeled data and can create a diverse

and representative set of new instances from the unlabeled data. The experiment results

showed that they achieved substantial performance gains for the minority relation classes

compared to supervised learning and traditional self-training based on macroaveraged scores.

These results also demonstrated that these methods maintained good performance on the

majority classes. My LDC method obtained a higher macroaveraged F1 score than other

state-of-the-art systems with a comparable microaveraged score.

Benefiting from large amounts of unlabeled data with new instance selection methods

based on similarity measures is a novel contribution of this dissertation. Two instance

selection methods offer a more robust solution for classification problems when the data has

a highly skewed class distribution and acquiring manual annotations is expensive, but large

quantities of unannotated text data are available.

6.2 Future Work
This section presents some future work directions to extend the scope of this research. I

discuss several ideas that might motivate further research.

6.2.1 Weakly Supervised Learning for Specialty Area Notes With
Cross-Task Learning

One avenue for further study would be applying cross-task learning. Cross-task Learning

[32, 62] is a method for simultaneously learning two different tasks using prior knowledge
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that relates their outputs. For example, in syntactic chunking, an NNP (proper noun) can

be extracted when the NNP is part of a named entity. In NER, a named entity can be

extracted when it is a subsequence of a noun phrase.

A new cross-task framework can be explored to extract new concepts from unlabeled

data more confidently and correctly than self-training. This cross-task learning can be

formulated as simultaneously training models for medical concept extraction and medical

relation classification. This learning method is similar to co-training requiring multiple

learners. However, unlike co-training involving one specific task with different views of the

data, this method can consider two different tasks simultaneously.

This cross-task learning requires two task components: a medical concept extractor

and a medical relation classifier. Two independent components would provide different

and complementary information to each other. The initial concept classifier and relation

classifier are learned using labeled data. Then, the concept classifier extracts the candidates

of medical concepts from unlabeled data.

Given a pair of medical concepts, with one known concept and the other possible concept

(additional candidate concept), the relationship classifier is applied to determine whether the

pair of medical concepts is related. The possible concept, out of relevant relations extracted

by the relation classifier, is used to iteratively improve the models. The possible concepts

can be produced by several strategies. The candidates can be 1) simply noun phrases and

adjective phrases, 2) concepts tagged by knowledge-based systems, 3) the phrase with the

lower confidence score than concept cutoff thresholds, or 4) combination of these methods.

6.2.2 Instance Selection for Assertion Classification

I created a supervised SVM model for assertion classification. Although the classifier

achieved state-of-the-art performance, it performed relatively poorly on minority classes.

Similar to relation classification, the class distribution is extremely skewed across assertion

types. As seen in Chapter 4, two of the assertion categories (present and absent) account

for nearly 90% of the instances in the data set. The other four classes are distributed across

the remaining 10% of the data.

Considering the imbalanced dataset, the weakly-supervised learning approach can be

beneficial to this assertion task. In medical relation classification, a pair of concepts that
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participates in a relation is considered as a positive example. Conversely, a pair of concepts

that are not related to each other is treated as a negative example. In assertion classification, a

present assertion is one that does not fit into any other assertion category. Present assertions

appear in about 70% of the data and would be collected as negative examples. The feature

vectors generated for assertion classification can be reused for clustering. Then, my two

instance selection methods (UDP and LDC ) will be applicable to assertion classification.

6.2.3 Sentence-Level Selection Using Clustering

This research confirms that acquiring beneficial instances is important for performance

improvement for weakly supervised learning. Instead of instances consisting of features

associated with a pair of concepts, one can consider sentence-level selection to identify

relevant unlabeled data.

For medical relation classification, I developed various types of features. The classifier

with the set of features showed quite good performance. However, some information that is

a good indicator of medical relations may often be unattainable as a feature. Sentence-level

clustering can give more liberty; any information derived from sentences can be used for

clustering. In my instance selection methods, each data point in the clusters represents a

pair of concepts. On the other hand, in sentence-level clustering, each data point in the

clusters represents a sentence.

For the LDC method, one can select sentences from the clusters containing sentences

from both labeled and unlabeled data. For each sentence where any positive relation exists,

one can select the unlabeled sentence most similar to it in the same cluster. Then, pairs of

concepts are collected from the selected sentences. The feature vectors of concept pairs will

be used to retrain the relation classification model.

Unlike the LDC, the UDP method uses the label of each member to compute the purity

of each cluster. Often, more than one pair of concepts exists in a sentence. When they have

different relation types, the label of the sentence should be considered for the UDP method.

One way would be to assign the most common relation type in the sentence.

In this dissertation, the instances were clustered based on cosine similarity. The sentence

similarity can be calculated using various functions. Plank and Noord [200] selected new

examples using Kullback-Leibler divergence, Jensen-Shannon divergence, Renyi divergence,
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and other distance functions including cosine, Euclidean, and variational distance functions.

They showed that using similarity functions to select new examples outperforms random

data selection and even manual selection on dependency parsing accuracy.

6.2.4 Applying Other Active Learning Strategies

My instance selection methods compute the similarity between instances to get a diverse

and balanced set of additional training instances. Applying other active learning approaches

would extend the scope of this research.

The main goal of active learning is to collect beneficial examples from unlabeled data

for humans to annotate for performance improvement. In Chapter 2, I discussed several

popular active learning strategies that could be applied to select new training instances. The

utility of each example can be assessed by various active learning strategies. In uncertainty

sampling [146], the most uncertain example is selected. The instances can be selected based

on the uncertainty (e.g., confidence score). In the case that multiple classification models

are developed, the query by committee [231] strategy would be another good option. The

instances the learners most disagree on can be considered as candidates for selection.

However, uncertainty sampling does not always result in the selection of informative

instances. For example, an instance is often predicted less confidently when it contains

features that are not in the training set. Adding this instance to the set of labeled data

might not be beneficial when the unseen features are also not observed in the test set.

Another challenge is to determine the label of uncertain examples. Contrary to the

assumption of an omniscient oracle in active learning, it can be more difficult in practice

to determine the label of uncertain instances than other instances. This dissertation study

has not focused on correcting label noise, but one direction for future research includes

automatic label correction without the involvement of a human oracle. Clustering algorithms

can be applied for label noise correction. For example, the label of an uncertain instance

can be assigned based on the information of neighbor instances that are confidently labeled.



APPENDIX A

FREQUENT SECTION HEADERS IN
EACH DATASET

This appendix lists the section headers that frequently appeared in the i2b2 Test data,

and three specialty area data (cardiology, neurology, and orthopedics). Each table in this

appendix shows the 40 most prevalent section headers in each dataset. The headers are

sorted by the number of occurrence.
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Table A.1: Section Headers Frequently Appearing in i2b2 Test

Section header Count
HOSPITAL COURSE 180
HISTORY OF PRESENT ILLNESS 146
PHYSICAL EXAMINATION 136
PAST MEDICAL HISTORY 120
ALLERGIES 97
DISCHARGE MEDICATIONS 87
LABORATORY DATA 79
SOCIAL HISTORY 72
PRINCIPAL DIAGNOSIS 63
DISPOSITION 61
MEDICATIONS ON ADMISSION 60
MEDICATIONS ON DISCHARGE 54
DISCHARGE DIAGNOSES 48
CONDITION ON DISCHARGE 42
MEDICATIONS 38
PAST SURGICAL HISTORY 38
DISCHARGE DIAGNOSIS 38
IMPRESSION 36
ASSOCIATED DIAGNOSIS 36
DISCHARGE INSTRUCTIONS 35
FAMILY HISTORY 33
PRINCIPAL PROCEDURE 31
DISCHARGE CONDITION 27
SECONDARY DIAGNOSES 23
ACTIVITY 22
DISCHARGE DISPOSITION 22
OPERATIONS AND PROCEDURES 19
ABDOMEN 18
CHIEF COMPLAINT 18
FOLLOWUP 17
REVIEW OF SYSTEMS 17
TO DO / PLAN 16
ADDITIONAL COMMENTS 16
REASON FOR ADMISSION 16
HISTORY 16
HOSPITAL COURSE AND TREATMENT 15
BRIEF RESUME OF HOSPITAL COURSE 15
FOLLOW UP APPOINTMENT(S) 14
FINDINGS 14
ADMISSION DIAGNOSIS 14
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Table A.2: Section Headers Frequently Appearing in Cardiology

Section header Count
PHYSICAL EXAMINATION 74
ALLERGIES 69
PAST MEDICAL HISTORY 59
SOCIAL HISTORY 58
HISTORY OF PRESENT ILLNESS 56
FAMILY HISTORY 54
REVIEW OF SYSTEMS 53
MEDICATIONS 52
DISCHARGE MEDICATIONS 36
HOSPITAL COURSE 35
REASON FOR ADMISSION 34
DISCHARGE INSTRUCTIONS 32
IMPRESSION 31
LABORATORY DATA 25
EXTREMITIES 22
ABDOMEN 20
DISCHARGE DIAGNOSES 18
REASON FOR CONSULTATION 18
IMPRESSION AND PLAN 15
CHIEF COMPLAINT 14
PROCEDURE 14
PROCEDURES 13
ASSESSMENT AND PLAN 13
VITAL SIGNS 12
DISCHARGE DIAGNOSIS (ES) 11
CONCLUSION 11
DESCRIPTION OF OPERATION 11
PAST SURGICAL HISTORY 10
PAST MEDICAL/SURGICAL HISTORY 10
LABORATORY, RADIOGRAPHIC, AND OTHER DIAGNOSTIC STUDY FINDINGS 10
CURRENT MEDICATIONS 9
DESCRIPTION OF PROCEDURE 8
ACTIVITY 8
COMPLICATIONS 8
LABORATORY RESULTS 8
FOLLOWUP 8
HISTORY 8
CARDIOVASCULAR 8
DIAGNOSES 7
TRANSFER INSTRUCTIONS 7
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Table A.3: Section Headers Frequently Appearing in Neurology

Section header Count
HOSPITAL COURSE 82
REASON FOR ADMISSION 54
HISTORY OF PRESENT ILLNESS 47
DISCHARGE MEDICATIONS 46
DISCHARGE INSTRUCTIONS 45
PHYSICAL EXAMINATION 45
MEDICATIONS 41
SOCIAL HISTORY 39
ALLERGIES 38
FAMILY HISTORY 34
REVIEW OF SYSTEMS 33
FOLLOWUP 28
PAST MEDICAL HISTORY 27
IMPRESSION 25
TRANSFER INSTRUCTIONS 23
ACTIVITY 22
DISCHARGE DIAGNOSIS (ES) 21
DISPOSITION 21
CHIEF COMPLAINT 21
ASSESSMENT AND PLAN 19
TRANSFER MEDICATIONS 19
DISCHARGE DIAGNOSIS 19
SECONDARY DIAGNOSES 18
TRANSFER DIAGNOSIS (ES) 17
PAST MEDICAL/SURGICAL HISTORY 15
PROCEDURE 12
PROCEDURES 11
CONDITION 11
REASON FOR CONSULTATION 11
FOLLOW UP 11
PRINCIPAL DIAGNOSIS 11
DISCHARGE DIAGNOSES 9
ADMISSION DIAGNOSIS 9
ADMISSION DIAGNOSIS (ES) 9
BRIEF HISTORY 9
SECONDARY DIAGNOSIS (ES) 8
LABORATORY RESULTS 8
DIAGNOSIS 7
EXTREMITIES 7
PRINCIPAL PROCEDURES THIS ADMISSION 7
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Table A.4: Section Headers Frequently Appearing in Orthopedics

Section header Count
HOSPITAL COURSE 64
PROCEDURES 58
DISCHARGE INSTRUCTIONS 51
DESCRIPTION OF OPERATION 51
COMPLICATIONS 45
DISCHARGE MEDICATIONS 42
PROCEDURE 38
ANESTHESIA 34
POSTOPERATIVE DIAGNOSIS (ES) 34
DISCHARGE DIAGNOSIS (ES) 32
PREOPERATIVE DIAGNOSIS (ES) 31
INDICATIONS 30
DISCHARGE DIAGNOSIS 25
MEDICATIONS 22
ADMISSION DIAGNOSIS 21
DISPOSITION 20
HISTORY OF PRESENT ILLNESS 20
PREOPERATIVE DIAGNOSES 19
PREOPERATIVE DIAGNOSIS 19
REASON FOR ADMISSION 18
POSTOPERATIVE DIAGNOSES 18
POSTOPERATIVE DIAGNOSIS 18
PHYSICAL EXAMINATION 15
TITLE OF OPERATION 15
DISCHARGE DIAGNOSES 14
ALLERGIES 13
FINDINGS 13
PAST MEDICAL HISTORY 13
FOLLOWUP 13
ADMISSION HISTORY AND SUMMARY 12
INDICATIONS FOR SURGERY 11
ADMISSION HISTORY 10
SOCIAL HISTORY 10
PROCEDURES PERFORMED 10
CONDITION ON DISCHARGE 10
DESCRIPTION OF PROCEDURE 9
DISCHARGE CONDITION 9
ESTIMATED BLOOD LOSS 9
ADMISSION DIAGNOSIS (ES) 9
REVIEW OF SYSTEMS 9



APPENDIX B

SAMPLE SPECIALTY NOTES

Figure B.1 illustrates a cardiology note that is similar to the ones in our collection.

Figure B.2 and Figure B.3 do the same for neurology and orthopedics, respectively. These

example documents came from http://www.mtsamples.com.
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CHIEF COMPLAINT: Palpitations. 

CHEST PAIN / UNSPECIFIED ANGINA PECTORIS HISTORY: The patient relates the 

recent worsening of chronic chest discomfort. The quality of the pain is 

sharp and the problem started 2 years ago. Pain radiates to the back and 

condition is best described as severe. Patient denies syncope. Beyond 

baseline at present time. Past work up has included 24 hour Holter monitoring 

and echocardiography. Holter showed PVCs. 

PALPITATIONS HISTORY: Palpitations - frequent, 2 x per week. No caffeine, no 

ETOH. + stress. No change with Inderal. 

VALVULAR DISEASE HISTORY: Patient has documented mitral valve prolapse on 

echocardiography in 1992. 

PAST MEDICAL HISTORY: No significant past medical problems. Mitral Valve 

Prolapse. 

FAMILY MEDICAL HISTORY: CAD. 

OB-GYN HISTORY: The patients last child birth was 1997. Para 3. Gravida 3. 

SOCIAL HISTORY: Denies using caffeinated beverages, alcohol or the use of any 

tobacco products. 

ALLERGIES: No known drug allergies/Intolerances. 

CURRENT MEDICATIONS: Inderal 20 prn. 

REVIEW OF SYSTEMS: Generally healthy. The patient is a good historian. 

ROS Head and Eyes: Denies vision changes, light sensitivity, blurred vision, 

or double vision. 

ROS Ear, Nose and Throat: The patient denies any ear, nose or throat 

symptoms. 

ROS Respiratory: Patient denies any respiratory complaints, such as cough, 

shortness of breath, chest pain, wheezing, hemoptysis, etc. 

ROS Gastrointestinal: Patient denies any gastrointestinal symptoms, such as 

anorexia, weight loss, dysphagia, nausea, vomiting, abdominal pain, abdominal 

distention, altered bowel movements, diarrhea, constipation, rectal bleeding, 

hematochezia. 

ROS Genitourinary: Patient denies any genito-urinary complaints, such as 

hematuria, dysuria, frequency, urgency, hesitancy, nocturia, incontinence. 

ROS Gynecological: Denies any gynecological complaints, such as vaginal 

bleeding, discharge, pain, etc. 

ROS Musculoskeletal: The patient denies any past or present problems related 

to the musculoskeletal system. 

ROS Extremities: The patient denies any extremities complaints. 

ROS Cardiovascular: As per HPI. ... 

Figure B.1: A Sample Cardiology Note
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Description: Patient with a history of right upper pons and right cerebral 

peduncle infarction. 

I had the pleasure of reevaluating Ms. A in our neurology clinic today for 

history of right upper pons and right cerebral peduncle infarction in April 

of 2008. Since her last visit in May of 2009, Ms. A stated that there has 

been no concern. She continues to complain of having mild weakness on the 

left leg at times and occasional off and on numbness in the left hand. She 

denied any weakness in the arm. She stated that she is ambulating with a 

cane. She denied any history of falls. Recently, she has also had repeat 

carotid Dopplers or further imaging studies of which we have no results of 

stating that she has further increased stenosis in her left internal carotid 

artery and there is a plan for surgery at Hospital with Dr. X. Of note, we 

have no notes to confirm that. Her daughter stated that she has planned for 

the surgery. Ms. A on today's office visit had no other complaints. 

FAMILY HISTORY AND SOCIAL HISTORY: Reviewed and remained unchanged. 

MEDICATIONS: List remained unchanged including Plavix, aspirin, 

levothyroxine, lisinopril, hydrochlorothiazide, Lasix, insulin and 

simvastatin. 

ALLERGIES: She has no known drug allergies. 

FALL RISK ASSESSMENT: Completed and there was no history of falls. 

REVIEW OF SYSTEMS: Full review of systems again was pertinent for shortness 

of breath, lack of energy, diabetes, hypothyroidism, weakness, numbness and 

joint pain. Rest of them was negative. 

PHYSICAL EXAMINATION: 

Vital Signs: Today, blood pressure was 170/66, heart rate was 66, respiratory 

rate was 16, she weighed 254 pounds as stated, and temperature was 98.0. 

General: She was a pleasant person in no acute distress. 

HEENT: Normocephalic and atraumatic. No dry mouth. No palpable cervical lymph 

nodes. Her conjunctivae and sclerae were clear. 

NEUROLOGICAL EXAMINATION: Remained unchanged. 

Mental Status: Normal. 

Cranial Nerves: Mild decrease in the left nasolabial fold. 

Motor: There was mild increased tone in the left upper extremity. Deltoids 

showed 5-/5. The rest showed full strength. Hip flexion again was 5-/5 on the 

left. The rest showed full strength. 

Reflexes: Reflexes were hypoactive and symmetrical. 

Gait: She was mildly abnormal. No ataxia noted. Wide-based, ambulated with a 

cane. ... 

Figure B.2: A Sample Neurology Note



123

	

	

PREOPERATIVE DIAGNOSIS: Achilles tendon rupture, left lower extremity.  

POSTOPERATIVE DIAGNOSIS: Achilles tendon rupture, left lower extremity.  

PROCEDURE PERFORMED: Primary repair left Achilles tendon.  

ANESTHESIA: General.  

COMPLICATIONS: None.  

ESTIMATED BLOOD LOSS: Minimal.  

TOTAL TOURNIQUET TIME: 40 minutes at 325 mmHg.  

POSITION: Prone.  

HISTORY OF PRESENT ILLNESS: The patient is a 26-year-old African-American 

male who states that he was stepping off a hilo at work when he felt a sudden 

pop in the posterior aspect of his left leg. The patient was placed in 

posterior splint and followed up at ABC orthopedics for further care. 

PROCEDURE: After all potential complications, risks, as well as anticipated 

benefits of the above-named procedure were discussed at length with the 

patient, informed consent was obtained. The operative extremity was then 

confirmed with the patient, the operative surgeon, Department Of Anesthesia, 

and nursing staff. While in this hospital, the Department Of Anesthesia 

administered general anesthetic to the patient. The patient was then 

transferred to the operative table and placed in the prone position. All bony 

prominences were well padded at this time.  

A nonsterile tourniquet was placed on the left upper thigh of the patient, 

but not inflated at this time. Left lower extremity was sterilely prepped and 

draped in the usual sterile fashion. Once this was done, the left lower 

extremity was elevated and exsanguinated using an Esmarch and the tourniquet 

was inflated to 325 mmHg and kept up for a total of 40 minutes. After all 

bony and soft tissue land marks were identified, a 6 cm longitudinal incision 

was made paramedial to the Achilles tendon from its insertion proximal. 

Careful dissection was then taken down to the level of the peritenon. Once 

this was reached, full thickness flaps were performed medially and laterally. 

Next, retractor was placed. All neurovascular structures were protected. A 

longitudinal incision was then made in the peritenon and opened up exposing 

the tendon. There was noted to be complete rupture of the tendon 

approximately 4 cm proximal to the insertion point. The plantar tendon was 

noted to be intact. The tendon was debrided at this time of hematoma as well 

as frayed tendon. Wound was copiously irrigated and dried. Most of the ankle 

appeared that there was sufficient tendon links in order to do a primary 

repair. Next #0 PDS on a taper needle was selected and a Krackow stitch was 

then performed. Two sutures were then used and tied individually ________ 

from the tendon. The wound was once again copiously irrigated and dried. ... 

Figure B.3: A Sample Orthopedics Note



APPENDIX C

METAMAP SEMANTIC TYPES

This appendix lists MetaMap semantic types that were used for medical concept

extraction. Refer to http://metamap.nlm.nih.gov/Docs/SemanticTypes_2013AA.txt for

full semantic type list.

The first column and third column display mapping between abbreviations and the full

semantic type names. The second column shows type unique identifier (TUI). The last

column shows Prob(concept type | semantic type), the highest probability among mappings

between MetaMap semantic category and three concept types (problem, treatment, and test).
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Table C.1: MetaMap Semantic Types Used for Medical Concept Extraction

Abbr. TUI Full semantic type name Prob.(%)
acab T020 Acquired Abnormality 92.9
anab T190 Anatomical Abnormality 89.8
antb T195 Antibiotic 67.5
bact T007 Bacterium 90.5
biof T038 Biologic Function 60.0
bird T012 Bird 81.8
carb T118 Carbohydrate 67.6
celf T043 Cell Function 60.0
cell T025 Cell 95.7
cgab T019 Congenital Abnormality 71.7
chvf T120 Chemical Viewed Functionally 60.0
chvs T104 Chemical Viewed Structurally 83.3
diap T060 Diagnostic Procedure 88.0
dsyn T047 Disease or Syndrome 88.5
enzy T126 Enzyme 70.9
euka T204 Eukaryote 54.3
horm T125 Hormone 91.0
inpo T037 Injury or Poisoning 77.2
lbpr T059 Laboratory Procedure 89.6
lbtr T034 Laboratory or Test Result 76.5
mbrt T063 Molecular Biology Research Technique 75.0
medd T074 Medical Device 64.6
mobd T048 Mental or Behavioral Dysfunction 58.0
moft T044 Molecular Function 60.7
neop T191 Neoplastic Process 76.1
nnon T114 Nucleic Acid, Nucleoside, or Nucleotide 68.5
nsba T124 Neuroreactive Substance or Biogenic Amine 84.0
opco T115 Organophosphorus Compound 100.0
orch T109 Organic Chemical 70.9
orgm T001 Organism 100.0
patf T046 Pathologic Function 91.5
phsf T039 Physiologic Function 57.6
phsu T121 Pharmacologic Substance 72.7
sbst T167 Substance 54.4
sosy T184 Sign or Symptom 87.9
strd T110 Steroid 65.4
tisu T024 Tissue 64.3
topp T061 Therapeutic or Preventive Procedure 65.4
vita T127 Vitamin 77.6



APPENDIX D

PARTIAL MATCH RESULTS OF
CONCEPT EXTRACTION

This appendix provides partial match results of medical concept extraction models. I

used the evaluation script developed for the i2b2 Challenge to calculate recall, precision,

and F1 score. The semantic category is ignored, and a match is made if the reference

standard text span has at least one word in common with the concept detected by the

system. Table D.1 shows the performance of each MCE model based on recall, precision,

and F1 score. Table D.2 shows the performance of these ensembles.
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Table D.1: Results of Individual MCE Models (Partial Match)
Model Recall Precision F1 score
i2b2 Test
MetaMap 57.6 75.7 65.4
Rules (i2b2) 70.7 88.9 78.8
SVM (i2b2) 94.4 90.0 92.2
CRF-fwd (i2b2) 90.3 95.5 92.8
CRF-rev (i2b2) 90.8 95.3 93.0
CRF-rev (i2b2180) 88.2 94.9 91.4
Cardiology
MetaMap 57.1 73.5 64.2
Rules (i2b2) 71.1 81.5 76.0
Rules (Sp) 70.1 83.0 76.0
SVM (i2b2) 89.7 82.5 86.0
SVM (Sp) 90.9 82.5 86.5
CRF-fwd (i2b2) 84.9 88.4 86.6
CRF-rev (i2b2) 85.5 88.4 86.9
CRF-rev (i2b2180) 83.4 88.3 85.8
CRF-fwd (Sp) 83.4 90.5 86.8
CRF-rev (Sp) 85.0 90.0 87.4
CRF-rev (i2b2+Sp) 87.5 89.6 88.5

Neurology
MetaMap 59.0 69.6 63.9
Rules (i2b2) 69.0 83.4 75.5
Rules (Sp) 73.7 78.5 76.0
SVM (i2b2) 86.9 81.5 84.1
SVM (Sp) 89.9 80.4 84.9
CRF-fwd (i2b2) 82.5 88.5 85.4
CRF-rev (i2b2) 82.8 88.3 85.5
CRF-rev (i2b2180) 81.1 88.4 84.6
CRF-fwd (Sp) 82.1 89.5 85.6
CRF-rev (Sp) 83.7 89.4 86.4
CRF-rev (i2b2+Sp) 86.2 89.1 87.6

Orthopedics
MetaMap 58.7 68.4 63.2
Rules (i2b2) 63.6 78.0 70.1
Rules (Sp) 74.4 77.5 75.9
SVM (i2b2) 82.3 74.9 78.4
SVM (Sp) 89.4 77.6 83.1
CRF-fwd (i2b2) 72.7 86.3 78.9
CRF-rev (i2b2) 74.0 85.7 79.4
CRF-rev (i2b2180) 71.2 85.4 77.7
CRF-fwd (Sp) 80.0 89.9 84.7
CRF-rev (Sp) 82.0 88.7 85.2
CRF-rev (i2b2+Sp) 84.0 88.5 86.2
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Table D.2: Results of Ensemble Methods (Partial Match)
Model Cardiology Neurology Orthopedics

Rec Pre F Rec Pre F Rec Pre F
CRF-rev (i2b2+Sp) 87.5 89.6 88.5 86.2 89.1 87.6 84.0 88.5 86.2
EasyAdapt 85.8 90.2 88.0 84.9 89.6 87.2 83.1 89.2 86.1
Voting (i2b2) 75.6 90.4 82.4 72.2 90.5 80.3 57.0 89.9 69.7
Voting (Sp) 69.6 92.8 79.6 65.9 92.5 77.0 60.2 92.9 73.1
Voting (i2b2+Sp) 88.0 88.5 88.2 86.2 88.1 87.1 79.9 88.3 83.9
Stacked (i2b2) 84.5 88.7 86.5 81.9 88.5 85.1 71.8 86.5 78.4
Stacked (Sp) 78.3 91.3 84.3 73.8 91.2 81.6 68.5 91.8 78.4
Stacked (i2b2+Sp) 80.0 91.1 85.2 77.8 91.5 84.1 70.7 91.6 79.8



APPENDIX E

SECTIONS FOR ASSERTION
CLASSIFICATION

This appendix lists the section headers collected from the 2010 i2b2 challenge training

set.
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Table E.1: Section Headers Identified for Assertion Classification

Assertion type Section header
Hypothetical FOLLOWUP INSTRUCTIONS

FOLLOW UP
DISCHARGE ORDERS
RECOMMENDATIONS
MEDICATIONS AT THE TIME OF DISCHARGE
POTENTIALLY SERIOUS INTERACTION
TO DO / PLAN
MEDICATIONS ON ADMISSION
CONSULTANTS
PRIMARY CARE PHYSICIAN
MEDICATIONS AT TIME OF DISCHARGE
MEDICATION
DISPOSITION / PLAN ON DISCHARGE

Not patient FAMILY HISTORY
SOCIAL HISTORY

Conditional Section headers containing ALLERGY or ALLERGIES



APPENDIX F

ASSERTION FEATURES CONTRIBUTION

This appendix displays results of each ablated classifier for each feature type. Table F.1

shows the detailed results of feature contribution grouped by assertion categories.
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Table F.1: Features Contribution for Each Assertion Type (2nd Version)
Feature Rec Impact Pre Impact F1 Impact
Present
All 98.0 95.1 96.5
- Contextual 97.8 -0.2 94.8 -0.3 96.3 -0.2
- Lexical 97.5 -0.5 93.7 -1.4 95.6 -1.0
- Lexico-syntactic 98.0 0.0 94.9 -0.2 96.4 -0.1
- Syntactic 98.0 0.0 94.8 -0.2 96.4 -0.1
- Word vector 97.9 -0.1 94.9 -0.2 96.4 -0.1
Absent
All 95.6 95.7 95.6
- Contextual 94.9 -0.6 95.2 -0.4 95.1 -0.5
- Lexical 93.4 -2.2 93.8 -1.9 93.6 -2.0
- Lexico-syntactic 95.5 0.0 95.7 0.0 95.6 0.0
- Syntactic 95.2 -0.4 95.4 -0.2 95.3 -0.3
- Word vector 95.4 -0.2 95.4 -0.3 95.4 -0.2
Possible
All 59.3 81.2 68.6
- Contextual 59.3 0.0 79.0 -2.2 67.8 -0.8
- Lexical 52.2 -7.1 79.4 -1.9 63.0 -5.6
- Lexico-syntactic 56.7 -2.6 79.3 -2.0 66.1 -2.5
- Syntactic 57.5 -1.8 80.3 -1.0 67.0 -1.6
- Word vector 58.0 -1.4 80.9 -0.4 67.6 -1.0
Conditional
All 26.9 78.0 40.0
- Contextual 24.6 -2.3 70.0 -8.0 36.4 -3.6
- Lexical 6.4 -20.5 78.6 0.6 11.9 -28.1
- Lexico-syntactic 26.3 -0.6 79.0 1.0 39.5 -0.5
- Syntactic 26.3 -0.6 73.8 -4.2 38.8 -1.2
- Word vector 25.7 -1.2 78.6 0.6 38.8 -1.2
Hypothetical
All 87.9 91.0 89.4
- Contextual 86.9 -1.0 91.0 -0.1 88.9 -0.6
- Lexical 84.5 -3.4 88.5 -2.6 86.5 -3.0
- Lexico-syntactic 87.6 -0.3 91.4 0.4 89.5 0.0
- Syntactic 87.5 -0.4 91.7 0.6 89.5 0.1
- Word vector 87.6 -0.3 90.5 -0.6 89.0 -0.4
Not patient
All 80.0 95.9 87.2
- Contextual 62.8 -17.2 90.1 -5.8 74.0 -13.2
- Lexical 80.0 0.0 91.3 -4.5 85.3 -1.9
- Lexico-syntactic 80.7 0.7 95.9 0.0 87.6 0.4
- Syntactic 79.3 -0.7 95.8 0.0 86.8 -0.4
- Word vector 76.6 -3.5 96.5 0.6 85.4 -1.8
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