
RECOGNIZING AFFECTIVE EVENTS AND EMBODIED

EMOTIONS IN NATURAL LANGUAGE

by

Yuan Zhuang

A dissertation submitted to the faculty of
The University of Utah

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

School of Computing

The University of Utah

August 2024



Copyright © Yuan Zhuang 2024

All Rights Reserved



The University of Utah Graduate School

STATEMENT OF DISSERTATION APPROVAL

The dissertation of Yuan Zhuang

has been approved by the following supervisory committee members:

Ellen M. Riloff , Chair(s)
Date Approved

Marina Kogan , Member
Date Approved

Rada Mihalcea , Member
Date Approved

Jeffrey Phillips , Member
Date Approved

Vivek Srikumar , Member
Date Approved

by Mary W. Hall , Chair/Dean of

the Department/College/School of Computing

and by Darryl P. Butt , Dean of The Graduate School.



ABSTRACT

Affective text analysis, such as sentiment analysis and emotion recognition, has long

been studied in the research community but still remains challenging. One major reason

is that current natural language processing systems still struggle to recognize implicit

affective expressions, where affect is conveyed without any affect-bearing cues. To address

this challenge, this dissertation focuses on two learning tasks to acquire two types of

implicit affective expressions, which are common and critical for affective text analysis.

The first learning task is affective event recognition, which aims to classify if an event

impacts most people positively (e.g., ”I watched the sunrise”), negatively (e.g., “I broke my

leg”) or neutrally (e.g., “I opened the door”). This dissertation first identifies the limitations of

previous approaches and introduces a deep learning classifier to mitigate these limitations.

It also presents two novel semi-supervised learning methods to produce more training

data to improve a classifier. The first method, Discourse-Enhanced Self-Training, produces

new affective events by using coreference relations between events and sentiment expres-

sions. The second method, Multiple View Co-Prompting, generates new affective events of

high quality by prompting language models. Experiments show that the new affective

events produced by these two methods substantially improve affective event classifiers.

The second learning task is to recognize expressions of embodied emotion in natural

language, which refer to physical responses in our body when emotion arises (e.g., “my legs

shake due to fear”). This dissertation first introduces a new task that aims to identify whether

a body part mention is involved in any embodied emotion or not. It also presents two

semi-supervised algorithms to generate weakly labeled data to improve a classifier. The

first algorithm extracts weakly labeled data from text by using manner expressions with

emotion, and the second algorithm generates weakly labeled data by prompting a large

language model. Experiments demonstrate that the harvested weakly labeled data can

train an effective classifier on its own. Furthermore, it can improve a supervised classifier

when combined with gold training data.
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CHAPTER 1

INTRODUCTION

Developing computational models to understand affective states of individuals based

on their language has long been an intriguing problem in the field of natural language

processing (NLP). To date, many NLP tasks have been proposed to identify affective states

conveyed in text. One widely studied task is sentiment analysis [208, 115, 179, 198, 124,

162], which recognizes the overall sentiment of a person towards a subject matter. For

example, the statement “I like my research” expresses a positive sentiment towards the

research, and the statement “The model performance is disappointing” indicates a negative

sentiment towards the model performance. Another well-known task is emotion recog-

nition [3, 127, 1, 125, 30], which identifies the emotions of a person. For example, the

statement “Wow I am going to Disneyland tomorrow” implies excitement and the statement

“Oh no I failed my exam” indicates frustration.

While significant advancement has been made in this field, the problem is still far from

being well solved. Most current NLP tasks mainly focus on identifying explicit affective

expressions (e.g., “I like this movie”), so they often struggle with implicit affective expres-

sions that convey affect without using any affect-bearing cues. To illustrate, consider the

following examples:

1. I got an A in this class.

2. I got an F in this class.

In Example 1, the speaker probably possesses a positive affective state such as joy and

excitement, because the event of getting an A is an achievement and thus a desirable

event for most people. The speaker in Example 2, on the other hand, probably possesses a

negative affective state such as disappointment and frustration, since the event of getting

an F makes a student fail a class and is thus a negative event for most people. There are no

affect-bearing words in Example 1 and 2, so an NLP system must possess the knowledge



2

about the affective impacts of these events in order to understand the affective states. As

another example, consider the following two statements:

3. Rose’s face became red as she walked towards the movie star.

4. Rose’s face became red as she had walked 10 miles.

In Example 3, we probably infer that Rose possessed some affective state, because her

reddening face is a typical sign of ongoing emotion based on the context, such as em-

barrassment and shyness. In Example 4, we probably infer that Rose did not have any

affective state, since her facial redness resulted from walking over a long distance. For

these two examples, an NLP system must be able to interpret the affective states based on

the bodily responses. Overall, the four examples can be challenging for most current NLP

systems due to the absence of explicit affect-bearing cues.

While there has been little emphasis on learning implicit affective expressions, we

argue that it is crucial to focus on their study. This is mainly because implicit affective

expressions are commonly used to convey affect in our language [144]. One clear case

of this is story-writing. In story-writing, writers often follow the “Show, don’t tell” princi-

ple, which suggests that instead of explicitly stating emotions, character traits, or events,

writers should use descriptive language and vivid imagery to allow readers to experience

the story through actions, senses, and details. With this technique, the affective state of a

character is usually not told explicitly but described implicitly. Consider the two examples

in Table 1.1. Example 1, quoted from the book 1984 by George Orwell, describes the tense

moment when the two characters, Julia and Winston, are caught by the Thought Police. The

intense fear of the characters is suggested by their bodily responses, such as body shaking,

teeth chattering and knee buckling. Example 2, quoted from the book The Adventures of

Tom Sawyer by Mark Twain, describes the joy of a group of boys by enjoyable events such

as “they went whooping and prancing out on the bar” and “they ran out and sprawl on the sand.”

Motivated by the need to study implicit affective expressions, this dissertation aims to

learn two types of implicit affective expressions that are common and critical for affective

text analysis. The first type of implicit affective expressions is affective events, which refer

to the daily events that impact our affective states when we experience them. While many

events in our daily life are mundane and barely impact us, some events could change

our affective states positively or negatively when we experience them. For example, a
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Table 1.1: Examples of affective states described implicitly in novels.

Example 1

“Now they can see us,” said Julia. “Now we can see you,” said the voice.
“Stand out in the middle of the room. Stand back to back. Clasp your hands
behind your heads. Do not touch one another.” They were not touching, but
it seemed to him that he could feel Julia’s body shaking. Or perhaps it was
merely the shaking of his own. He could just stop his teeth from chattering,
but his knees were beyond his control.

Example 2

After breakfast they went whooping and prancing out on the bar, and chased
each other round and round, shedding clothes as they went, until they were
naked, and then continued the frolic far away up the shoal water of the bar,
against the stiff current ... When they were well exhausted, they would run
out and sprawl on the dry, hot sand, and lie there and cover themselves up
with it, and by and by break for the water again and go through the original
performance once more.

person usually gets upset when he/she loses his/her wallet. On the other hand, a person

is usually relaxed and happy when he/she gets some delicious food. The knowledge of

affective events is crucial for discovering the affective states of people who experience

these events. Suppose someone says “I got a cold today.” It is very likely that the individual’s

affective state is negative, since the event of getting a cold usually leads to undesired

physical conditions and negatively impacts most people. In contrast, if someone says “I

recovered from a cold today,” the individual’s affective state is probably positive, as the event

of gaining health is desirable for most people.

Another crucial type of implicit affective expressions that this dissertation focuses on

is embodied emotions, which refer to the physical responses in our body when emotion

arises. In our daily life, experiences of emotion often give rise to physical responses in our

body. For example, we may have physiological responses such as heart racing and chills

down our spines when we get scared. We may also have visible physical reactions such

as clenching our teeth and slamming our fists due to anger. Recognizing these physical

responses evoked by emotions benefits recognizing implicit affective states. For example,

if we see a person waiting in a line and tapping his/her feet restlessly, we would probably

infer that the person is impatient. As another example, if someone throws his/her hands

up in the air after hearing some news, we probably infer that the person is excited.
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This dissertation thus explores two research problems:

1.1 Improving Affective Event Recognition Systems
There has been prior research [46, 47] on affective event recognition, which classifies the

affective impact of an event as positive (e.g., “I joined a party”), negative (e.g., “I dropped my

phone in the toilet”) or neutral (e.g., “I woke up”). Most of prior research took the approach

of building lexical resources of affective events. For example, Ding and Riloff [47] built

a knowledge base of affective events called AEKB, which contains about half a million

event phrases that are automatically labeled with affective polarities. This dissertation

first identifies several limitations of this approach. The first limitation is that the lexical

resources of affective events do not generalize well to unseen events. One reason for the

insufficient generalization is that the lexical resources do not have sufficient coverage of

affective events. This is mainly because an event could be expressed in various forms. For

example, the event of getting a cold could be expressed by different phrases such as “I

got a cold,” “I caught a cold,” “I become ill with a cold” and so on. It is also partly because

new events always arise in the future and they are not included by the existing lexicons. In

addition to the insufficient coverage, the quality of the affective polarities in these lexical

resources could be limited as they were developed based on methods that do not capture

well the semantics of events. To address this limitation, this work develops a deep learning

model, Aff-BERT, to classify affective events. Aff-BERT is a classification model based on

fine-tuning the pretrained language model, BERT [44]. Leveraging the powerful pretrained

representations produced by BERT, Aff-BERT can better capture the meaning of an event

and generalize better to unseen events.

Another limitation of prior work is that the amount of training data is usually small

and potentially results in limited model performance. For example, the annotated dataset

created by Ding and Riloff [47] contains only 1,490 affective events. To overcome this

issue, this dissertation develops two new semi-supervised learning methods to automati-

cally harvest weakly labeled affective events as extra training data. Extensive experiments

demonstrate that the semi-supervised learning methods can improve our affective event

classifier Aff-BERT.

The first method is Discourse-Enhanced Self-Training (DEST). DEST is motivated by the
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observation that an event’s polarity is often indicated by the sentiment expressions that

corefer to the event. Consider the statement “I just graduated with a PHD degree. This is

amazing.” The sentiment expression “This is amazing” conveys a positive opinion. As it

corefers with the event “I graduated with a PHD degree,” we can infer that the event is

also positive. In this work [225], we refer to these sentiment expressions as coreferent

sentiment expressions. Based on this observation, our method first mines a set of unlabeled

events and their coreferent sentiment expressions in the local context. To generate new

affective events, DEST assigns a polarity label to each unlabeled event based on: 1) the

prediction of an affective event classifier that is trained on the training set, and 2) the

average polarity of the coreferent sentiment expressions of the unlabeled event. The newly

labeled events with high confidence are then added into the training set to improve the

affective event classifier. We showed in experiments that DEST can substantially improve

the model performance. In addition, we believe that the general idea behind DEST could

be useful for many other problems where additional information can be extracted from

larger contexts to serve as a secondary signal to help confirm or disconfirm a classifier’s

predictions.

The second semi-supervised learning method, Multiple View Co-Prompting, is motivated

by the limitations of mining affective events directly from text, such as the inefficiency and

the computational bottleneck of applying text-processing techniques to a large corpus. To

avoid these limitations, Multiple View Co-Prompting generates new affective events by

prompting language models. Essentially, it is an iterative algorithm where each iteration

starts with the Event Generation step to generate event phrases by prompting a language

model such as GPT2 [157]. Next, it assigns polarity labels to the generated events with the

Polarity Assignment step. Specifically, for each generated event, this step first collects two

independent views of its polarity using two language model prompts. Then the two views

are combined to produce an accurate polarity label for the event. Our evaluation [227]

demonstrates that the automatically labeled events are of high quality and they can im-

prove the model performance substantially. In addition, we believe that the idea behind

this method, which elicits accurate information from language models based on two or

more data views, is useful for many prompting methods.
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1.2 Recognizing Expressions of Embodied
Emotion in Natural Language

The phenomena of embodied emotion has been widely studied in many other research

areas such as computer vision and psychology, but it has not been studied by the NLP

community before. Learning to identify expressions of embodied emotion can benefit af-

fective text analysis, as embodied emotions are commonly used to convey affective states

implicitly in natural language. Motivated by its importance, this dissertation proposes the

first study on recognizing expressions of embodied emotion in natural language [226].

This dissertation first formulates the learning problem as a binary classification prob-

lem that focuses on body part mentions. Specifically, an input in this task is a text that

contains: 1) a sentence containing a body part mention to classify; 2) some preceding

sentences as context. The task is to classify the body part mention into one of the following

two categories: 1) Embodied Emotion, and 2) Neutral. For example, in the text “A man

walked out from the corner. I saw him and my eyes widened,” the body part “eyes” will be

labeled as Embodied Emotion. As another example, in the text “My eyes got watery due to

my allergies,” the body part “eyes” will be labeled as Neutral. One might wonder if this task

could be formulated to identify verbs that indicate embodied emotions (e.g., “I kicked the

wall after I heard the news”), instead of identifying body parts that are involved in embodied

emotion. Focusing on verbs can introduce several issues. First, verbs tend to be highly

ambiguous and are often used metaphorically. One such case is “The film reviewers tore

apart Jack’s performance in his latest film,” where “tore” is metaphorically used to indicate

criticism. Furthermore, focusing only on verbs is challenging to operationalize in practice.

This is because nearly every sentence contains verbs but only a small fraction of them are

related to physical human actions and so embodied emotions. Given these reasons, this

study focuses on recognizing expressions of embodied emotion that are associated with

body part mentions.

To facilitate the study, this work presents a dataset, CHEER, that contains 7,300 in-

stances with human annotation and is publicly available for the community to conduct

future research. To perform classification, a model based on fine-tuning BERT is proposed.

Given that the amount of gold training data is relatively small, this work introduces two

semi-supervised methods to produce weakly labeled instances. The first method is a pattern-
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based method that extracts Embodied Emotion instances from a text corpus by exploiting

manner expressions with emotion (e.g., “frantically,” “in anger” and “with excitement”). It

is motivated by the observation that a body part is usually involved in embodied emo-

tions when it is syntactically connected to a manner expression with emotion (e.g., “I

clenched my fist in anger”). The second method is a language-model-based method that

harvests newly labeled instances by prompting a large language model such as GPT3.5.1

It is motivated by the findings in our early experiments that some large language models

such as GPT3.5 exhibit a strong, though far from perfect, zero-shot learning ability over

this task. To generate weakly labeled instances, this method feeds GPT3.5 with a prompt

that contains: 1) the task instruction including the definitions, 2) a sentence with a body

part to label, and 3) a question to make GPT3.5 answer whether the body part should

be labeled as Embodied Emotion or Neutral. Then the input instance is labeled based on

the answer generated by GPT3.5. With these two semi-supervised learning methods, we

generated a large set of weakly labeled instances, the size of which is almost 10 times the

size of the CHEER dataset. Experiments demonstrate that the weakly labeled instances can

train an effective learning model without any gold data. Furthermore, they can improve a

supervised model when combined with the gold training data, yielding good results for

recognizing embodied emotions.

1.3 Dissertation Claims and Research Contributions
The primary contributions of this dissertation are as follows:

Claim 1: Accuracy for affective event recognition can be improved with deep learning
models that exploit novel semi-supervised algorithms including Discourse-Enhanced
Self-Training and Multiple View Co-Prompting.

This dissertation first identifies the limitations of prior work that focused on creating

lexical resources for affective event recognition. To mitigate these limitations, a deep learn-

ing model, Aff-BERT, is developed and shown to have better accuracy and coverage for

affective event recognition.

To improve Aff-BERT, two novel semi-supervised algorithms are developed to generate

new affective events. The first method is Discourse-Enhanced Self-Training (DEST), which

1GPT3.5 is available at https://platform.openai.com/docs/models/gpt-3-5-turbo.

https://platform.openai.com/docs/models/gpt-3-5-turbo
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generates a polarity label for an unlabeled event based on 1) the prediction of Aff-BERT

that is trained on the training set, and 2) the coreferent sentiment expressions of the event.

Experiments show that Aff-BERT trained with DEST substantially outperforms strong

baselines. The second method is Multiple View Co-Prompting, which generates new affec-

tive events by prompting language models. The method first generates new event phrases

by prompting a language model such as GPT2. To produce a polarity label for a generated

event phrase, the method first extracts two data views of its polarity by two language

model prompts. The two data views are then combined to produce the final polarity label.

Experiments show that Multiple View Co-Prompting generates weakly labeled affective

events with high quality and improves Aff-BERT substantially.

Claim 2: Recognizing expressions of embodied emotion in natural language can be
improved by training a model specifically for this task and exploiting semi-supervised
learning.

The main contribution of this work is that it proposes the first study on recognizing

expressions of embodied emotion in natural language. The learning task is formulated as

a binary classification problem focused on body part mentions. In this task, a body part

mention is classified as Embodied Emotion or Neutral based on the context. This work

also introduces a benchmark dataset that contains 7,300 instances with human annotation.

We conduct experiments over the dataset to show that existing systems, such as emotion

recognizers and large language models, do not perform well in this task. To improve

the task performance, we train a model based on fine-tuning BERT, and show that it

substantially outperforms other baseline systems.

Since the amount of training instances is relatively small, this work presents two semi-

supervised methods to generate weakly labeled data. The first method extracts Embodied

Emotion instances from text by exploiting manner expressions with emotion. The second

method produces weakly labeled instances by prompting a large language model. Ex-

periments show that the weakly labeled instances generated by these two methods can

train a strong classifier on their own. Furthermore, they can improve a supervised model

substantially when combined with gold training data.
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1.4 Dissertation Outline
This dissertation is organized as follows:

• Chapter 2 gives an overview of work related to this dissertation. It first gives a

summary of existing work related to affective text analysis, such as sentiment analysis

and emotion recognition. Next, it discusses prior work on affective event recognition. It

then discusses the background of weakly supervised learning, including self-training, co-

training and methods in data augmentation. Finally, it presents prior work in psychology

and NLP that is related to embodied emotion recognition.

• Chapter 3 discusses the limitations of prior work on affective event recognition.

To show the limitations of prior work, we introduce a manually annotated dataset that

contains affective events extracted from Twitter, and evaluate resources produced by prior

work over this dataset. To overcome these limitations, a deep-learning model, Aff-BERT,

is presented and shown in experiments to have better accuracy and coverage of affective

event recognition.

• Chapter 4 describes the research on improving affective event recognition systems.

It introduces a new semi-supervised learning algorithm, Discourse-Enhanced Self-Training,

which automatically labels an event based on 1) the prediction of an affective event clas-

sifier that is trained on the training data, and 2) the affective polarities of the coreferent

sentiment expressions that follow the event. It then presents experiments to show that

DEST improves the model performance substantially.

• Chapter 5 presents follow-up research work on improving affective event recogni-

tion systems. To generate weakly labeled affective events, it proposes a simple but effec-

tive algorithm, Multiple View Co-Prompting, which generates and labels affective events by

prompting language models. Experiments demonstrate that the generated affective events

are of high-quality and can improve the model performance substantially.

• Chapter 6 describes the research on recognizing expressions of embodied emotion

in natural language. It presents the task formulation, a benchmark dataset with human

annotation, and a supervised learning model. To further improve the learning model, it

presents two methods to automatically harvest weakly labeled instances. The first method

is a pattern-based method that mines Embodied Emotion instances from text by exploiting

manner expressions with emotion. The second method is a language-model-based method
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that labels instances by prompting a large language model. Experiments show that the

weakly labeled instances generated by these two methods can train an effective model

without using any gold data. Furthermore, they improve the performance of a supervised

model when combined with gold data.

• Chapter 7 presents the conclusions of this dissertation and also the discussions of

future work on affective event recognition and embodied emotion recognition.



CHAPTER 2

BACKGROUND

This dissertation aims to create new NLP models to recognize affective events and em-

bodied emotions. In this chapter, I will discuss prior work in several research areas that are

closely related to this dissertation. First, I will give an overview of affective text analysis.

Second, related work on weakly supervised learning such as self-training, co-training and

data augmentation will be introduced. Since several methods developed in this work are

closely related to prompting large language models, I will next present prior work on

prompting large language models. Finally, I will provide some background work for the

study of embodied emotions.

2.1 Affective Text Analysis
Affective text analysis aims to analyze affect conveyed in text. The term of affect has

been defined differently in prior work. Much prior work in psychology used the term of

affect as an umbrella term that encompasses multiple concepts such as sentiment, emo-

tion, attitude, moods and etc. Bagozzi et al. [10] considered affect as a general term that

refers to emotion, mood and attitude. Scherer et al. [170] later constructed a typology of

affective states which includes emotion, mood, interpersonal stance, attitude, and person-

ality traits. There also exists other work that viewed affect differently. For example, prior

work [118, 178] proposed that affect is fundamentally different from feelings and emotions

as it is a prepersonal, non-conscious experience that exists before personal self-awareness

develops. Munezero et al. [133] differentiated affect from feelings and emotions. They pro-

posed that affect is “a predecessor to feelings and emotions,” while feelings are “person-centered,

conscious phenomena,” and emotions are “preconscious social expressions of feelings and affect

influenced by culture.”

In computer science, much work adopted the idea that affect is an umbrella term that

broadly refers to many subjectivity terms, such as emotion, sentiment, attitude and opin-
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ion. For example, Picard [149] introduced Affective Computing and used the term “af-

fective” to refer to emotion, sentiment, subjectivity, personality, mood and attitudes. This

definition was later used in the book Speech and Language Processing [86] to explain the term

of “affective.” Strapparava and Valitutti [183] worked on associating a set of words in the

WordNet [122] with affect, which includes emotions, personal traits, attitudes, feelings and

etc. Mohammad et al. [126] later worked on identifying affect in tweets and used the term

affect interchangeably with emotion.

In NLP, a wide range of tasks have been proposed for affective text analysis. In the rest

of this section, I will first give an overview of two popular tasks on affective text analysis:

sentiment analysis and emotion recognition. Then I will discuss implicit affect analysis,

which is closely related to the topics in my dissertation.

2.1.1 Sentiment Analysis

In NLP, sentiment analysis aims to identify a person’s general sentiment, opinion or

attitude towards a subject matter. Sentiment analysis has been widely studied for decades.

Early NLP research on sentiment analysis [38, 192] mostly worked on extracting senti-

ment in texts from the finance domain. For example, Das and Chen [38] categorized the

sentiment of a message from the stock investors on Yahoo’s message board with one of

the three categories: bullish (optimistic), bearish (pessimistic) and neutral (either spam

messages or messages that are neither bullish nor bearish). Later on, an increasing amount

of research work focused on mining opinions from reviews on the web. For example, Tur-

ney et al. [197] sampled online reviews of automobiles, banks, movies, and travel destina-

tions and classified a review as recommended (thumbs up) or not recommended (thumbs

down). Another example is the work by Pang et al. [139], which identified whether a movie

review is a positive review or a negative review. More recent studies on sentiment analysis

have been extended to texts in domains other than online reviews, including texts in the

political domain [63, 131, 12], news [35, 15], and health-related messages [210, 76].

Sentiment analysis is closely related to subjectivity analysis [206, 208], which aims

to detect whether a text is subjective (e.g., opinion expression) or objective (e.g., factual

information). A subjective expression was defined by Wilson et al. [208] as “any word or

phrase used to express an opinion, emotion, evaluation, stance, speculation, etc.,” which generally
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represents the private states of characters [156] and usually cannot be directly observed or

verified by others. An example of an objective statement is the factual statement “The sun

rises in the east.” On the other hand, the statement “The sunrise is mind-blowing” is a sub-

jective expression, which conveys awe or amazement towards the sunrise. Prior work [52]

has found that objective statements are usually factual statements without any positive

or negative sentiment. However, statements with no positive or negative sentiment are

not necessarily objective [208]. One example is the statement “Jerome says the hospital feels

no different than a hospital in the states.” It is neutral since Jerome does not have a positive

or negative sentiment towards the hospital, and it is subjective because it talks about his

personal feelings.

Sentiment analysis could be performed at many different levels of granularity. For

example, document-level sentiment analysis focuses on determining the overall sentiment

expressed within a complete document, such as a review, a news article and a social

media post [139, 197, 212]. This level of analysis provides a broad understanding of the

sentiment conveyed by the entire text, without delving into the nuances present in indi-

vidual sentences or aspects. One of the challenges in document-level sentiment analysis

is handling the inherent complexity and variability of natural language. A document can

contain mixed sentiments, sarcasm, or ambiguity, making it difficult to accurately capture

the overall sentiment. Moving down to a finer granularity, sentence-level sentiment anal-

ysis involves analyzing the sentiment expressed within individual sentences [211, 217].

Phrase-level sentiment analysis focuses on identifying and analyzing the sentiment within

individual phrases or fragments of text [208, 136, 207]. Some work has focused on aspect-

level sentiment analysis, which identifies the sentiment associated with specific aspects

of an entity mentioned in the text. For example, the hotel review “The price is low but

the room is not clean” expresses a positive sentiment towards the aspect of “price” but a

negative sentiment towards the aspect of “cleaniness” regarding the hotel room. This level

of granularity is particularly important in domains such as product reviews and feedback

analysis, where understanding the sentiment towards different aspects of a product or

service is essential for decision-making. Finally, much prior research worked on construct-

ing sentiment lexicons [208, 53, 96], where a word or phrase is usually associated with

a positive, negative or neutral sentiment. Sentiment lexicons have been widely used for
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sentiment analysis [80, 38, 184, 74, 43, 41], where word/phrase-level sentiments are used

as features or aggregated by learning algorithms to infer the sentiment of the input text.

Many learning models have been developed for sentiment analysis. Traditional super-

vised learning models that have been applied include Naive Bayes [139, 87, 195], Support

Vector Machine [139, 130, 110, 219], Logistic Regression [73], Maximum Entropy Clas-

sifier [139, 92, 89] and so on. In recent years, deep learning models have been widely

developed to improve the task performance. For example, Kim [95] performed text classi-

fication with Convolutional Neural Networks [104] and word vectors [121]. These models

were found to perform well over multiple text classification tasks including sentiment

analysis. Socher et al. [179] proposed the Recursive Neural Tensor Network over the parse

tree of a sentence to capture the compositional effects of sentiment in the sentence. Se-

quential models, such as Recurrent Neural Network (RNN) [163] and Long-short Term

Memory networks (LSTM) [75], have also been shown effective for sentiment analysis.

For example, Tang et al. [186] presented an LSTM model for target-dependent sentiment

classification that takes target information into account. Wang et al. [203] proposed an

LSTM with an attention mechanism for aspect-based sentiment analysis, which explores

the connection between the content of a sentence and an aspect. More recently, researchers

have focused on applying pretrained language models for sentiment analysis, such as

BERT [44], RoBERTa [113], and GPTs (e.g., GPT2 [157], GPT3, ChatGPT and GPT4).

2.1.2 Emotion Recognition

Emotion recognition in NLP aims to recognize emotions conveyed in texts, such as

anger, fear, joy, sadness, and surprise [81, 50]. This is different from sentiment analysis,

which mostly assigns a positive, negative or neutral polarity to a text. Prior work in psy-

chology has defined emotions in many different ways. Kleinginna and Kleinginna [97]

defined emotion as “a complex set of interactions among subjective and objective factors, mediated

by neural and hormonal systems, which can a) give rise to affective experiences such as feelings

of arousal, pleasure and displeasure; b) generate cognitive processes such as emotionally relevant

perceptual affect, appraisals, labeling processes; c) active widespread physiological adjustments to

the arousing conditions; and d) lead to behavior that is often, but not always expressive, goal-

directed and adaptive.” Scherer [170], on the other hand, believed that the definition cannot
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distinguish different affective classes from each other such as attitudes and emotions.

He further proposed a new definition, which refers to emotion as “episodes of coordinated

changes in several components (including at least neurophysiological activation, motor expression

and subjective feeling but possibly also action tendencies and cognitive processes) in response

to external or internal events of major significance to the organism.” Friedenberg and Silver-

man [56] proposed that emotion is just “brief brain and body episode that facilitates a response

to a significant event.” Based on definitions in prior work, Munezero et al. [133] proposed

that an emotion is determined based on the following factors: “1) Appraisal (cognition);

2) Physiological reactions of the body, such as increased heartbeat and sweating; 3) Feeling; 4)

Expressive display, such as facial expression and bodily expression; 5) Readiness to behave in a

particular way.”

Many emotion recognition tasks in NLP are proposed based on different theoretical ap-

proaches. The most common approach is the emotional categories approach, where emotions

are represented by basic categories [150, 58, 51]. One prominent theoretical framework in

this approach was proposed by Ekman [51], who introduced the concept of basic emotions,

which refer to universal emotional states that are identifiable across cultures. There are six

basic emotions in this framework: anger, disgust, fear, happiness, sadness and surprise.

The six basic emotions are widely used as foundational emotions in a lot of NLP work. For

example, Strapparava and Mihalcea [181] proposed the first task of emotion recognition

in NLP to classify news headlines with the six basic emotions. Another work [109] created

a dataset of English daily dialogues where each utterance was labeled with one of the

six basic emotions. The Plutchik Wheel of Emotions [150] is another famous theoretical

framework, where there are eight core emotions: sadness, joy, anger, fear, expectation,

surprise, trust and disgust. It is also commonly utilized by prior NLP work on emotion

detection [224, 196, 1]. For example, Zhou et al. [223] incorporated the relations between

different emotions in the Plutchik Wheel as constraints to improve emotion recognition.

Another approach is the emotional dimensions approach, such as the circumplex model of af-

fect [164]. This approach represents emotions as points in a multidimensional space. Some

common dimensions include the valence dimension that indicates how positive/negative

an emotion is, the arousal dimension that indicates the activation/deactivation-level of an

emotion, and the dominance dimension that measures how much choice one has over an
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emotion. This approach has also been taken by prior NLP work. For example, Moham-

mad et al. [126] proposed several emotion recognition tasks and one of them is to assign

the valence level of a tweet from 0 to 1.

Prior NLP work mostly focused on recognizing emotions in different types of texts,

including conversations [109, 62, 39], weblogs [213, 155], tweets [126, 125], and news head-

lines [181, 22]. Some other work focused on associating words or phrases with emotions.

For example, Yang et al. [213] developed a collocation model to associate words from

weblogs with emotions and constructed an emotion lexicon. Mohammad and Turney [127]

created a high-quality emotion lexicon by crowd-sourcing with Mechanical Turk.

To recognize emotion, diverse learning models have been developed. Popular tradi-

tional learning models include Naive Bayes [4, 116, 182], Support Vector Machine [13, 161,

116, 4] and Random Forest [146, 216]. In recent years, researchers have focused on develop-

ing deep-learning models to improve the task performance. For example, Abdul-Mageed

and Ungar [1] proposed a Gated Recurrent Neural Network to predict Plutchik’s 24 fine

grained emotions and also 8 primary emotion dimensions. Islam et al. [82] presented a

multi-channel convolutional neural network to detect emotions in tweets, which leverages

different emotion and sentiment indicators, including hashtags, emojis and emoticons.

Ghosal et al. [62] focused on emotion recognition in conversation and proposed a Dialogue

Graph Convolutional Network, which leverages self and inter-speaker dependency to

better model the conversation context. More recently, many learning models are based

on pretrained language models. For example, Demszky et al. [39] fine-tuned BERT over

the large-scale GoEmotion dataset to detect emotions in dialogue. Alhuzali and Anani-

adou et al. [2] built the SpanEmo model on top of BERT to improve emotion classification

by learning associations between emotion labels and words in a sentence.

2.1.3 Implicit Affective Text Analysis

While substantial advancement has been made in affective text analysis in recent years,

most prior work aimed at detecting explicit affective expressions where affect is stated ex-

plicitly with affect-bearing cues (e.g., “The movie was amazing!”). However, prior work [144]

has found that many affective expressions are implicit - the affect is not stated explic-

itly and has to be inferred based on the context or commonsense/world knowledge. For
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example, the movie review “This movie made me feel like walking out within 10 minutes of

it beginning” conveys the author’s negative opinion towards the movie. Although there

are no negative words, we still can understand the negative opinion based on our world

knowledge: people usually leave early if they do not like the movie. Although implicit

affective expressions might seem easy for us to understand, many of them are still chal-

lenging for current NLP systems, which have not been able to capture world knowledge

well or reason based on the context.

In recent years, there has been a growing interest in implicit affective text analysis

within the research community. Some work focused on identifying words or phrases that

indicate implicit affect. For example, Zhang and Liu [221] found that objective nouns

and noun phrases could often indicate opinions. One instance is the word “valley” in the

statement “Within a month, a valley formed in the middle of the mattress.” Although the word

is an objective noun, it indicates the quality of the mattress to be poor and so conveys

a negative opinion. Such objective nouns led to difficulty in recognizing affect since the

involved sentences are often objective. Motivated by the observation, they developed a

method to automatically identify nouns that indicate opinions, based on the intuition

that a noun is probably positive (negative) if a noun occurs in positive (negative) context

significantly more than negative (positive) context. There is also a line of work that fo-

cused on the connotation of words, senses, and frames and frames [88, 159]. For example,

Kang et al. [88] developed a loopy-belief propagation algorithm to create a connotation

lexicon ConntationWordNet, which contains word- and sense-level connotative polarities.

Rashkin et al. [159] focused on predicting the connotative polarities for the object and the

subject of a verb from the entities’ and writer’s perspective. Feng et al. [54] constructed

a large connotation lexicon where words are associated with their connotative polarity,

using a connotation induction algorithm guided by multiple selected linguistic insights

(e.g., selectional preference and distributional similarity). This line of work is different

from our work on affective event recognition, as it focuses on the connotative polarity but

ours focuses on the affective polarity.

Another relevant line of work studied affect conveyed in figurative language. Ghosal

et al. [61] found that figurative language, such as sarcasm, irony and metaphor, often

expresses affect that is significantly different from the polarity of its literal meaning. One
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example is the sarcastic statement “I just love it when my friends throw me under the bus.” The

writer expresses a strongly negative opinion towards his/her friends, though the literal

meaning is positive as indicated by the word “love.” Prior work [152, 153] also studied

the affect expressed by a simile, which is a comparison between two essentially unlike

things (e.g., “he walked as slowly as a turtle”). For example, Qadir et al. [152] developed the

first NLP task to identify whether the affect expressed by a simile is positive, negative

or neutral. For example, “memory like an elphant” is a positive sentiment expression and

“memory like a sieve” is a negative sentiment expression.

2.1.4 Discussion

This dissertation focuses on the tasks of affective event recognition and embodied

emotion recognition. They are closely related to but fundamentally different from prior

work discussed earlier. Affective event recognition differs from prior work in the follow-

ing aspects. First, affective event recognition aims to detect the affective polarity of an

event, so it is centered on events. Secondly, affective event recognition aims to identify

the stereotypical affective polarity of an event, which refers to the affective impact of an

event on most people without considering the context. On the other hand, most prior work

on sentiment analysis and emotion recognition (except research that focused on lexicons)

studied the contextual affective polarity. Thirdly, affective event expressions often convey

affect implicitly and the polarity has to be inferred based on world knowledge. Most prior

work, on the contrary, focused on subjective expressions where the affect is explicitly stated

(e.g., using affective words).

The study of embodied emotion recognition is also fundamentally different from prior

work in sentiment analysis and emotion recognition. It mainly focuses on the physical

manifestation of emotions in our body, such as heart racing and leg shaking, while prior

work did not.

2.2 Affective Event Recognition
One major topic in this dissertation is affective event recognition. One line of rele-

vant work is the prior study on events with implicit affective states. For example, Goyal

et al. [68, 67] identified negative patient polarity verbs that impart affective polarity on
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their patients (e.g., injured, killed), which were used for generating plot unit representa-

tions [105]. They developed two methods to collect patient polarity verbs. The first method

collected patient polarity verbs by identifying verbs that co-occur with evil agents (e.g.,

monster, villain, terrorist) or charitable agents (e.g., hero, angel, rescuer). The second method

leveraged the Basilisk bootstrapping algorithm [188] to iteratively collect both positive

and negative patient polarity verbs using a set of seed verbs and a set of conjunction

patterns. Vu et al. [200] studied emotion-provoking events, which trigger emotions in

people who experience them. They proposed a method to leverage the bootstrapping

algorithm Espresso [140], the seed pattern “I am < EMOTION > that <EVENT>,” and

a set of seed emotional words to iteratively collect more patterns and emotion-provoking

events. Li et al. [106] extracted major life events (e.g., receiving award) from tweets followed

by replies that convey condolences (e.g., “Sorry to hear that”) or congratulations (e.g., “Con-

gratulations,” “Congrats” and “Awesome”). They proposed an iterative method with several

key components as follows: 1) extract tweets that are followed by a set of congratulation

and condolence responses; 2) apply the LDA algorithm [20] to cluster the collected tweets;

3) have human annotators manually label the clusters with the major life event types (e.g.,

getting a job, graduation); 4) expand the set of congratulation and condolence responses

based on the replies of another set of unlabeled tweets. The algorithm eventually harvested

42 major life event types. This study is different from affective event recognition as it does

not assign affective polarities to an event nor cover everyday events.

Balahur et al. [14] constructed a commonsense knowledge base, EmotiNet, to store

real-life situations with the associated emotions. To construct EmotiNet, they first man-

ually selected examples from an existing corpus, ISEAR [171], which contains self-reports

that describe ones’ own emotions in certain situations (e.g., “I felt anger when I had been

obviously unjustly treated and had no possibility to prove they were wrong”). Next, they clustered

these examples automatically based on the text similarity and randomly selected cluster

representatives from each cluster. Then a semantic role labeling algorithm was applied

to these cluster representatives to extract triples of actor— action—object. Finally, these

extracted triples were paired with the emotion labels in the ISEAR dataset and added into

the database. Though EmotiNet was shown to be an appropriate approach for emotion

detection, this work did not focus on automatically inferring the polarity labels for real-life
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situations.

There has been a line of work that focused on crowd-sourcing daily events and their

affective polarities. For example, Asai et al. [9] created a database named “HappyDB”

by crowd-sourcing 100,000 happy moments from Mechanical Turk. During the data cu-

ration, annotators were asked certain questions (e.g., “What made you happy in the past 24

hours”) and provided answers for them (e.g., “My son hugged me in the morning”). Though

this database was shown to be diverse, only positive moments were studied. Further-

more, happy moments were represented by sentences instead of events. Another work

by Rashkin et al. [158] built a corpus of 25,000 daily events with their intents and reactions

by crowd-sourcing. In their work, they represented an event by a phrase that is extracted

using several syntactic patterns. The event phrases were extracted from the ROC Story

training set [129], the Google Syntactic N-grams [64], and the Spinn3r corpus [66]. Then

the event phrases were further post-processed by replacing predicate subjects and other

entities with type variables (e.g., PersonX, PersonY) and selectively replacing verb argu-

ments with blanks ( ). Afterwards, the intents and reactions of the agent (PersonX) of each

event phrase were annotated by Mechanical Turkers. In this work, an intent is defined as

an “explanation of why the agent causes a volitional event to occur (or “none” if the event phrase

was unintentional)”, and a reaction is defined as “as an explanation of how the mental states of

the agent and other people involved in the event would change as a result.” While the reaction

is very similar to the affective polarity, most of it focuses on the fine-grained emotional

impact of an event, such as “feeling alert” and “feeling happy.” In addition, the reaction may

not be affective (e.g., the event of drinking a cup of coffee makes someone feel awake).

The work on +/- effects [40, 32, 41, 42] is also relevant to affective event recognition.

Deng et al. [40] created an annotated dataset that contains benefactive/malefactive events

that negatively or positively affect entities. These events include destruction (e.g., the event

“kill the flies” is bad for the flies) or creation (e.g., the event “bake a cake” is good for the cake),

gain or loss (e.g., the event “gain weights” is good for the weights) and benefit or injury (e.g.,

the event “pet the cat” is good for the cat). Later, these events were renamed to +/-effect

events [41]. Deng and Wiebe [41] investigated the usefulness of +/- effects of events for

sentiment analysis. They developed a Loopy Belief Propagation algorithm to propagate

sentiments among entities using the +/- effects of events and a set of implicature rules.
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And the proposed model was shown to improve over explicit sentiment classification

by 10 points in precision. Deng and Wiebe [42] followed up on the idea and proposed

a Probabilistic Soft Logic model (PSL) where explicit sentiments, inference rules and +/-

effects of events are combined to make joint predictions for entity-level and event-level

sentiment. They showed that the PSL model was able to improve both entity-level and

event-level sentiment upon strong baselines. Choi and Wiebe [32] focused on creating

the lexicon, +/- EffectWordNet, where WordNet senses are associated with +/- effects.

To assign +/- effect to a WordNet sense, they developed a label propagation algorithm

to propagate +/- effect in a graph where the nodes are the WordNet senses and the edges

between nodes are constructed using WordNet relations such as hypernym and troponym.

Overall, this line of work is related to but different from affective event recognition. First,

the +/- effects are not necessarily affective. For example. the event “bake a cake” has a +effect

on the cake, but the effect is not affective. Second, the affected entity is not necessarily an

animate object (e.g., a cake), while it has to be a person in affective event recognition.

Another line of related work is Emotion Cause Extraction, which links emotional ex-

pressions to the events that cause the emotion [71, 70, 30, 107, 209]. Most existing work uses

datasets created from news and microblogs that contain an explicitly mentioned emotion.

And this research assigns polarity to events in the context of a specific text passage. As

a result, an event can be linked to different emotions in different contexts. In contrast,

our work aims to identify the stereotypical affective polarity of an event, irrespective of

context. Consequently, our classifier can be used to predict the affective polarity of events

in contexts that do not contain any explicit emotion or sentiment indicators.

In recent years, there has been work that focused directly on affective event recog-

nition [46, 47, 166]. Ding and Riloff [46] was the first NLP work to specifically study

affective event recognition. The task was formalized as classifying the affective polarity of

an event with one of the following three categories: positive, negative and neutral. Based

on their definition, a positive event is typically desirable or beneficial, a negative event is

typically undesirable or detrimental, and a neutral event is: 1) not positive or negative, or

2) so general that it could easily be positive or negative in different contexts. An event is

represented by a triple hAgent, Predicate, Themei, which captures a predicate, its agent

and its theme (e.g., hthey, have, partyi). The event components were extracted from text
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using dependency relations such as dobj and nsubj based on pre-defined heuristic rules.

To automatically acquire affective events, they developed a semi-supervised label prop-

agation algorithm to infer polarities for unlabeled events. Specifically, they constructed

an event context graph from blog posts where events are connected to each other based

on local context, discourse proximity and event-event co-occurrence. Ding and Riloff [47]

later revisited this task. Different from the previous work [46], they proposed to represent

an event by a quadruple hAgent, Predicate, Theme, Prepositional Phrasei. The new event

representation additionally includes a prepositional phrase, since it can be important for

understanding the event. For example, the event hI, stay, -, at beachi is a positive event and

the event hI, stay, -, in prisoni is a negative event. Ding and Riloff [47] also developed a

method to automatically create a lexicon of affective events by optimizing the semantic

consistency in an event graph. In the graph, event nodes are connected based on three

semantic relations: semantic similarity, semantic opposition and shared components. The

optimization algorithm then iteratively refines the polarity values of the nodes based on

the semantic relations. The algorithm eventually created the Affective Event Knowledge

Base (AEKB), which contains over half a million events with affective polarities. Given an

event, one can search the event in AEKB and extract the polarity label. Overall, this line of

work mostly focused on producing lexicons of affective events. As discussed in Section 3.2,

a limitation of lexicons is their limited coverage of events and so insufficient generaliza-

tion to unseen events. This dissertation aims to produce affective event classifiers based

on deep-learning architectures to provide better coverage and generalization of affective

events.

More recently, Saito et al. [166] utilized deep learning models for affective event recog-

nition in Japanese, including BiGRU and BERT. In addition, they improved the affective

event classifiers by a large amount of weakly labeled affective events. To produce weakly

labeled events, they developed a method to propagate the affective polarities of some

seed events to other discourse-related events using the discourse relations of CAUSE (e.g.,

e1 causes e2) and CONCESSION (e.g., e1 in spite of e2). Our Discourse-Enhanced Self-

Training method is related to but different from this method. Our method uses the corefer-

ence relations between events and their co-occurring sentiment expressions to help predict

the events’ polarity labels, while this method relies on the CAUSE and CONCESSION
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relations between events.

2.3 Weakly Supervised Learning
Many NLP tasks rely on supervised learning as the main approach, where a classifier

is trained over a set of human-labeled data. However, the amount of gold labeled data

is often small due to the difficulty and expense of human annotation. With a small gold

training set, classifiers can easily overfit and as a result generalize poorly over unseen

data. Different approaches have been developed to get around the problem of the lack

of gold labeled data. In this section, I will give an overview of two such research areas

that are closely related to the methods in my dissertation. The first one is semi-supervised

learning, which improves a classifier by exploiting both labeled and unlabeled data. The

second research area is data augmentation, which applies some operations to existing gold

labeled data to obtain more training data.

2.3.1 Semi-Supervised Learning

A common form of semi-supervised learning trains a classifier over a set of gold labeled

data and a larger set of unlabeled data. As the unlabeled data in many tasks are abundant

and easy to obtain, semi-supervised learning could improve the classifier with less human

effort and more effectiveness. There have been many semi-supervised learning algorithms,

such as EM algorithm [128], self-training [175, 215, 120] and co-training [21, 120]. Next,

I will introduce more details of self-training and co-training, which are related to the

algorithms designed in this dissertation.

Self-training is a semi-supervised method that iteratively improves a classifier with its

own predictions on unlabeled data. Typically, a classifier is first trained over a set of labeled

data. Next, the classifier is applied to make predictions for a set of unlabeled data. Then the

unlabeled data with the most confident or useful predictions are added into the training set

to train a new classifier in the next cycle. Despite its simplicity, self-training has been used

widely and shown to be effective in a lot of NLP tasks [215, 160, 119, 48, 165]. However,

self-training suffers from several problems. First of all, as the classifier learns from its

own predictions, classification errors often reinforce themselves in subsequent iterations,

resulting in noisy label predictions and stagnated model improvement. Secondly, using
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the most confident predictions may not improve the recall/coverage of class instances, as

the new training data are usually very similar to the existing training data. Lowering the

confidence threshold could potentially improve the coverage of class instances, but usually

it comes with the cost of worse precision in label predictions. Our Discourse-Enhanced

Self-Training (DEST) method is a form of self-training but more robust to these problems.

In DEST, a prediction for an unlabeled instance is made based on both the classifier’s

prediction and the information from the local discourse context (e.g., the averaged polarity

of the coreferent sentiment expressions). DEST better addresses the error amplification

problem, since the contextual information helps confirm the correctness and reject the

mistakes in the model predictions. In addition, DEST could also produce a more diverse

set of labeled data than using the most confident model predictions alone. This is because

instances that are not confident by the model alone could receive a high confidence score

and be used as new training data, when the contextual information agrees with the model

prediction.

Co-training proposed by Blum and Mitchell [21] is another semi-supervised method

that has been widely used in many learning tasks [21, 65, 120, 201]. Essentially, the co-

training algorithm produces more training data to improve classifiers based on the fol-

lowing key assumptions: 1) an example is represented by two views/feature sets; 2) the

two views are conditionally independent given the class; 3) each view is sufficient for

correct classification. Based on the assumptions, co-training trains two classifiers using

the two data views. Specifically, in each iteration, it first trains each classifier on the train-

ing data represented by the corresponding view. Next, each classifier is applied to make

predictions for the unlabeled data, and the unlabeled data with the most confident or

useful predictions by each classifier are added into the training set. Then the new training

data are used to train two new classifiers in the next cycle. As an example, Blum and

Mitchell [21] improved a web page classifier with co-training by using two views of a web

page: 1) the words on the web page; 2) the words in hyperlinks pointing to the web page.

Since co-training leverages multiple views or representations of the data, it could help

make more accurate predictions than self-training when the views contain complementary

information. In my dissertation, the DEST algorithm and the Multiple View Co-Prompting

algorithm are based on the similar idea that different data views are utilized to make better
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predictions. In DEST, the two data views are the view of the event phrase and the view

of the associated coreferent sentiment expressions. In Multiple View Co-Prompting, the

two data views are the Associated Event View and the Emotion View. Despite the similar

idea of exploiting different data views, DEST and Multiple View Co-Prompting differ from

co-training in several aspects. First, they train only one classifier, while co-training trains

two classifiers. Second, they do not hold the strong assumptions of co-training that each

view is sufficient on its own for correct classification and that the two views must be

conditionally independent of each other given the class.

2.3.2 Data Augmentation

In recent years, data augmentation has attracted increasing attention in the research

community. In general, the goal of data augmentation is to improve a model’s perfor-

mance/robustness with an augmented training set. To produce an augmented training

set, most strategies usually apply easy-to-implement transformations to generate slightly

different variations of existing training data.

Most existing data augmentation strategies could be categorized into three categories

according to the survey by Feng et al. [55]. The first category is the rule-based approaches,

which adopt predefined rules for transformation [222, 108, 205]. For example, to improve

text classification, Zhang et al. [222] augmented the training set by first selecting a ran-

dom number of words in a training sentence and then replacing each of these words

by a randomly selected synonym from an English thesaurus. Evaluation with different

models over six text classification datasets showed that the data augmentation method

could substantially reduce testing errors. EDA [205] is another widely used data augmen-

tation method that generates copies of a training sentence by four strategies, including: 1)

synonym replacement, which replaces n words from the sentence that are not stop words;

2) random insertion, which inserts a random synonym of a random word that is not a stop

word into a random position in the sentence; 3) random swap, which randomly swaps

two words in the sentence; 4) random deletion, which randomly deletes each word in

the sentence with a probability. Their experiments on five text classification tasks showed

that EDA could improve a text classifier when the training data is limited, though the

performance gain becomes smaller when there is more training data.
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The second category is the example-interpolation-based approaches [220, 199, 29] that

produce new labeled instances by interpolating multiple training instances as well as their

labels. Essentially, this approach requires that data instances be represented by continuous

vectors. For example, Chen et al. [29] developed a method called TMix, which generates

a new instance by interpolating the hidden representations, produced by BERT, of two

training texts.

The third category is the model-based approaches, which transform existing training

data with trained models. For example, Sennrich et al. [176] designed the popular method,

back-translation, to generate a new instance by translating a training instance to another

language and back to the original language. The new instance is then paired with the

label of the original training instance. More recent model-based approaches have tried

performing data augmentation using pretrained language models [59, 134]. For example,

Ng et al. [134] generated variations of a sentence by arbitrarily replacing some words in a

sentence with the [MASK] token and completing the sentence by BERT. Some other work

developed methods to first fine-tune language models over the training data and then

produce new training data by sampling from the fine-tuned language models [214, 5, 100].

For example, Anaby-Tavor et al. [5] worked on text classification and proposed a data

augmentation method, LAMBDA, that first fine-tunes GPT2 [157] over labeled data and

then synthesizes weakly-labeled data from it. Specifically, given a set of training sentences

with gold labels {(xi, yi)}n
i=1, the method organizes the training data into a long sequence:

“y1 SEP x1 EOS y2 SEP x2 EOS...yn SEP xn EOS,” where SEP is the token to separate a

sentence x⇤ and its label y⇤, and EOS is the token to denote the end of the sentence. Then

GPT2 is fine-tuned with the next-token prediction task over the long sequence, during

which it learns to generate a sentence given a class label. To synthesize weakly labeled

data, one can feed GPT2 with the prompt “y SEP” and GPT2 will continue to generate a

sentence that belongs to the class y until the EOS token is met.

The Multiple View Co-Prompting method in this dissertation is a model-based data

augmentation approach for several reasons. First, it generates event phrases by prompting

language models. Second, it extracts data views of event phrases from pretrained language

models for label assignment. However, it differs from other model-based methods in the

following aspects: 1) it does not require fine-tuning the language models; 2) it seeks dif-
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ferent types of data views from language models, while others elicit only one type of data

view. In our study of embodied emotion recognition, the weakly supervised method to

produce labeled instances using the predictions from language models is a model-based

data augmentation method.

2.4 Prompting Large Language Models
Recently, there has been a significant increase in attention towards prompting language

model. In general, research on prompting language models aims to query a pretrained

language model with a prompt such that the language model generates desired outputs

that could be used for downstream NLP tasks [157, 148, 177, 172, 173, 60]. Typically, a

prompt could be either a cloze prompt which has an empty slot to be filled in, or a prefix

prompt which is an incomplete sequence of tokens to be completed. The cloze prompt is

mainly used to elicit information from masked language models which are pretrained to

predict a token for a slot (e.g., BERT and RoBERTa [113]), while the prefix prompt is used

for language models that are pretrained to generate the next token in an auto-regressive

way (e.g., GPT2 and GPT3). Suppose we want to infer the affective polarity of the event

phrase, “I got an A in the final exam,” by prompting pretrained language models. We could

query BERT with a cloze prompt: “I got an A in my final exam! I feel [MASK],” where [MASK]

represents the empty slot. Then BERT could generate emotional terms such as “happy” and

“good” in the slot. We could also query GPT3 with a prefix prompt: “I got an A in the final

exam. I feel.” And GPT3 may complete the prefix prompt as follows: “I got an A in the final

exam. I feel really good.” Based on the completion produced by the language models, we can

infer that the event is positive.

Language models have been shown to capture diverse knowledge in the pretraining

corpus [148, 84, 185]. For example, Petroni et al. [148] performed an in-depth analysis

and showed that BERT contains diverse relational knowledge such as “PlaceOfBirth” (e.g.,

“Francesco Bartolomeo Conti was born in Rome.”), “CapableOf” (e.g., “Ravens can fly”) and

“UsedFor” (e.g., “A pond is used for swimming”). They also found that BERT competes

effectively with traditional NLP approaches that have some access to oracle knowledge.

The observation that language models possess knowledge soon inspired researchers to

investigate the capability of language models to perform zero-shot learning (with no ac-
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cess to training data) and few-shot learning (with access to a limited amount of training

data) [25, 172, 173, 60, 204, 193, 194, 143]. In the zero-shot learning scenario, a language

model is typically prompted with a query that contains a task instruction and an input

instance to label. In the few-shot learning scenario, a common setup is to use the prompt

in the zero-shot learning and insert into it a few training instances and their labels as

exemplars. As a few exemplars are introduced, the model could better understand the task

and make a better prediction for the input instance. Recent research has found that large

language models, such as Llama2 [194], ChatGPT, Falcon [143] and GPT4, can perform

impressively well over unseen tasks with zero-shot and few-shot learning.

Although language model prompting has been show to achieve promising results over

various learning tasks, prior work [84, 111, 114, 202] has observed that the quality of the

feedback provided by language models is usually sensitive to the prompt design, and that

prompts that mean the same thing but are worded differently could often guide language

models to generate inconsistent feedback. As a result, finding the optimal prompt has

become an important task. To avoid the cost of manual prompt engineering, some research

has focused on automatically searching for optimal prompts, such as prompt-based fine-

tuning, automatic prompt search, and discrete/continuous prompt optimization [177, 154,

172, 173]. For example, Jiang et al. [84] designed an approach to automatically construct

prompts based on sentences mined from a large text corpus that contains examples in

the training set. Another work [60] used T5 to generate prompts automatically. Besides

using only one prompt to elicit desired outputs, some work developed prompt ensembling

methods to generate outputs by combining outputs of multiple prompts [84, 172, 173],

which could stabilize the model performance and reduce the cost of prompt engineering.

For example, to better estimate the log probability of a token at a masked position, Jiang et

al. [84] used K prompts to extract K log probabilities for that token and averaged them. To

illustrate, to extract the profession of Barack Obama, the set of prompts could be “Obama

worked as a [MASK]” and “Obama is a [MASK] by profession.” Qin and Eisner [154] also

used K prompts to estimate the probability of a token. Specifically, their work computed

the probability of a token by a weighted average of the K probabilities produced by the

prompts. The weight of a prompt represents the preference for the prompt, and it could

automatically be learned if there is training data.
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Prior methods of prompting language models are closely related to the methods devel-

oped in this dissertation. Specifically, the Multiple View Co-Prompting method to generate

affective events and the LM-based method to generate Embodied Emotion instances are

prompt-based methods. However, the Multiple View Co-Prompting method is fundamen-

tally different from previous prompting-based approaches. Essentially, existing methods

mostly prompt language models for the same type of label information or data view. For

example, Schick et al. [172] developed the pattern-exploiting training (PET) method which

trains an ensemble of language models with multiple prompts over weakly-labeled data.

To apply PET for affective event recognition, we may use prompts such as “[EVENT]. I

feel [MASK],” “[EVENT]. This is [MASK].” and “It is [MASK] that [EVENT],” all of which

ask for the same data view - emotional terms that co-occur with the input event. On the

other hand, our Multiple View Co-Prompting method utilizes multiple prompts to seek

different views (the Associated Event View and the Emotion View) of a data instance. With

the independent and complementary information from multiple data views, our method

is able to produce more robust labels than methods using only one data view.

2.5 Embodied Emotion
2.5.1 Embodied Emotion in Psychology

In psychology, most emotion theories acknowledge that the body and the mind play

important roles in the emotion experience [17]. How the body and the mind participate

in the emotional experience, however, is still an open research question. Some emotion

theories proposed that the body impacts the mind during an emotion experience [83, 102,

45, 191, 190, 49]. Briefly, this group of theories believed that an emotional experience is a

process that starts from external stimuli and undergoes changes in the body before being

internally felt by the mind as an emotion. For example, James [83], one of the earliest

attempts to explain the cause of the emotion, explained that “Our natural way of thinking

about these standard emotions is that the mental perception of some fact excites the mental affec-

tion called the emotion, and that this latter state of mind gives rise to the bodily expression. My

dissertation on the contrary is that the bodily changes follow directly the perception of the exciting

fact, and that our feeling of the same changes as they occur is the emotion.” The same theory was

later independently proposed by Lange [102] and afterwards renamed as the James-Lange
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Theory. To illustrate with another example, suppose we see a mountain lion while we are

hiking, and we become terrified. Based on this group of theories, the perception of the

mountain lion stimulates some bodily responses such as a racing heart, increased muscle

tension, sweating and so on. These bodily responses are then interpreted as fear by our

mind, and we feel the emotion of fear.

Another group of theories held the contrary belief that the mind influences the body

during an emotion experience [36, 7, 8, 57]. In these models, the mind/mental state cor-

responds to the entire stimulus situation (e.g., seeing the mountain lion in the previous

example). One of the modern pioneering work in this group is the book “The Expression

of Emotions in Man and Animals” by Charles Darwin [36]. The book presents three chief

principles of expression of emotion, and the first principle, the principle of serviceable

associated habits, states that certain states of the mind seek expressions and automatically

provoke bodily responses:

Certain complex actions are of direct or indirect service under certain states of the mind,
in order to relieve or gratify certain sensations, desires, and whenever the same state
of mind is induced, however feebly, there is a tendency through the force of habit and
association for the same movements to be performed, though they may not then be of
the least use. Some actions ordinarily associated through habit with certain states of the
mind may be partially repressed through the will, and in such cases the muscles which
are least under the separate control of the will are the most liable still to act, causing
movements which we recognise as expressive. In certain other cases the checking of one
habitual movement requires other slight movements; and these are likewise expressive.

Another example is the Cannon-Bard Theory [26, 16], which considers that a stimulus

evokes emotions and bodily responses simultaneously. In this theory, the thalamus, a part

of the brain responsible for relaying sensory information to other parts of the brain, plays

a crucial role. Consider the previous example of seeing a mountain lion. Based on the

Cannon-Bard theory, the thalamus receives the sensory input of the mountain lion and

sends a signal to the amygdala, a structure in the brain responsible for processing strong

emotions such as fear and anger. At the same time, the thalamus also sends a signal to the

autonomic nervous system, resulting in bodily responses such as a racing heart, increased

muscle tension, sweating and so on. In this process, the mental state (the perception of the

mountain lion) causes the changes in the body and also the emotional feelings. Another

instance in this group is the appraisal theory, proposed by Arnold [7]. The appraisal theory

suggests that when a stimulus occurs, a person first evaluates its significance as well as its
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value in an automatic way. Then the appraisal evokes the corresponding emotion, which

is embodied by various bodily changes.

In addition to the theories of mind ! body and body ! mind, some theories [101, 18]

hold an interactionist view that the mind and the body interact dynamically to shape the

emotion experience together. One example along this line is the Schachter-Singer Two-

Factor Theory [168], which proposed that “an emotional state may be considered as a function

of a state of physiological arousal and of a cognition appropriate to this state of arousal.” Consider

again the example of seeing a mountain lion. According to the Two-Factor Theory, the

emotion of fear arises from the following interaction (listed in the temporal order): 1) The

stimulus occurs (the perception of the mountain lion); 2) Some physical arousal occurs,

such as a racing heart and increased muscle tension; 3) the physical arousal is automatically

associated with a cognitive label, which is fear in this case; 4) Fear is felt.

In this dissertation, our study of embodied emotion is closely related to the view that

the mind influences the body. Specifically, we define embodied emotion as physical move-

ment or physical arousal that is mainly evoked by emotion. In addition, we apply one more

constraint: the physical movement has no other purpose beyond emotion expression. The

reason for using this constraint can be found in Chapter 6. With the additional constraint,

the embodied emotions we study are a subset of those discussed in the previous literature.

2.5.2 Analysis of Emotion Communication
Signals and Emotion Components

Our research on embodied emotion is closely related to prior research on analyzing

emotion communication signals. Kim and Klinger [93] studied how emotions are expressed

in text using non-verbal communication signals. The study focused on eight emotions:

joy, sadness, anger, fear, trust, disgust, surprise, and anticipation, and eight non-verbal

communication signals: 1) physical appearance (e.g., “blushed crimson red”), 2) facial ex-

pressions (e.g., “rolled his eyes”), 3) looking behavior (e.g., “averted her eyes”), 4) arm and

hand gesture (e.g., “opened her arms”), 5) movements of body as a whole (e.g., “slumped his

shoulders”), 6) characteristics of voice (e.g., “voice getting smaller and smaller”), 7) spatial rela-

tions (e.g., “leaping into her arms”), and 8) physical sensations (e.g., “tingling all over”). Using

an existing dataset [94] where characters in fan fictions had been annotated with emotions,

they performed manual annotation and analysis of the non-verbal communication signals
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for the characters with emotions in the dataset. Our study of embodied emotion differs

from this work in the following two aspects. First, the non-verbal communication signals

do not cover all body parts that are covered by our study, including the internal body parts

(e.g., heart) and some single body parts (e.g., leg and toes). Another key difference is that

they only performed manual analyses over the corpus and did not propose an automated

task for recognizing these non-verbal signals.

The study of embodied emotions is also related to the existing work on recognizing

emotion components [28, 34]. Casel et al. [28] classified a sentence with one of the five

emotion components: 1) Cognitive Appraisal (e.g., “I wasn’t sure what was happening”),

2) Neurophysiological Symptoms (e.g., “My heart is racing”), 3) Motivational Action Ten-

dencies (e.g., “He wanted to run away”), 4) Motor Expressions (e.g., “She smiled”) and 5)

Subjective Feelings (e.g., “I felt so bad”). For classification, they built multiple classifiers

such as a bi-LSTM followed by a convolution layer and a classification layer, and a max-

imum entropy classifier with TF-IDF bag-of-words features. They further combined an

emotion classifier and an emotion component classifier into a joint model, and showed

that the additional information of emotion component could improve the performance of

the emotion classifier. Cortal et al. [34] also worked on classifying sentences with emotion

components and had the similar finding that the information of emotion components helps

improve the performance of emotion classifiers. Different from the prior work [28], they

studied four different emotion components: 1) Behavior, 2) Feeling, 3) Thinking and 4)

Territory. Overall, this line of work differs from ours in two aspects. First, the emotion

components are fundamentally different from embodied emotions. For example, Cortal

et al. [34] included all behaviors not evoked by emotion during an emotional event (e.g.,

“giving a lecture”) and Casel et al. [28] included goal-oriented physical movements (e.g.,

“recover the stolen horse”), while ours does not. In addition, their work focused on teasing

apart different emotion components from each other. In essence, it assumes the text to

classify is emotional, while ours does not.

2.5.3 Embodied Artificial Intelligence

There has been growing interest in the research on Embodied Artificial Intelligence

(AI), which aims to develop AI systems that are integrated with physical or virtual en-
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tities and can interact with humans or the environment through sensory inputs and ac-

tive responses. Unlike traditional AI, which primarily relies on abstract data processing,

embodied AI is concerned with the ability to perform tasks in the real world. Sensory

inputs to an embodied agent could be various types of data from the environment that

enable it to perceive and interact with the world. For example, a robot that manipulates

objects receives visual inputs that are captured through imaging devices (e.g., camera)

to identify objects and navigate through space. It also receives auditory inputs that are

acquired through microphones to detect and interpret sounds. Another type of inputs is

tactile input, which is gathered through touch sensors to allow the robot to sense physical

contact, texture, pressure, and temperature.

A substantial amount of research on developing embodied AI has been explored in

other disciplines. One line of research [6, 72, 123] focused on developing embodied navi-

gation agents that navigate to a goal in a three-dimensional environment with or without

external priors or natural language instruction. Various tasks along this line have been

proposed, such as motion planning that searches for a collision-free path in a given en-

vironment [103], and Simultaneous Localization and Mapping that builds a map of an

unknown environment and localizes the agent in the map [69].

Another line of research studied embodied question answering (QA) [37, 218], where

an agent physically interacts with its environment to answer questions. For example, we

may ask an agent the following question: “Is there any apple in the fridge?”. To answer the

question, an agent needs to navigate to the fridge, open the fridge, and search for apples.

The task of Embodied QA is challenging, as it greatly relies on the capabilities for many

other tasks. One important capability is to visually ground the spoken language [33, 189,

78], where basic terms in spoken language are associated with visual cues. Consider the

scenario where an agent is asked to describe an object (a red apple) on the table. To generate

descriptions such as “There is a red apple on the table,” an agent must be able to associate the

visual element (color) with the word “red.”

The study of social robots is another important topic in embodied AI, which focuses

on building robots that interact with people [169, 23]. Social robots can be useful in many

domains, such as education (e.g., robotic tutors) [19], healthcare (e.g., robotics assistants to

provide healthcare support) [85], and entertainment (e.g., playful robots) [99]. For example,
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Cherakara et al. [31] built an embodied conversational agent called FurChat, which can

generate open and closed-domain dialogue with emotive facial expressions and interact

with people using verbal and non-verbal cues. The workflow in Furchat consists of mul-

tiple components: 1) convert the user speech to text using automatic speech recognition,

2) interpret the text using natural language understanding, 3) manage the interaction flow

using a dialogue manager, and 4) generate a textual response by natural language gen-

eration (e.g., using GPT-3.5), 5) convert the generated text to speech using text-to-speech

technology and play the speech through the robot’s speaker. To display gestures and facial

expressions, the agent first detects the emotion of the user using GPT3.5, and selects an

appropriate emoticon (e.g., a sad face for a sad conversation). Given the emoticon, a ges-

ture is selected from a pre-defined set of gestures and displayed along with the generated

speech.

The study of embodied emotion recognition in natural language differs from work on

embodied AI, because it focuses on identifying textual expressions of bodily responses

evoked by emotions and does not involve interactions with the world. However, it is

closely related to and could potentially be useful for work on Embodied AI where emotion

plays an important role. First, our study can potentially enhance an agent’s capability of

detecting emotions conveyed in users’ speech. Suppose a robot hears a user say “What

you said made my stomach turn.” After converting the speech to a text, a robot should

understand that the user got a negative emotion due to the embodied emotion expression

“my stomach turn” and act accordingly. Our study could also potentially help an embodied

agent perform a wider range of gestures to express emotions. Many social robots, such

as FurChat, choose an expression from a pre-defined set of gestures to display a specific

emotion. The work in this dissertation could be extended in the future to identify diverse

bodily manifestations of emotions from text. And researchers in other disciplines could use

this harvested set of embodied emotions as a reference to design new gestures to express

emotions.



CHAPTER�3

IMPROVING�AFFECTIVE�EVENT�RECOGNITION�
WITH�DEEP-LEARNING�MODELS

In�recent�years,�affective�event�recognition�has�attracted�the�attention�of�researchers�in�

NLP.�Prior�research�has�proposed�different�methods�to�recognize�affective�events.�While�ef-

fective,�earlier�methods�suffer�several�limitations�that�result�in�limited�model�performance�

and�generalization.�Motivated� by� these� limitations,� this�work�proposes� a�deep-learning�

model,� which� outperforms� the� existing� methods� and� also� generalizes� better� to� unseen�

events�as�shown�in�Section�3.4.

In�this�chapter,�I�will�first�elaborate�on�the�basic�concepts�of�affective�event�recognition�

in�Section�3.1.�Then�I�will�present�details�of�existing�work�on�affective�event�recognition�and�

their�corresponding�limitations�in�Section�3.2.�Finally,�a�deep-learning�model�for�affective�

event�recognition�is�introduced�in�Section�3.3.

3.1� Basic�Concepts�in�Affective�Event�Recognition
This�dissertation�mainly�adopts�the�definitions�introduced�by�Ding�and�Riloff�[46,�47]�

on�affective�event�recognition.

An�event� is�defined� to�be� in� the� form�of�a� tuple�hAgent,�Predicate,�Theme,�Prepositional�

Phrase�(PP)i,�where�agent�usually�refers�to�the�entity�that�performs�actions,�predicate�refers�

to�the�action�performed�and�theme�refers�to�the�entity�affected�by�the�action.�For�example,�

in�the�event�phrase�“Jack�eats�an�apple,”�Jack�is�the�agent,�eat�is�the�predicate�and�apple�is�the�

theme.� An� event� tuple� could� include� a� prepositional� phrase,� which� is� important� for�

understanding�the�event.�For�example,�staying�in�prison�is�an�undesired�event�but�staying�at�

a�beach�is�usually�a�desired�event.

To� extract� event� tuples,�we� followed� the� extraction�methods� in�prior�work� [46,� 47].�

Specifically,� the� extraction�methods� rely� on� some� heuristic� rules� based� on�dependency
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relations to extract the event components.1 For example, the Agent role is extracted using

the nsubj relation and the Theme role is extracted using the dobj relation. Furthermore, each

component in the event tuple is represented by lemmatized words. To illustrate, from the

sentence “John is watching the sunset at the beach,” we extract an event hJohn, watch, sunset,

at beachi, where the predicate is “watch,” the agent is “John,” the theme is “sunset,” and the

prepositional phrase is “at beach.” In addition, an event could also represent a state, for

example, hI, feel, sad, -i.

Following prior work [46, 47], we define affective events to be events that stereotyp-

ically impact us in a positive (desirable) or negative (undesirable) way. We use the term

affective polarity to refer to the affective impact of an event. Affective polarity could be

positive (desirable), negative (undesirable), or neutral (neither desirable nor undesirable).

For example, the affective polarity is negative for the event hI, drop, my phone, in toileti,

positive for the event hI, win, game, -i, and neutral for the event hI, walk, -, on streeti.

The impact of an affective event is closely tied to the affective state of the person who

experiences it. For example, if we break our legs, we usually experience a negative affective

state as the event leads to undesirable injury and pain. On the other hand, if we get a

degree from the university, we usually possess a positive affective state since getting a

degree is an achievement and opens up more possibilities (e.g., getting a job) in the future.

Here we emphasize the “stereotypical” impact of an event, which is how most people

are impacted when experiencing the event. While it is possible that an individual might

have an atypical feeling towards an affective event (e.g., someone dislikes getting a degree

from the university), we aim to identify its most likely affective polarity in the absence of

evidence to the contrary.

Based on the aforementioned definitions, the task of affective event recognition is to

classify the stereotypical affective polarity of a given event, which could be positive, neg-

ative or neutral.

1No semantic role labeling is performed.
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3.2 Limitations of Existing Methods
for Affective Event Recognition

As introduced in Section 2.2, most prior work on affective event recognition focused

on producing lexical resources that contain verbs or event phrases with corresponding

affective polarity values [68, 67, 159, 46, 47]. To predict the polarity for an event with a

lexical resource, one could look up the event in the lexical resource and obtain its polarity.

While lexical resources have been useful for improving affective event recognition, they

may not generalize well to unseen events. First, they are likely to have insufficient coverage

of affective events. This is mainly because an event could be described in various forms

that have different syntactic structures and words. Consider the event “Jack goes on a trip.”

The event could be described with different phrases such as “Jack travels,” “Jack starts his

trip” and “Jack goes on a journey.” As the corpus for building a lexicon is usually limited,

a lexicon is not likely to capture all possible forms of all events. In addition, events in

our daily life evolve over time, which makes a lexical resource likely to become outdated

after some time. Consider the negative event of being infected with COVID-19 (e.g., “I test

positive with COVID-19”), a disease that emerged after 2019. None of the existing lexical

resources of affective events would recognize this event, as they were built from texts that

were written before 2019.

A second issue is that the polarity label quality of these lexical resources is far from

perfect, as the methods developed to build these resources do not capture well the event

semantics. For example, in building the AEKB resource, Ding and Riloff [47] propagated

polarities from a set of seed events to events that are similar/dissimilar to them. To mea-

sure if two events are similar/dissimilar to each other, they represented each event using

the GloVE embeddings [145] and took the cosine similarity between the two events’ em-

beddings. However, GloVE emebddings or static word embeddings in general have been

shown to be limited in capturing the textual semantics. As a result, the resulted polarity

labels could be noisy. Table 3.1 shows examples of affective events that are correctly and

incorrectly labeled in AEKB.

To test if the limited generalization is a real issue, we investigated how well the current

largest lexical resource of affective events, Affective Event Knowledge Base (AEKB) [47],

generalizes to events in new texts. Briefly, AEKB contains over half a million automatically
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Table 3.1: Examples of affective events correctly and incorrectly labeled in AEKB.

Positive Events

Correct:
hI, win, ribbon, -i hI, treasure, our friendship, -i
heverything, look, okay, -i hsomething, excite, I, -i
Incorrect:
hI, not feel, fine, -i hI, have to open, it, -i
hI, say, it, for reasoni hI, wonder, -, after dayi

Negative Events

Correct:
harm, start to hurt, -, -i hmy parent, be angry, -, with mei
h-,distract, I, -i hwe, not, afford, housei
Incorrect:
hrose, laugh, -, -i hthought, pass, my mind, -i
hI, put down, phone, -i hI, find, screw, -i

Neutral Events

Correct:
hI, type, blog, -i hI, pull out, copy, -i
hI, go to make, food, -i hI, pick up, textbook, -i
Incorrect:
hI, watch, movie, -i hI, not get, lunch break, -i
hI, go to watch, sunset, -i hI, go, -, to disneyi

labeled affective event phrases extracted from personal blog posts in the ICWSM 2009 and

2011 Spinn3r datasets. To conduct the experiment, we created a new dataset for affective

event recognition in Twitter, where the genre style and the wording are often different from

those in blog posts. Specifically, the dataset contains 1,500 events extracted from tweets in

Twitter with human annotated polarity labels. The events are represented using the event

representation in the AEKB: hAgent, Predicate, Theme, Prepositional Phrasei, except that

we also allowed adjectival modifiers in the noun phrases (e.g., hI, have, delicious food, -i) as

they often impact the polarity. We will refer to this dataset as TWITTER. The full detail

of its creation process is elaborated in Section 4.3. To apply AEKB over TWITTER, we

matched every event in TWITTER against the AEKB. If the event was found in the AEKB,

we assigned the corresponding polarity in the AEKB. Otherwise we assigned the Neutral
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polarity.

Table 3.2 reports the performance of AEKB, including the macro-averaged F1, the recall

and the precision scores for each of the three polarities: positive (POS), negative (NEG),

and neutral (NEU). The first row (Blogs) shows the AEKB results originally reported by

Ding and Riloff [47] for events extracted from blog posts, for comparison. Of the 1, 500

Twitter events, only 997 events (66%) were found in the AEKB. The second row of Table

3.2 (Twitter-found) shows results for these 997 events. The recall for positive polarity is

substantially lower. The low recall for positive polarity is probably because many positive

Twitter events are labeled as neutral in the AEKB, as suggested by the lower precision for

neutral polarity. For negative polarity, the precision is higher for Twitter data than blog

data while the recall is lower. Overall, we see that AEKB is not able to recognize many

positive and negative events in Twitter and mistakenly classifies them as neutral events.

Another major issue is that about one third (34%) of the Twitter events were not found in

the AEKB at all. The third row of Table 3.2 (Twitter-all) shows the results across all 1, 500

Twitter events, where the missing events are automatically labeled with Neutral. Overall,

only 37% of the negative events and 26% of the positive events could be recognized by the

AEKB.

In general, these results show that the AEKB, despite its largest size, cannot recog-

nize many affective events for two reasons: (1) many affective events are not present in

the knowledge base, and 2) many positive and negative events are incorrectly labeled as

neutral. This confirms our concern that existing lexical resources do not generalize well to

unseen events.

Table 3.2: Performance of AEKB over the TWITTER dataset.

Method F1 POS NEG NEU
Pre Rec Pre Rec Pre Rec

Blogs 71.4 75.7 55.1 70.4 63.3 79.3 88.5
Twitter-found 65.2 72.2 40.6 78.7 60.8 65.6 87.9
Twitter-all 50.8 72.2 26.2 78.7 37.1 65.6 61.8
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3.3 Aff-BERT: A Deep-Learning Model
for Affective Event Recognition

To address the limitations of prior work, we proposed a deep-learning classification

model for better coverage and accuracy. We will refer to this model as Aff-BERT. Essen-

tially, Aff-BERT is built on top of the pre-trained BERT model [44] and is fine-tuned during

the training. Figure 3.1 shows the architecture of Aff-BERT. It takes an event (in the form

of tuple) as input and predicts whether the polarity of the event is positive, negative or

neutral. First, we concatenate all words in the input event tuple into an event phrase and

prepend the special [CLS] token used in BERT to the event phrase. For example, the event

tuple hI, not pass, my history test, -i is changed to “[CLS] I not pass my history test” after this

step. We then encode the event phrase with BERT, which outputs an embedding for each

token in the input sequence. Then we pass the 768-dimension output embedding of the

[CLS] token to a linear layer with softmax to produce a probability distribution over the

three polarity classes. Finally, the polarity with the highest probability value is assigned to

the event. During training, Aff-BERT is fine-tuned with respect to the cross entropy loss

over the gold training data.

The motivation for using BERT as the base encoder is that representations produced

by BERT could potentially capture the rich meaning of an event and cluster events that

Figure 3.1: The architecture of Aff-BERT.
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are semantically similar together, leading to better coverage and generalization. Suppose

we want to recognize the affective polarity of the event hI, develop, COVID-19 symptom, -i

but the training data does not have any event related to COVID-19. Aff-BERT might still

successfully predict the event as negative, as BERT could potentially produce an event

representation that is similar to the representations of other infection events such as hI,

develop, cold symptom, -i and hI, get, allergy symptom, -i.

3.4 Evaluating Aff-BERT
We evaluated Aff-BERT over the dataset created by Ding and Riloff [47], which con-

tains 1,490 manually annotated affective events extracted from personal blog posts. In the

dataset, there are 295 positive (20%), 264 negative (18%), and 931 (62%) neutral events. We

used the original data split provided by Ding and Riloff [47], where 490 events are used

for validation and 1,000 events are used for testing. We will refer to this dataset as BLOG.

We compared Aff-BERT to several systems. The first system is the Affective Event

Knowledge Base (AEKB) produced by Ding and Riloff [47], which contains over a half

million events with polarity labels. The second system is ELMo+LSTM, an LSTM model

with ELMo encoding as inputs [147]. Specifically, ELMo+LSTM first encodes an event

phrase with the pretrained language model ELMo [147]. Then it feeds the last layer of

ELMo’s outputs into a 1-layer LSTM to produce a polarity distribution. We also developed

another system, ELMo + Linear, where the last layer of ELMo’s outputs are averaged and

fed into a linear layer to produce a polarity distribution. The last system for comparison

is Aff-BERT(AEKB), an Aff-BERT trained with the supervision of AEKB. Specifically, we

constructed a training set by collecting from AEKB events with label confidence � 60%.

Then we trained Aff-BERT over this training set.

We trained all models for 5 epochs with a batch size of 50 and a linear warmup rate of

10 using AdamW optimizer. We also performed a hyperparameter search and selected the

best parameter values according to the performance over the validation set. Specifically,

the LSTM has a hidden size of 512 and a dropout rate of 0.2. The learning rate is 0.01 for

the LSTM, 0.1 for the linear classifier, and 1e-5 for Aff-BERT.

Table 3.3 shows the performance of all systems on the BLOG test set, including the

macro-averaged F1 scores as well as the precision and recall scores for each polarity. The



42

Table 3.3: Performance on the BLOG test set. The F1 score is macro-averaged across
polarities.

Method F1 POS NEG NEU
Pre Rec Pre Rec Pre Rec

AEKB 71.4 75.7 55.1 70.4 63.3 79.3 88.5
Aff-BERT(AEKB) 73.6 73.2 56.6 75.6 69.5 80.9 88.5
ELMo+Linear(Gold) 62.3 56.0 53.7 56.2 51.3 78.2 81.4
ELMo+LSTM(Gold) 70.5 71.4 60.8 70.8 57.3 81.3 88.5
Aff-BERT(Gold) 77.4 71.7 66.2 78.2 77.2 85.0 87.4

first row shows the performance of AEKB reported by Ding and Riloff [47]. The second row

shows the performance of Aff-BERT trained with the weakly labeled events in AEKB. We

observe that Aff-BERT trained with AEKB data outperforms AEKB. Notably, the improve-

ment is due to the substantial recall and precision gain for negative events. This indicates

that a deep learning model (Aff-BERT) trained with AEKB achieves better coverage than

AEKB alone, probably due to the semantically rich representations produced by BERT.

We next experimented with learning from gold labeled data by running 10-fold cross

validation over the BLOG test data. In each of the 10 runs, we used 8 folds for training, 1

fold for development and 1 fold for testing. The results of ELMo+Linear, ELMo+LSTM

and Aff-BERT trained with gold training data are shown in the third, fourth and fifth

rows respectively. The linear classifier and the LSTM do not perform as well as the AEKB.

But Aff-BERT trained on gold labeled data performs substantially better than both the

AEKB and Aff-BERT trained with the AEKB. In particular, the high performance of Aff-

BERT(Gold) is due to its substantial gains in the precision scores for Negative and Neutral

polarities and the recall scores for Positive and Negative polarities. Overall, the results

show that fine-tuning Aff-BERT on a relatively small amount of gold labeled data produces

a strong affective event classifier, with respect to both recall and precision.

3.5 Conclusion
In this chapter, we delved into the issue that existing lexical resources for affective event

recognition do not generalize well to unseen events. The limitation mainly stems from their

insufficient coverage of affective events. In addition, it is also partly because the methods

to develop these lexical resources cannot capture the event semantics well. To demonstrate

these limitations, we curated a new dataset for affective event recognition on Twitter.
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Our experiments over the TWITTER dataset demonstrate that existing lexical resources

perform poorly when applied to this new dataset. Motivated by the issue of insufficient

generalization, we developed a deep-learning model, Aff-BERT, based on fine-tuning the

pretrained BERT model. We demonstrated in experiments that Aff-BERT substantially

outperforms other methods and generalizes better to unseen events.



CHAPTER�4

IMPROVING�AFFECTIVE�EVENT�RECOGNITION�BY�
USING�DISCOURSE-ENHANCED�SELF-TRAINING

In�Chapter�3,�we�demonstrated�that�existing�lexical�resources�for�affective�event�recog-

nition�can�not�generalize�well�for�affective�event�recognition.�To�overcome�their�limitations,�

we�developed�a�deep�learning�model,�Aff-BERT,�which�leverages�the�power�of�pretrained�

language�models� to�better� capture� the� textual� semantics�of� an� event.�We� conducted� ex-

periments� to� fine-tune�Aff-BERT�over� the�gold� labeled�data,�and� showed� that�Aff-BERT�

achieves�much�better�performance�than�existing�lexical�resources�and�strong�baselines�such�

as�AEKB,�and�Aff-BERT� trained�on� the�AEKB.�This� indicates� that� fine-tuning�Aff-BERT�

can�produce�a�strong�affective�event�classifier�on�a�relatively�small�amount�of�gold�labeled�

data.�The�strength�of�this�model�led�us�to�wonder�whether�classification�performance�could�

be�further�improved�by�semi-supervised�methods�that�introduce�more�training�data.�One�

classical�semi-supervised�method�is�self-training,�which�improves�a�classifier�by�using�its�

own�predictions� on�unlabeled� instances� to� generate�more� training�data.�However,� self-

training�has�limitations.�Learning�from�one’s�own�predictions�could�simultaneously�learn�

from�one’s�own�mistakes,� leading�to�error�propagation� in�the�future.�Furthermore,�using�

the�most�confident�labels�may�not�improve�recall�much�because�the�new�training�instances�

are� similar� to� the� old� ones,� while� using� less� confident� labels� often� decreases� precision�

because�the�training�data�becomes�noisier.

To�address�self-training’s�limitations,�we�introduce�a�novel�method,�Discourse-Enhanced�

Self-Training�(DEST),�to�further�improve�Aff-BERT�with�unlabeled�data.�DEST�is�similar�to�

self-training�in�that�it�iteratively�generates�new�labeled�data�to�improve�the�classifier.�The�

key�difference� is� that�DEST� combines� the� classifier’s�predictions�with� information� from�

local�discourse�contexts�to�robustly�assign�labels�to�new�training�instances.�The�key�to�this
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approach is to exploit unlabeled event phrases that occur near coreferent sentiment expres-

sions. Specifically, we extract event phrases that are followed by a sentiment expression in

a syntactic structure that suggests it likely refers to the event. For example, consider the

statements below:

a) I got engaged today. It is exciting.

b) I got divorced. This is terrible.

In Example a), “it” co-refers with the act of getting engaged, so the positive sentiment of

“exciting” applies to that event. In Example b), “this” co-refers with the divorce event, so

the negative sentiment of “terrible” can be propagated to it. Our algorithm then predicts the

affective polarity for unlabeled events using both the classifier’s prediction for the event

phrase as well as the associated sentiment expressions. We show that Discourse-Enhanced

Self-Training improves both recall and precision for affective event classification.

4.1 Harvesting Events with Coreferent
Sentiment Expressions

The key idea behind our approach is to create a self-training method that uses not

only the classifier’s own predictions but also a secondary source of information derived

from local discourse contexts. Intuitively, the secondary signal confirms the classifier’s

prediction when they agree, or creates doubt about the classifier’s prediction when they

disagree. By taking both signals into account, we can assign high-quality labels to a diverse

set of new examples in each cycle, which creates a more robust self-training process.

From this point on, we turn our attention to Twitter because it is a vast resource that

we can query to acquire a large set of event phrases in specific contexts, and where people

share their everyday experiences. We acquire our unlabeled data by searching for event

phrases on Twitter that occur with coreferent sentiment expressions. We use a heuristic to

identify sentiment expressions that are likely to refer to an event in the preceding sentence.

Specifically, we look for sentiment expressions that begin a sentence and match one of the

two forms shown in Table 4.1.

Table 4.1: Syntactic patterns of coreferent sentiment expressions.

1. {this/that/it/I}, {be/feel/seem}, {ADJ+}
2. {this/that/it}, {be/feel/seem}, {ADJ* N+}
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In the patterns, the head adjective (ADJ) or head noun (N) is a sentiment term with

positive or negative polarity. The sentiment expression cannot be followed by any events

in its sentence and must follow a sentence that contains at least one event. Given these

restrictions, the pronouns “this,” “that,” and “it” are likely referring to an event in the

previous sentence, although this is not guaranteed. Similarly, the pronoun “I” is referring

to the speaker who is likely expressing their sentiment toward something that was just

mentioned, which is often (though not always) the prior event. We will call the phrases

that match these patterns coreferent sentiment expressions because they express a sen-

timent that refers back to something mentioned earlier. Examples of coreferent sentiment

expressions include “this is great,” “I felt terrible” and “It is great news.”

We found that the two syntactic constructions listed in Table 4.1 typically convey a sen-

timent about an event in the prior sentence, but this heuristic is not perfect. For example,

the sentiment sometimes applies to an object in the prior sentence and not an action. One

example is the statement: “I bought a book. It is excellent,” which describes an excellent book

and not an excellent buying experience. Nevertheless, the self-training algorithm will use

this data in the aggregate, so some noise can be tolerated. In the following sections, we

describe each step of the Twitter data harvesting process.

4.1.1 Creating Sentiment Queries

We create an initial set of sentiment queries for Twitter by instantiating the syntactic

patterns shown in Table 4.1 with 3,010 subjective adjectives and 2,023 nouns from the

MPQA lexicon [208]. We also use the 1,147 words labeled with “anypos” in MPQA as an

adjective and a noun to instantiate the patterns. For example, given the adjective “good,”

we exhaustively generate all phrases that match the regular expression: “{that/this/it/I}

{be/feel/seem} good,” such as “That is good” and “I feel good.”

We then download tweets that contain these phrases. If the context around the sen-

timent expression satisfies the constraints mentioned earlier, then we extract the events

in the previous sentence as affective event candidates. Table 4.2 shows three tweets that

were retrieved with queries for the sentiment expressions in italics along with the events

extracted from each tweet.
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Table 4.2: Examples of harvested tweets and extracted events.

Tweet1: I rode a horse today! That was fun.
Events: hI, ride, horse, -i

Tweet2: Someone was abducted on the street right next to mine. It’s terrifying.
Events: h-, abduct, someone, on streeti

Tweet3: Disrupting my daily routine and alienating many people. I am angry !
Events: h-, disrupt, my daily routine, -i, h-, alienate, people, -, -i

Tweet4: Children are separated from their parents. It is crime!
Events: h-, separate, children, -, from their parenti

Tweet5: We did a drink Friday together! That was a blast!
Events: hwe, do, drink, -i

4.1.2 Creating Event Queries

Next we can use the extracted events to harvest more tweets with coreferent sentiment

expressions. Searching for phrases that match an event is not trivial. The Twitter API only

supports exact phrase matching but an event is represented as a tuple (hAgent, Predicate,

Theme, PPi). Furthermore, the components in an event tuple contain lemmatized head

words. We want to construct queries that will retrieve phrases containing morphological

variations (e.g., “drove” for the lemma “drive”) as well as modifiers preceding heads (e.g.,

“a fancy car” instead of just “car”). To circumvent this problem, we generate text spans for

each event tuple from the original tweets that the event was extracted from. The text span

contains all words between the leftmost word and the rightmost word of the tuple. Then

we apply the PrefixSpan algorithm [167] to compute the frequency of all subsequences of

words. For each event tuple, we create queries from the 20 most frequent subsequences

that contain all words in the event tuple. For example, hhe, drive, cari might yield queries

such as “he drove a fancy car,” “he has driven my car,” etc.

After we retrieve tweets that match an event query, we apply the same constraints as

before but in reverse: the sentence that mentions the event must be followed by a coreferent

sentiment expression matching our patterns. In this step, we assume that unknown terms

in the ADJ or N position of the patterns are sentiment-bearing, allowing us to identify
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new sentiment expressions. We found this heuristic to be quite good and produce some

interesting affective terms that are not in the MPQA lexicon. For example, the new negative

terms include “cyberbullying,” “yucky” and “gutless”, and the new positive terms include

“record-breaking,” “reassuring” and “heart-warming.” Table 4.3 shows four tweets that were

retrieved with queries for the events (searched event) along with the new sentiment terms

in italics.

4.1.3 Iteratively Harvesting Events

The first step of data harvesting creates sentiment queries from the MPQA lexicon and

extracts new event phrases. The second step of data harvesting creates event queries and

extracts new sentiment phrases. Given these building blocks, we create a cycle that alter-

nates these steps, iteratively harvesting new events with associated sentiment expressions.

In each iteration, we form queries for sentiment or event phrases that have frequency � 5

and have not been used as queries previously. We download 5,000 tweets for each event

query and 1,000 tweets for sentiment expression query. Many tweets retrieved by event

queries contain no coreferent sentiment expression, so we downloaded more tweets for

event queries to increase the number of matched instances. Finally, we discard retweets

and duplicated tweets. In this work, we treat a tweet as duplicated if it shares 6 or more

consecutive words with another tweet. To be consistent with the criteria used for affective

events in the AEKB [47], we also discarded events that did not contain a first-person

Table 4.3: Examples of harvested tweets and new sentiment terms (in italics).

Searched Event: hnothing, be, right, -i
Tweet: It’s been one of those days where nothing is right. I feel yucky.

Searched Event: h-, cancel, my flight, without noticei
Tweet: My flight’s been canceled without any notice. This is bullshit.

Searched Event: h-, hit, 100kg, on bench pressi
Tweet: Just hit 100kg on the bench press! That is record-breaking!

Searched Event: hI, watch, sunrise, from summiti
Tweet: I just watched the sunrise from the summit... It’s breath-taking!
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reference or a family member term. While prior work [47] also discarded events that only

mentioned other people, we did not apply this constraint due to the difficulty of recogniz-

ing people terms in tweets. We ran the harvesting process over Twitter for 4 iterations, after

which few new events were found. The final dataset contains 2,068,600 unique event tuples

and 15,494 unique sentiment expressions. Many of these events are potentially affective,

but their polarities will be determined in later steps.

4.2 Discourse-Enhanced Self-Training
We designed an enhanced self-training algorithm that learns from unlabeled data by

iteratively labeling new instances using both the affective event classifier’s prediction as

well as polarities associated with the event’s discourse contexts. We will refer to this method

as Discourse-Enhanced Self-Training. Figure 4.1 illustrates how an unlabeled event is scored

during Discourse-Enhanced Self-Training.

Figure 4.1: Illustration of affective polarity scoring in Discourse-Enhanced Self-Training.
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Specifically, each event is paired with the set of coreferent sentiment expressions that

occurred with it in our Twitter dataset. For example, the event “hI, not pass, my history test,

-i” is extracted from tweets such as:

1. Can’t believe I didn’t pass my history test AGAIN! That is tiring!

2. Ugh, I didn’t pass my history test! It is unreasonable! You don’t how hard they made it.

3. Just found out I didn’t pass my history test. This is success in the making, right?

So the input to the joint scoring function contains the event and also coreferent sentiment

expressions such as “That is tiring,” “It is unreasonable ” and “This is success” and so on.

The affective event classifier is applied to the event and generates a probability distri-

bution over the three polarity values. In parallel, an external sentiment classifier produces

a probability distribution over the polarity classes for each of the coreferent sentiment

expressions. The probability distributions are then averaged to produce an average prob-

ability distribution for the set of sentiment expressions as a whole. Finally, a joint scoring

function takes the two probability distributions and produces a joint probability distribu-

tion for the event. The polarity with the highest probability is used as the event’s label.

Algorithm 1 outlines the procedure in detail. The process begins with a gold labeled

set of events EL, a set of unlabeled events EU where each event ei in EU is paired with

a set of coreferent sentiment expressions CSEi, an external sentiment classifier, and two

confidence thresholds qjnt and qneu. Each iteration starts by training the event classifier

on EL. The event classifier is then applied to every unlabeled event ei in EU to produce an

event score vector sei . Next, the sentiment classifier is applied to every coreferent sentiment

expression cse in CSEi to produce a polarity distribution. Then the polarity distributions of

all cse in CSEi are averaged to produce an average polarity distribution s̄CSEi for the whole

set CSEi. The joint scoring function then produces a joint score vector sjnti
for the event ei

by the equation below:

sjnti
=

sei � s̄CSEi

sei · s̄CSEi

, (4.1)

where � denotes element-wise multiplication and · denotes dot product. Conceptually the

joint scoring function gives equal weight to the event classifier and the sentiment classifier

in the final decision of the label. Finally, each event ei is assigned the polarity with the

highest value in sjnti .
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Algorithm 1: Discourse-Enhanced Self-Training
Input:

EL A set of labeled events
EU A set of unlabeled Events, where each event ei has an associated set of

coreferent sentiment expressions CSEi
qjnt Confidence threshold for joint polarity scoring
qneu Confidence threshold for neutral polarity labels
SC An external sentiment classifier
AEC The affective event classifier being trained

1 while EU is not empty and not maximum iteration do
2 Train the affective event classifier AEC over EL
3 For each ei e EU , apply AEC to get an event score
4 For each ei e EU , apply the sentiment classifier SC to each cse e CSEi and

compute the average cse sentiment score
5 Compute the joint score for each ei e EU by Eqn. 4.1
6 Label new events (Ejnt) based on the joint scores and qjnt
7 Label additional neutral events (Eneu) based on the event scores and qneu
8 Update EL and EU :

EL = EL [ Ejnt [ Eneu
EU = EU � Ejnt � Eneu

9 end

We generate a set of new labeled events Ejnt by assigning labels to unlabeled events

that have a polarity probability � qjnt based on the joint scores. All other events remain

unlabeled. However, we found that this process labels relatively few events as neutral. This

is because many stereotypically neutral events can be described with positive and negative

contexual polarities and so followed by positive and negative sentiment expressions. For

example, the event “I read a book” can be described as a positive event in certain context

and co-occur with positive sentiment expressions (e.g., “I read a book this afternoon. This was

relaxing.”). It can also be described as a negative event in certain context and be followed

by negative sentiment expressions (e.g., “I read a book this morning. I am feeling tired now.”).

As neutral events can co-occur with positive and negative sentiment expressions, the per-

centage of coreferent neutral sentiment expressions becomes lower, resulting in relatively

low neutral scores. To better maintain the distribution of events over all three polarities,

we also add a new set of events Eneu, which the event classifier predicts as neutral with

confidence � qneu.

Overall, DEST is similar to self-training in that a model learns from its own predictions
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over the unlabeled data. The key difference is that DEST estimates the polarity label for

an event based on two sources of information: 1) the model’s prediction for the event, and

2) the average sentiment score of the coreferent sentiment expressions of the event. The

use of two sources of information makes DEST have certain advantages over self-training

that relies on only one source of information (the model’s prediction). First, the label

generated by DEST is more precise than the label generated by self-training when the

two sources of information agree. Second, DEST could introduce a more diverse set of

newly labeled instances than self-training. Typically, the newly labeled instances intro-

duced by self-training are the instances with the highest model confidence. These instances

are usually similar to the training data with which the model is trained, and so they

provide limited diversity and extra information. On the other hand, DEST could introduce

instances that are more diverse and informative for the model. This is because data that

the model is not very confident about could be assigned high confidence scores and used

as new training data in DEST, due to the effect of the secondary informaton. Consider an

event of which the model prediction score is (Positive = 80%, Negative = 10%, Neutral =

10%) and the average sentiment score of the coreferent sentiment expressions is (Positive

= 70%, Negative = 10%, Neutral = 20%). Given a confidence threshold of 90%, self-training

will not include this event in the new training data. DEST, on the other hand, will include

it as a new positive event in the training set, as the joint score is (Positive = 94.9%, Negative

= 1.7%, Neutral = 3.4%).

Discourse-Enhanced Self-Training needs an external sentiment classifier, so we fined-

tuned a BERT-based model with the gold standard Twitter dataset from SemEval-2017 [162]

following the experiment setups in Section 3.3 and Section 3.4. In our experiments, we set

qneu to 0.9 and qjnt to 0.95 based on the model’s performance over the validation set.

4.3 Gold Dataset Creation
We created a gold standard dataset for affective events from Twitter (Twitter Dataset)

by having two human annotators label 1,500 events that are randomly selected from the

harvested events described in Section 4.1.2 and have a frequency � 5. Each event was

labeled as positive, negative, or neutral using the same criteria defined by prior work [47]

for the AEKB. The pairwise inter-annotator agreement using Cohen’s kappa was .75. The
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two annotators then adjudicated their disagreements to produce the final set of gold labels.

The final dataset contains 435 (29%) positive, 348 (23%) negative and 717 (48%) neutral

events. This new evaluation dataset and the collection of the unlabeled harvested events

are publicly available at https://github.com/yyzhuang1991/DEST.

4.4 Experimental Results
We performed 10-fold cross validation over the gold Twitter Test set, where each of

the 10 runs used 80% of the data (8 folds) for training, 10% of the data (1 fold) for vali-

dation/tuning, and 10% of the data (1 fold) for testing. We compare DEST with a strictly

supervised learning model and a traditional self-training model. During each iteration of

the self-training, the affective event classifier Aff-BERT is applied to each unlabeled event.

Events with polarity score � 0.9 are selected as new labeled data. We chose 0.9 as the

threshold based on the model’s performance on the validation set.

To ensure a rich set of discourse contexts, we only used unlabeled events that (1) had

at least 10 distinct coreferent sentiment expressions and (2) did not include “this,” “that”

or “it” as a subject or object of the event phrase because the event is often vague without

knowing what the pronoun refers to. This resulted in 8,532 events in the unlabeled set.

4.4.1 Results

Table 4.4 reports the performance of three classification models after 10 iterations of

learning with unlabeled data.1 The first row shows the results for Aff-BERT trained only

with gold labeled data, for comparison. Row 2 shows the results for Aff-BERT with self-

training and Row 3 shows the results for Aff-BERT with DEST. From the table we could

see that ordinary self-training produced small gains in both precision (76.5% ! 77.6%)

and recall (75.2% ! 77.2%) as compared to the supervised model with only gold data.

On the other hand, our Discourse-Enhanced Self-Training algorithm performed better. It

improved precision over the supervised model from 76.5% ! to 79.6% and improved recall

from 75.2% ! 78.7%, resulting in a gain of 3.3 absolute points in F1 score (75.7% ! 79.0%).

It also outperformed self-training substantially by 2 absolute points in precision and 2

absolute points in F1 score.

1For both self-training models, no new examples were labeled after 10 iterations.

https://github.com/yyzhuang1991/DEST
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Table 4.4: Results for learning from unlabeled data.

Method Precision Recall F1
Supervised 76.5 75.2 75.7
Self-training 77.6 77.2 77.0
DEST 79.6 78.7 79.0

Figure 4.2 shows the learning curves for each method over the 10 iterations based on

their F1 score. The flat line is the F1 score for Aff-BERT trained with only gold labeled

data. Self-training produced its highest F1 score after the first iteration, then declined

and stayed relatively stable without further improvement. In contrast, the learning curve

of Discourse-Enhanced Self-Training gradually ascends, reaching its peak in iteration 7

and showing signs that it could potentially exceed that peak with more unlabeled data.

Discourse-Enhanced Self-Training produces more robust learning from unlabeled data,

and this general approach could be applied to many other problems that have a secondary

source of information relevant to the task.

Table 4.5 shows the performance breakdown across the three polarities. Discourse-

Enhanced Self-Training improved both precision and recall for all polarities, except the

precision was slightly lower for negative polarity. Most notably, it achieved a 6.0% gain in

Figure 4.2: Learning curves through 10 iterations.
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Table 4.5: Recall and precision across polarities.

Method POS NEG NEU
Precision Recall Precision Recall Precision Recall

Supervised 74.4 71.5 79.0 74.0 76.1 80.1
DEST 81.8 74.8 78.4 80.0 79.4 82.4

recall for negative polarity, and gained 3.3% of recall for positive polarity alongside a 7.4%

gain in precision.

We also generated learning curves for the supervised learner and Discourse-Enhanced

Self-Training when trained over different amounts of labeled data. Figure 4.3 shows re-

sults when using 50% to 100% of the gold training data in increments of 10%. Discourse-

Enhanced Self-Training showed even greater relative improvement over the supervised

learner when only 50% of the gold data was used for training. In addition, when using

about 60% of the gold data, it achieved performance comparable to the supervised learner

trained with 100% of the data.

4.5 Conclusion
This chapter introduces a novel semi-supervised algorithm, Discourse-Enhanced Self-

Training (DEST), to improve affective event classification models. DEST is similar to tra-

Figure 4.3: Learning curves of models with training sets of different sizes.
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ditional self-training as they both leverage unlabeled data and model predictions to itera-

tively improve the classification model. The key difference is that DEST leverages not only

the classification model’s predictions but also a secondary source of information to assign

labels to unlabeled data. Specifically, DEST combines both the affective event classifier’s

prediction and polarities of the coreferent sentiment expressions to generate polarity labels

for unlabeled events. Our experiments show that DEST can substantially improve upon

the supervised learning results. The resulting classification model is substantially more

effective for affective event recognition than previous methods. We also believe that the

general idea behind our enhanced self-training approach could be useful for many other

types of problems where a secondary source of information can be acquired.



CHAPTER�5

IMPROVING�AFFECTIVE�EVENT�RECOGNITION

BY�MULTIPLE�VIEW�CO-PROMPTING

In�Chapter�4,�we�showed�that�the�performance�of�affective�event�classification�models�

is�limited�by�the�amount�of�gold�training�data�and�that�it�is�promising�to�improve�model�

performance�by�generating�more�training�data.�While�successful,�prior�methods�[166,�225]�

generated�training�data�by�mining�events�from�text�corpora�and�assigning�polarity�labels�

with�weakly�supervised�methods.�However,�generating�labeled�events�using�text�corpora�

could�be�challenging�in�practice.�One�major�challenge�is�that�mining�data�by�going�through�

a�large�text�corpus�could�be�inefficient,�as�only�a�small�percentage�of�the�text�corpus�may�

be� relevant.�Secondly,�extracting�data� from� text�corpora�could�be� limited�by� the�compu-

tational�bottleneck�of�applying�a�pipeline�of�NLP� tools� to�a� large� text� collection�and�by�

the�brittleness�of�lexical�pattern�matching.�Given�these�practical�challenges,�we�explore�the�

following�research�question� in�this�chapter:�Could�we�generate�automatically� labeled�affective�

events�without�using�text�corpora?

To� this� end,� we� propose� a� simpler� but� more� effective� method� to� generate� affective�

events�by�prompting�large�language�models.�As�the�method�relies�on�only�language�mod-

els,�there� is�no�need�for�text�corpora.�Specifically,�we�use�one� language�model�prompt�to�

generate�affective�event�candidates,�and�we�introduce�a�Co-Prompting�method�to�automati-

cally�label�these�event�candidates�with�affective�polarity.�The�key�idea�behind�Co-Prompting�

is� to�design� two� complementary� prompts� that� capture� independent� views� of� an� event,�

reminiscent� of� co-training� [21].�Combining� information� from� two�different� views� of� an�

event�produces�labels�that�are�more�accurate�than�the�labels�assigned�by�either�one�alone.

Specifically,�we�acquire�affective�events�in�a�two-step�process:�(1)�Event�Generation,�and�(2)�

Polarity�Labeling.�The�first�step�generates�events�that�are�associated�with�a�set�of�gold
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“seed” affective events. For each seed event, we prompt a language model to generate

sentences where the seed event co-occurs with some new events. Our hypothesis is that

affective events are often preceded or followed by other affective events that are causally

or temporally related. For example, if someone breaks his/her leg, a prior event might

describe how it happened (e.g., “fell off a ladder” or “hit by a car”) and a subsequent event

might describe the consequences (e.g., “could not walk” or “rushed to the hospital”).

The second step collects independent views of the polarity for each new event using

two complementary language model prompts. One prompt provides an Associated Event

View, which considers the polarities of the known (labeled) events that co-occur with the

new event during Event Generation. The second prompt provides an Emotion View, which

considers the polarity of the most probable emotion words generated by a language model

when prompted with the new event. Finally, we combine information from the two co-

prompts to assign an affective polarity label to each new event.

Our experiments show that using these automatically acquired affective events as ad-

ditional training data for an affective event classifier produces state-of-the-art performance

over two benchmark datasets for this task. In addition, the analysis confirms that our

co-prompting method utilizing multiple views yields more accurate polarity labels than

using either view alone.

5.1 Acquiring Affective Events with
Multiple View Co-Prompting

Our research aims to automatically generate labeled affective events to improve classi-

fiers because gold data for affective event classification is only available in limited quan-

tities. Automated methods for data generation offer a cost-effective and practical solution

for improving the performance of affective event classifiers, and also could be used to

rapidly acquire training data for new domains or text genres. Different from previous

methods that perform pattern matching on a large-scale corpus, our method is able to

generate high-quality labeled data by only prompting language models. Our method is

more practical and also yields better classification performance.

Figure 5.1 shows the flowchart for our approach. The process begins with a modest

amount of “seed” data consisting of gold labeled affective events provided as input. The
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Figure 5.1: Flowchart for acquiring affective events with Multiple View Co-Prompting.

first step (Event Generation) uses a language model prompt to elicit events that are asso-

ciated with each seed event. The second step (Polarity Labeling) assigns a polarity label

to each new event using Co-Prompting to assess polarity from two independent views of

the event. Given an event e, the Associated Event View considers the affective polarities of

labeled events that co-occur with e during Event Generation. The Emotion View considers

the affective polarities of emotion words that are generated by an Emotion Prompt given

the event e. Polarity scores produced from these views are then combined to assign an

affective polarity label to the event e.

This process repeats in an iterative fashion, where the newly labeled events are used to

discover more affective events in the next cycle. The process ends when no new events are

generated or a maximum number of iterations is reached.

5.1.1 Event Generation

The Event Generation process begins with a set of gold affective events and produces a

set of new events, many of which we expect to be affective. For each seed event, we create

an Associated Event Prompt of the following form:
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Here are the {POLARITY} things that happened to me today: {EVENT},

where {EVENT} is a placeholder filled by the seed event phrase, and {POLARITY} is a

placeholder filled by the affective polarity of the seed event. We find that this design in

practice can guide a generative language model to complete the sentence by enumerating

other events that are likely to co-occur with the given event on the same day. Intuitively, the

enumeration behavior is encouraged by the colon “:” and comma. The temporal relation is

encouraged by the word “today.” The polarity placeholder, {POLARITY}, encourages the

language model to generate events with the same affective polarity.

For the polarity terms, we used the word “good” for events with positive polarity and

the word “bad” for events with negative polarity. For events with neutral polarity, we

simply used an empty string (i.e., “Here are the things...”).1 We expected that this prompt

would generate some neutral events, but that it would produce positive and negative

events too because people tend to recount events that are interesting or impactful, not

boring and mundane. In fact, we do not expect any of these prompts to be perfect. Our

goal at this stage is to generate a healthy mix of new events across all three affective

polarities (positive, negative, and neutral). The affective polarity for each new event will

ultimately be determined later in the Polarity Labeling step. To be consistent with prior

work on this topic, we represent each event expression as a 4-tuple of the form: hAgent,

Predicate, Theme, Prepositional Phrase (PP)i. To create an event phrase for the language

model prompt, we concatenate the words in the tuple. Below we show three example

prompts initialized with the positive event hI, get, -, in collegei, the negative event hI, cut,

my leg, -i and the neutral event hI, walk, -, in class i:

1. Here are the good things that happened to me today: I get in college,

2. Here are the bad things that happened to me today: I cut my leg,

3. Here are the things that happened to me today: I walk in class,

Note that the resulted event phrase may not be grammatically correct, but our observation

is that this did not cause serious problems for the language model.

We used open-source GPT-2LARGE [157] as the generative language model.2 To obtain

1We found that using some neutral words (e.g., “neutral”) in the placeholder did not work better.

2Code available at https://github.com/openai/gpt-2

https://github.com/openai/gpt-2
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diverse outputs, we let GPT-2 generate 200 sentences for each labeled event.3 For the

sampling method, we used nucleus sampling [77] with 0.9 as the top-p threshold, beam

search with a beam size of 5 and a temperature of 2.0 to encourage diverse generation.

We extracted new events from the sampled sentences to create event tuples, following the

same conventions as earlier work [47, 225]. For the sake of robustness, we selected the

events that occurred with at least 3 distinct seed events as new events for polarity labeling.

To illustrate, one example sentence generated for the event hmy house, burn down, -, -i

is: “..., my mom passed away and my family lost everything.” And the events extracted are hmy

mom, pass away, -, -i and hmy family, lose, everything, -i. We show more examples of extracted

events in Table 5.1. Overall, the generated events are usually related to the seed event in

some way and typically have the same affective polarity (e.g., “I cut my leg” ! {“I fall off

my bicycle,” “I hurt my knee,” ...}), despite some exceptions (e.g., “they take my dog”). For our

purposes, it is perfectly fine that some generated events are loosely associated with the

seed events, because our goal is simply to harvest new affective events, and their precise

relationship to the seed events is irrelevant.

5.1.2 Polarity Labeling with Multiple Views

The next step is to assign affective polarity labels to each new event. We collect affective

information from two prompts that provide independent views of an event: (1) we collect

affective polarity information from the events generated by the Associated Event Prompt,

and (2) we use an Emotion Prompt to generate emotion terms associated with an event.

Finally, we combine the information gathered from these two prompts to assign a polarity

label.

5.1.2.1 Emotion Prompting

To acquire another source of information about the affective polarity of an event, we

prompt a language model to produce emotion terms with associated probabilities for each

event. We design a cloze expression to generate emotion terms associated with an event

expression by prompting the masked language model BERTLARGE. Specifically, we use the

following Emotion Prompt: [EVENT]. I feel [MASK].

3We discarded samples that did not end with a period, since they are usually incomplete sentences.
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Table 5.1: Examples of events generated by the Associated Event Prompt for seed events.

Polarity Seed Event Events Generated by Associated Event Prompt

I cut my leg I fall off my bicycle, I hurt my knee, I wake up at hospital, I break
my rib, I faint, kick me in head, they take my dog, my eye start to
water, I break my ankle, I get in car accident

NEG I not get refund they take my money, kick me out of game, this happen, freeze my
account for hour, I lose money, I get refund, I get angry, ban me,
make decision, I get email

I lose my job I break up with my girlfriend, I not apply, kick me out of house,
arrest me, I go to find out, they try to kill me, I find job, eat my
lunch, dump me, I break down

I walk in class I start to talk to people, I take seat, I reply, professor tell me, my
friend ask me, I take moment, I shake hand, I learn, I sit in front
row, I have to explain, I want to tell story

NEU I close account I call customer service, message say, I click on link, ban me for
day, email tell me, I go, this show me, receive phone call, delete
me, I call bank

I meet someone I get call from them, I get my drink, I lose weight, I chat for
minute, I say something stupid, person tell me, I start to talk, I
talk for long time, they invite me, they respect me

I get in college convince myself, I graduate, I go, I read them, drink coffee, I meet
cool people, watch tv, I learn lot about myself, I move, I find good
job

POS I play match my team win game, I lose, I go to hotel, I work, I go, I go on stage,
I get score, I go to bed, play video game, I get point

I get house I pay my tax, I move out of my apartment, I eat my favorite food,
I get new job, I start to live, I learn, I pay bill, I care, I afford to eat,
I start to look

Specifically, The [MASK] token is a special token used by BERT to represent a blank,

and will be filled by a predicted token. The word “feel” leads the language model to

return words that refer to emotions or other sentiments for the masked token. We expect

that positive events will typically be followed by positive emotions, and negative events

by negative emotions. For neutral events, we expect to see a mix of both positive and

negative emotions because these events can occur in a wide variety of contexts. We used

BERTLARGE [44] as the masked language model.4 We store all generated terms and their

probabilities produced by BERT for later use.

4We also experimented with using GPT-2 to generate emotions, but it was less effective and often produced
sentences rather than emotion words, such as “I break my arm. I feel like this is a real thing.”
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Figure 5.2 illustrates this process for two example events. The top shows the four most

probable terms generated from the event tuple <I, graduate, -, ->, all of which have positive

polarity. The bottom shows the four most probable terms generated from the event tuple

<I, break, my leg, ->. Three of these terms have negative polarity, but the fourth term has

neutral polarity. This example shows that the prompt can produce inconsistent results,

but the probability distribution across all of the generated terms typically captures a fairly

reliable signal.

5.1.2.2 Multiple View Polarity Scoring

We first define scoring functions to determine the most likely affective polarity for

an event from each view independently. Then we present a joint scoring function that

combines the scores from the two views to produce a final affective polarity label.

5.1.2.2.1 Associated Event View. This first view captures the degree to which an

event co-occurs with labeled events of each polarity during the Event Generation step.

Intuitively, we expect that events tend to co-occur with other events of the same polarity.

According to this view, we define the Associated Event Score (SA) of an unlabeled event e

with respect to a polarity label l as:

SA(l | e) =
Â

e0eAEP(e)
I(e0, l)

| AEP(e) | (5.1)

where AEP(e) is the set of labeled events that co-occur with e in the results produced by

Figure 5.2: Examples of the Emotion Prompt.
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the Associated Event Prompt, I(e0, l) is an indicator function with a value of 1 if the polarity

label of e0 is l or zero otherwise, and | · | is the cardinality. Note that a labeled event e0 can

co-occur with e if either (1) e is generated by the prompt when given e0 as input, or (2) e0 is

generated alongside e by the original prompt and e0 was previously labeled (as a seed or

during learning).

5.1.2.2.2 Emotion View. This view captures the polarity of the emotion words gen-

erated by the Emotion Prompt. Based on this view, we define the Emotion Score (SE) for an

unlabeled event e with respect to a polarity label l as:

SE(l | e) =
Â

w2Dl

Pbert(w | EP(e))

Â
l02L

Â
w2Dl0

Pbert(w | EP(e))
(5.2)

where D is a gold dictionary of emotion terms, Dl is the subset of words in D that have

polarity label l, and Pbert(w | EP(e)) is the probability associated with word w produced

by the Emotion Prompt (EP) given event e. In short, Eqn. 5.2 computes a polarity score

for label l by summing the probabilities of all terms generated by the Emotion Prompt that

occur in D with label l. For the gold dictionary D, we collect all of the adjectives and nouns

in the MPQA subjectivity lexicon [208] along with their polarity labels.

5.1.2.2.3 Polarity Assignment. We conservatively assign positive and negative po-

larities to an event only when both SA and SE predict the same polarity. Formally, we label

an event e with polarity l when both scores for l exceed a confidence threshold q as follows:

• if SA(pos | e) � q and SE(pos | e) � q, then e is positive.

• if SA(neg | e) � q and SE(neg |e ) � q, then e is negative.

where q is a hyperparameter. Note that q must be greater than 0.5 to avoid multiple label

assignments to an event.

For the neutral polarity, we found that the emotion scores SE(neu | e) are low in most

cases because the Emotion Prompt tends to generate emotional words even for neutral

events. However, we observed that the Emotion Prompt is more likely to generate a mixed

set of both positive and negative emotion words for neutral events, presumably because

neutral events can occur in both types of contexts. Therefore we assign neutral polarity

in a different manner, by looking for a small difference between the positive and negative

emotion scores. Specifically, we consider an event e to be neutral based on both its neutral
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Associated Event Score SA(neu | e) and the absolute difference between its positive and

negative Emotion Scores, SE(pos | e) and SE(neg | e):

• if SA(neu | e) � q and 1 � |SE(neg | e)� SE(pos | e)| � q, then e is neutral.

As an example, consider an event with SE(neg | e) = 0.5 and SE(pos | e) = 0.4, then

1 � |SE(neg | e) � SE(pos | e)| = 0.9, which indicates that the event is very likely to be

neutral. In our experiments, we set the q value to be 0.9 based on the performance over the

development set.

The outline of our approach is shown in Algorithm 2. In summary, our approach gen-

erates unlabeled events that are associated with labeled events by prompting GPT2 with

the Associated Event Prompt, and then assigns polarities to the unlabeled events based on

two different views extracted from language models.

5.2 Evaluation
5.2.1 Datasets

We conducted experiments over two previously used datasets for affective event clas-

sification: (1) the BLOG dataset constructed by Ding and Riloff [47], which contains 1,490

manually annotated events (20% Positive, 18% Negative and 62% Neutral) extracted from

blog posts, and (2) the TWITTER dataset developed in our prior work [225] (described in

Section 4.3), which contains 1,500 manually annotated events (29% Positive, 23% Negative

and 48% Neutral) extracted from Twitter. We performed 10-fold cross-validation on each

dataset (8 folds for training, 1 fold for development, and 1 fold for testing).

5.2.2 Generating Newly Labeled Events

To generate newly labeled events for each domain (TWITTER and BLOG), we used the

training data as the seed events and ran the process for 15 and 10 iterations, respectively.

We chose these stopping points because they produced around 10,000 new events for

each domain, and we wanted to keep the number of new events manageable. Between

iterations, we added the maximum number of newly labeled events that would maintain

the original data distribution of affective polarities. Figure 5.3 shows the number of new

events acquired for each iteration. Both curves start at around 1,200 because that is the size

of the gold training sets used for seeding. This process ultimately produced (on average,
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Algorithm 2: Labeling Data with Multiple View Co-Prompting

Input: EL A set of labeled events

EU A set of unlabeled events, which is initially empty

Eused A set of events that have been used for

data harvesting, which is initially empty

D A dictionary of emotion terms

q Confident threshold

GPT-2LARGE

BERTLARGE

Output: EL

1 while not maximum iteration do
2 Construct a set of labeled events that have not been used for data harvesting:

Eseed = EL � Eused

3 For each e 2 Eseed, generate the associated events by prompting GPT-2LARGE

with the Associated Event Prompt and store them in EU .

4 For each e 2 EU , extract the Associated Event View information.

5 For each e 2 EU , extract the Emotion View information by prompting

BERTLARGE with the Emotion Prompt and using D.

6 For each e 2 EU , assign polarities based on the Associated Event View, the

Emotion View and the confidence threshold q. Create Enew to store events that

are assigned polarities.

7 Perform the updates below:

EL = EL [ Enew

EU = EU � Enew

Eused = Eused [ Eseed

8 end
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Figure 5.3: Newly labeled events generated across iterations.

across the folds in our cross-validation experiments): 10,636 new events for the TWITTER

domain and 10,800 new events for the BLOG domain.

5.2.3 Affective Event Classification Model

We use Aff-BERT (described in Section 3.3) as our classification model, which is an

uncased BERT-base model fine-tuned on our data that takes an event tuple as input (we

concatenate all of the words into a phrase) and classifies the phrase with respect to three

affective polarities (positive, negative, or neutral). We train Aff-BERT with a weighted

cross-entropy function, which weights the gold and the new (weakly) labeled data differ-

ently: L = LG +lLW , where LG is the loss over the gold data, LW is the loss over the weakly

labeled data, and l is a weight factor. During training, we performed a grid search over all

combinations of learning rates (1e-5, 2e-5, 3e-5), epochs (5, 8, 10), batch sizes (32, 64), and

l values (0.1, 0.3, 0.5). We used the values that performed best over the development set.

5.2.4 Comparisons with Prior Work

We compared our method with several other approaches. Three methods were previ-

ously proposed by our prior work for affective event classification in Chapter 4: 1) the

Aff-BERT model trained only on gold data; 2) Aff-BERT with self-training; 3) Aff-BERT

with Discourse-Enhanced Self-Training (DEST). The latter two methods improve Aff-BERT
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by� providing� additional� weakly� labeled� data.� For� self-training,� Aff-BERT� is� applied� to�

each�unlabeled�event�during�each� iteration,�and�events�with�polarity�score���0.9�are�se-

lected�as�new�labeled�data.5�For�DEST,�we�only�evaluated�it�on�the�TWITTER�dataset�since�

it� is� specific� to� Twitter.� We� also� evaluated� two� general-purpose� methods� for� data�

augmentation:�4)�Back-translation�[176],�which�generates�paraphrases�of�an�input�phrase�

via�machine� translation,� and� 5)�pattern-exploiting-training� (PET)� [172],�which� trains� an�

ensemble�of�language�models�with�multiple�prompts�and�weakly-labeled�data.�For�Back-

translation,� we� produced� one� paraphrase� for� each� event� phrase� in� the� training� set� by�

translating�the�training�event�phrase�from�English�to�German�and�then�from�German�back�

to�English,�using�the�wmt19-en-de�and�wmt19-de-en�machine�translation�models�[135].�We�

then�paired�the�output�paraphrase�with�the�original�event’s�polarity�label.�To�train�PET,�we�

used�BERTBaseUncased�as�the�language�model�and�used�3�prompts:

1. “[EVENT]. I feel .”

2. “[EVENT]. I felt .”

3. “[EVENT]. It was .”

For hyperparameters, we used 1e-5 as the learning rate, 4 as the batch size, and 5 as the

number of training epochs. We selected these values using development data. Since PET

requires unlabeled data, we used 20K events randomly collected from the AEKB lexicon

produced by Ding and Riloff [47] for experiments with the BLOG data, and we used the

8,532 unlabeled events released in our prior work [225] for experiments with the TWITTER

data. The AEKB data can be found at https://github.com/yyzhuang1991/AEKB and the

unlabeled data for TWITTER can be found at https://github.com/yyzhuang1991/DEST.

5.2.5 Experimental Results

Tables 5.2 and 5.3 show our experimental results, including the precision and recall for

each polarity as well as macro-averaged F1 scores. The Aff-BERT row shows the results

when trained over only gold labeled data. The other models exploit weakly labeled data

for additional training.

On the TWITTER data, Co-Prompting outperforms all other methods. We see a 5.6%

absolute F1 score gain compared to Aff-BERT and a 2.3% gain compared to DEST, which

5We chose 0.9 as the threshold based on the model’s performance on the validation set.

https://github.com/yyzhuang1991/AEKB
https://github.com/yyzhuang1991/DEST
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Table 5.2: Experimental results for TWITTER data.

Method Macro POS NEG NEU
F1 Precision Recall Precision Recall Precision Recall

Aff-BERT 75.7 74.4 71.5 79.0 74.0 76.1 80.1
Back-translation 76.4 80.4 69.2 79.2 75.1 75.3 83.4
Self-training 77.0 78.6 69.5 76.8 82.3 77.4 79.8
PET 78.3 78.1 75.6 78.2 81.6 79.2 79.1
DEST 79.0 81.8 74.8 78.4 80.0 79.4 82.4
Co-Prompting 81.3 82.3 76.2 85.9 79.7 79.7 86.1

Table 5.3: Experimental results for BLOG data.

Method Macro POS NEG NEU
F1 Precision Recall Precision Recall Precision Recall

Aff-BERT 77.4 71.7 66.2 78.2 77.2 85.0 87.4
Back-translation 77.9 79.6 66.1 75.5 74.3 85.3 90.0
PET 78.0 78.5 60.2 81.4 76.5 83.8 91.1
Self-training 78.6 76.3 68.3 78.6 76.2 85.5 89.0
Co-Prompting 80.7 81.4 70.1 84.0 75.3 85.4 91.8

is the strongest competitor. Most notably, we see a 3.7% recall gain over DEST for neutral

polarity and a 7.5% precision gain for negative polarity.

On the BLOG data, Co-Prompting also consistently outperforms the other methods.

It surpasses Aff-BERT by 3.3 absolute points in F1 score, and self-training (the closest

competitor) by 2.1 absolute points. In addition, it achieves the highest precision for both

positive and negative polarity.

5.2.6 Impact of Multiple Views

We conducted experiments on the TWITTER data to understand the contribution of

each view for polarity labeling. First, we assessed the contribution of each prompt and its

corresponding view with respect to polarity labeling. Table 5.4 shows the performance of

models trained with events labeled by each view alone and by both of them together. The

macro-averaged precision, recall and F1 scores across polarities are reported. The first row

shows the performance of Aff-BERT with only gold data just for comparison. The next

two rows show the results when using only the Associated Event View or the Emotion

View for polarity labeling. The last row shows the performance of Co-Prompting. For

experiments with only one view, we still used the Associated Event Prompt to generate
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Table 5.4: Impact of multiple views on TWITTER data.

Method Precision Recall F1
Aff-BERT 76.5 75.2 75.7
Emotion View 78.9 78.3 78.2
Associated Event View 79.4 78.9 78.8
Both (Co-Prompting) 82.6 80.7 81.3

new events, but assigned the polarity labels based on a single view (Associated Event

View or Emotion View). Overall, each view performs well on its own and produces better

classification models that outperform Aff-BERT. But Co-Prompting yields a substantially

higher F1 score than either view on its own. Our observation is that the labels for neutral

events are especially noisy without using both scoring functions.

Next, we investigated how and why the polarity labels change when incorporating

both views. Table 5.5 shows the number of labels that are changed correctly or incorrectly

when adding the second view. The table on the top shows labels produced by the Asso-

ciated Event View (AEV) that are changed by Co-Prompting. For example, there are 19

good changes (wrong before, correct now) from neutral to negative (Neu ! Neg) but 8

bad changes (correct before, wrong now). The D column shows the overall net gain in

correct labels. Overall, Co-Prompting has the greatest impact by correctly changing neutral

labels to be positive or negative. This makes sense because the Associated Event View

sometimes had trouble recognizing affective polarity, but the Emotion View specifically

tries to identify emotions for each event.

The table at the bottom of Table 5.5 shows labels produced by the Emotion View (EV)

that are changed by Co-Prompting. Adding AEV has a big impact in the opposite direction:

changing mislabeled negative or positive events to be neutral. Intuitively, this is because

EV can be too aggressive about assigning positive and negative polarity and have difficulty

recognizing neutral events. These results nicely illustrate the power of Co-Prompting:

complementary views have different strengths and weaknesses, and the strengths of one

view can compensate for the weaknesses of the other. And more generally, Table 5.5 shows

that most of the label changes produced by Co-Prompting were more accurate than the la-

bels produced by one view alone, demonstrating that Co-Prompting with complementary

views adds robustness.
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Table 5.5: Counts of labels changed by Co-Prompting. D: Correct - Incorrect. AEV:
Associated Event View. EV: Emotion View.

AEV ! Co-Prompting Correct Incorrect D
Neu ! Neg 19 8 11
Neu ! Pos 24 17 7
Pos ! Neu 33 28 5
Neg ! Neu 18 13 5
Pos ! Neg 3 2 1
Neg ! Pos 2 5 -3

EV ! Co-Prompting Correct Incorrect D
Neu ! Neg 23 7 16
Neg ! Neu 29 14 15
Pos ! Neu 38 24 14
Neg ! Pos 4 3 1
Pos ! Neg 0 1 -1
Neu ! Pos 22 23 -1

5.2.7 Manual Analysis of Polarity Labels

To directly assess the accuracy of the polarity labels assigned by Co-Prompting for the

newly generated events, we asked two people to annotate 200 randomly sampled events

from TWITTER. The annotation followed the same annotation guidelines used to create the

TWITTER and BLOG datasets as defined by [47]. The pairwise inter-annotator agreement

was 89.5% using Cohen’s kappa. The annotators then adjudicated their disagreements.

Table 5.6 shows the accuracy of the labels produced by each view alone and by Co-

Prompting (Both). The overall accuracy is only 83%-84% for the labels produced by each

view alone but 91% for the labels produced by both views. The Associated Event View is

most accurate for neutral labels, whereas the Emotion View is most accurate for positive

and negative labels. These results again confirm the value of complementary sources of

information for labeling data.

Table 5.6: Manual analysis of polarity labels.

Polarity AEV EV Both
POS 50/62 (80.6%) 50/58 (86.2%) 62/68 (91.2%)
NEG 33/40 (82.5%) 43/49 (87.8%) 33/35 (94.3%)
NEU 85/98 (86.7%) 73/93 (78.5%) 87/97 (89.7%)
Overall 168/200 (84.0%) 166/200 (83.0%) 182/200 (91.0%)
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5.2.8 Learning Curves

We produced learning curves to understand the behavior of training with different

amounts of data on the TWITTER domain. Figure 5.4 plots the F1 scores of Co-Prompting

when re-training the classification model with the data generated after every 3 iterations.

The dashed line shows the F1 score of Aff-BERT (using only gold data) for comparison.

The F1 score of Co-Prompting rises steeply after the first 3 iterations, and continues to

improve across later iterations. This graph suggests that running the iterative process even

longer could yield further benefits.

We also investigated the effectiveness of our approach with smaller amounts of gold

seed data. Figure 5.5 shows the performance of Co-Prompting on the TWITTER data when

trained with subsets of the gold data ranging from 50% to 90%. For comparison, we also

show the results for the two strongest competitors, DEST and PET, as well as the Aff-BERT

baseline. Co-Prompting consistently outperforms the other approaches over all training set

sizes. Surprisingly, Co-Prompting trained with only 50% of the gold data achieves the same

level of performance as Aff-BERT using 100% of the gold data. This result demonstrates

that generating labeled events with our co-prompting method can produce a high-quality

classification model even with smaller amounts of gold seed data.

Figure 5.4: Learning curve of Co-Prompting.
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Figure 5.5: Results for different training set sizes.

5.2.9 Behaviors of Language Model Prompts

We also observed some interesting behaviors with the language model prompts. First,

language models can exhibit over-generalization behaviors about some events’ polarity.

For example, GPT-2 repeatedly generated events with the word “throw” (e.g., “throw a

rock,” “throw a shoe”) when the Associated Event Prompt is filled by negative labeled

events. This suggests that GPT-2 strongly associates events of throwing anything with

negative polarity. Secondly, language models prefer generating events associated with a

specific topic. For example, we observed that many generated negative events involved

medical issues, such as “my kidney starts to fail,” “my blood sugar drops” and “my stomach

goes numb.” Using the data generation from language models could potentially cause do-

main drift. Domain drift can also happen when extracting information directly from a text

corpus, but with a neural language model it can be more difficult to understand how or

why it is happening.

5.3 Conclusions
Motivated by the challenges of automatically mining affective events from text cor-

pora, this chapter presents a novel approach for eliciting and labeling affective events by

Co-Prompting with large language models. The key idea of Multiple View Co-Prompting
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is using complementary language model prompts to collect independent views of polarity

information, which can then be used jointly as weak supervision to robustly generate

new affective events. Our experimental results show that labeling with multiple views

is highly effective and that the elicited events substantially improve an affective event

classifier. Finally, we believe that Multiple View Co-Prompting is a general idea that should

be applicable for other data harvesting tasks as well as tasks that elicit information from

language models.



CHAPTER�6

RECOGNIZING�EXPRESSIONS�OF�EMBODIED

EMOTION�IN�NATURAL�LANGUAGE

Most�people� experience� emotions� every�day.�When� emotions� arise,�we�not�only� feel�

them�mentally�but�we�also�experience�them�physically�via�our�body.�Sometimes�an�emo-

tion�evokes�a�visible�physical�reaction.�For�instance,�we�may�clench�our�fists�or�stomp�our�

feet�when�we� feel� angry,� or� raise� our�hands� in� the� air� and�dance�when�we� feel�happy.�

We�may�also�have�physiological�responses�when�we�experience�an�emotion.�For�example,�

we�may� feel�our�heart� racing�or� feel�a�chill�down�our�spine�when�we�get�scared.�Or�we�

may� feel� our� cheeks� flush� when� we� are� embarrassed.� In� general,� the� physical� experi-

ence�of�an�emotion�via�our�body� is� referred� to�as�embodied�emotion� in� the�psychology�

literature� [101,� 151,� 138,� 17],� and� it�has�been� recognized� as� an� important� component�of�

emotional�experiences.�Figure�6.1�shows�examples�of�body�part�references�that�are�and�are�

not�associated�with�embodied�emotions.

Recognizing� expressions� of� embodied� emotion� in� natural� language� is� important� to�

identify� implicit�emotional� states,�which� is�a�major� challenge� in�emotion� recognition� [3,�

127,�126].�For�example,� if�we� read� that�“John� slammed�his� fist�against� the�wall,”�we�would�

infer�that�John�is�angry.�Similarly,�if�Jane�says�“My�hands�sweated�profusely�before�my�presen-

tation,”�we�understand�that�Jane�was�nervous.�In�addition,�recognizing�embodied�emotion�

expressions�could�help�identify�behavioral�traits�and�monitor�problematic�behaviors�such�

as�antisocial�behaviors�[142,�132],�which�are�closely�tied�to�physical�responses�stimulated�

by�negative�emotions.

This�chapter� introduces� the� first�study�on�recognizing�expressions�of�embodied�emo-

tion� in�natural� language.�We� formulate� the� task�as�a�classification�problem� to�determine�

whether�a�body�part�reference�describes�an�embodied�emotion.�We�have�created�a�bench-
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Throughout the whole 
performance, I had some 

serious chills down my spine.

body part spine

emotion frightened

Julie pouted and rolled
her eyes.

body part eyes

emotion annoyed

I often felt my heart racing 
during pregnancy.

body part heart

emotion N/A

John’s face was beet red,
but all that got hurt was

his pride .

body part face

emotion embarrassed

Figure 6.1: Illustration of body part references associated with or not associated with
embodied emotions.

mark dataset, CHEER, which contains 7,300 body part mentions with human annotations

for this task. We conduct extensive experiments to evaluate the effectiveness of multiple

existing emotion classifiers on our dataset and show that they do not perform well at

recognizing embodied emotion expressions.

We also present two methods to automatically produce weakly labeled data for this

task. We develop a pattern-based method that identifies body part words that are syntacti-

cally connected to emotion words through manner expressions. For example, “He slammed

his fist in anger” reveals that “slammed his fist” is an embodied reaction to anger. The second

method identifies instances of embodied emotion based on prompting a large language

model (LLM). Our experiments show that the resulting weakly labeled data can be used

to train an effective classifier and also improve classification performance when combined

with gold data.

6.1 Task Formulation
We propose a new task to recognize expressions of embodied emotion in natural lan-

guage. While emotion can be embodied in one body part, multiple body parts, or even the

whole body, we focus on recognizing expressions of embodied emotion in a single body
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part, and leave other cases for future work. We formulate the task as a binary classification

problem, which classifies a body part word within some context into one of the following

two categories: 1) Embodied Emotion, where the body part is involved in embodied emo-

tion; 2) Neutral, where the body part is not involved in embodied emotion. We define the

task as follows:

Definition: A body part is involved in an embodied emotion if both conditions below are

satisfied:

1) A physical movement or physiological arousal involving the body part is evoked by emotion.

2) The physical movement, if there is any, has no purpose other than emotion expression.

Condition 1 requires that the physical reaction is caused by emotion. This excludes reac-

tions from other causes, such as weak legs after exercising or watery eyes because of aller-

gies. Condition 2 applies to physical movements (not physiological arousals) and requires

that the physical movement has no other purpose. This condition excludes movements

that also aim to accomplish a goal. For example, consider the scenario where a house fly is

annoying someone, so they slam it with their fist. This action is motivated by emotion, but

it is also intended to kill the fly. The set of actions that could be motivated by an emotion is

nearly limitless, and the degree to which an emotion causes an action is often ambiguous.

Our definition of embodied emotion focuses on movements and physiological arousals

that are solely emotional and have no additional goal.

One might wonder if the task could be formulated to identify verbs that indicate em-

bodied emotions (regardless of whether a body part is mentioned), instead of identifying

body parts that are involved in embodied emotions. One of the advantages of focusing on

verbs is that it can cover embodied emotion expressions that do not mention body parts,

such as“I kicked the door after hearing the news” and “She jumped when she saw the spider.”

However, it can introduce several issues. First, verbs tend to be highly ambiguous and are

often used metaphorically. One such case is “The film reviewers tore apart Jack’s performance

in his latest film,” where “tore” is metaphorically used to indicate criticism. Furthermore,

we believe that focusing only on verbs is challenging to operationalize in practice. Nearly

every sentence contains verbs, but only a small fraction of them denote physical human

actions. Most of this data would not be associated with embodied emotions. We also

considered focusing on verbs with lexical semantics that imply a bodily movement (e.g.,



78

kicked). However, we were not able to find a comprehensive list of such verbs, and also

observed many embodied emotion expressions that contained general verbs (e.g., “raised

his eyebrows”). As a result, we focus our first study on recognizing embodied emotion

expressions associated with body parts, and leave these other avenues for future work.

Our task is also contextualized. We identify embodied emotions based on a sentence

and its preceding context because physical reactions can be ambiguous without context.

For example, the phrase “my heart is racing” is likely an expression of embodied emotion

in the context of a scary situation, but not in the context of physical exercise.

6.2 Data Collection
Our first goal was to build a dataset of sentences that mention body part words. We

began by collecting the terms in two online word lists of body part vocabulary.1 Then

we filtered the list by removing multi-word phrases (e.g., “index finger”) and plurals. We

removed multi-word phrases because most of those phrases in the list referred to internal

organs that are rarely discussed and unlikely to be associated with emotions (e.g., “lumbar

vertebrae”). After the filtering step, the final list contains 162 body part words.

Next, we extracted sentences that mention these body parts in the personal blogs that

Ding and Riloff [47] extracted from the ICWSM 2009 and 2011 Spinn3r datasets [90, 91].

This resulted in around 3 million sentences. It is often insufficient to identify embodied

emotion based on one sentence in isolation, so we also kept the three preceding sentences.

For example, in the sentence “My hand is shaking,” the shaking could be due to an emotion

(e.g., nervousness) or a physical disorder (e.g., tremor) depending on the context.

We next performed several preprocessing steps to clean the collected texts. We used

CoreNLP [117] to facilitate this process, such as tokenization and named entity recogni-

tion. First, we observed that the data included a lot of sexual descriptions. Sexuality and

emotions are often intertwined and determining whether physical responses related to

sexual encounters are truly evoked by emotion is challenging, so we decided to exclude

texts with sexual descriptions. Specifically, we discarded sentences that contain words in

the Sexual category of the LIWC lexicon [187]. We also excluded body part mentions (i.e.,

1https://www.collinsdictionary.com/us/word-lists/body-parts-of-the-body and https://www.
enchantedlearning.com/wordlist/body.shtml

https://www.collinsdictionary.com/us/word-lists/body-parts-of-the-body
https://%20www.enchantedlearning.com/wordlist/body.shtml
https://%20www.enchantedlearning.com/wordlist/body.shtml
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did not label them) that occur in contexts that mention multiple people because they are

also frequently romantic situations. Specifically, we excluded a body part mention if the

5-word window around it contains a plural personal pronoun or at least two different

person mentions (personal pronouns or named entities). Note that the 5-word window

is only applied within the sentence that contains the body part mentions, and it is not

applied across sentences. Finally, we ignored body part mentions that are preceded by

a second-person possessive pronoun or a third-person possessive (not pronoun) because

these usually refer to another person (“your eyes”) or a non-human entity (e.g., “the cat’s

head”). We leave for future work the challenge of disentangling emotions and physical

actions in multi-person event descriptions.

Finally, we removed infrequent body parts because they usually refer to very specific

body parts that are rarely associated with emotions (e.g., “epiglottis” and “ulna”). We ex-

cluded body parts that occurred in less than 0.1% of the sentences. This process produced

a final dataset of 868,003 sentences with 56 distinct body parts.

6.2.1 Gold Standard Annotation

We asked two people to produce the gold annotations. An annotation instance is a

body part mention in a sentence with the three preceding sentences as context. The an-

notators produced a binary label (Embodied Emotion versus Neutral) to indicate if the

body part is associated with an embodied emotion, following the definition in Section

6.1. The annotators first annotated 2,600 randomly selected sentences that mention a body

part. If a sentence mentioned multiple body parts, each mention was presented as a sep-

arate instance to annotate. This process produced 2,948 annotated body part mentions.

The pairwise inter-annotator agreement measured by Cohen’s Kappa was 79%, indicating

good agreement. The annotators adjudicated their disagreements to produce the final gold

labels. We used this data as the test set. We then asked the annotators to individually label

more data and we randomly split these instances into a training set and validation set

by the ratio of 7:3. We also made sure that annotation instances that belong to the same

sentence went into the same set.

The complete dataset contains 56 distinct body part mentions and 7,300 annotated

instances, which consist of 1,350 (18.5%) Embodied Emotion and 5,950 (81.5%) Neutral.
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We will refer to this dataset as CHEER (a Collection of Human annotations for Embodied

Emotion Recognition). Table 6.1 shows the frequencies of different body parts in CHEER.

Table 6.2 shows the statistics of the training, validation and test set. And Table 6.3 shows

Embodied Emotion instances in the CHEER data.

6.3 Evaluating Emotion Classifiers
We first conducted experiments to investigate how well existing emotion classifiers can

recognize embodied emotion. We evaluated several classifiers that achieved state-of-the-

art performance on emotion or affect recognition tasks. The first model is SpanEmo [2],

which is based on BERT [44] and trained on the affective tweets in SemEval-2018 [126].

To implement this model, we used the code released by the authors at https://github.

com/hasanhuz/SpanEmo. The second model, which we will refer to as GE-BERT, is a

BERT-base model fine-tuned with the GoEmotions data in [39]. As there was no released

code, we developed code to train a BERT-base model over the GoEmotion dataset and

reported its performance over our dataset. We also evaluated Seq2Emo [79], which is a

Bi-LSTM model. We used the code released by the authors to train Seq2Emo over the

GoEmotions dataset, which can be found at https://github.com/chenyangh/Seq2Emo.

Although Seq2Emo was also reported to achieve state-of-the-art performance over the

Table 6.1: Frequencies of different body parts in the CHEER dataset.

head (953), eye (853), hand (691), face (559), heart (384), foot (306), arm (267), leg (255),
mouth (251), back (201), shoulder (170), finger (168), ear (143), stomach (138), knee (132),
lip (129), chest (129), neck (126), throat (115), nose (111), tooth (104), brain (102), cheek (95),
skin (92), tongue (60), ankle (56), lung (55), hip (48), toe (44), thumb (40), forehead (39),
spine (31), belly (30), nail (29), jaw (29), eyebrow (28), chin (28), palm (28), wrist (27), waist
(25), nerve (25), elbow (22), fist (21), thigh (20), muscle (18), heel (18), rib (15), temple (13),
eyelid (13), bone (12), skull (11), vein (11), calf (10), knuckle (8), abdomen (7), forearm (5)

Table 6.2: Statistics of the CHEER dataset in terms of annotated body part mentions.

Embodied Emotion (%) Neutral (%) Total
Train 578 (19.1%) 2,452 (80.9%) 3,030
Validation 264 (20.0%) 1,058 (80.0%) 1,322
Test 508 (17.2 %) 2,440 (82.8%) 2,948
Total 1,350 (18.5%) 5,950 (81.5%) 7,300

https://github.com/hasanhuz/SpanEmo
https://github.com/hasanhuz/SpanEmo
https://github.com/chenyangh/Seq2Emo
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Table 6.3: Embodied Emotion examples in CHEER. The preceding contexts are shortened
for brevity.

• It was rather chilly outside due to the rain. I was using the comp late night (LOL) and
the comp was downstairs those days back. Kiki came to me and jump onto my lap. I rolled
my eyes and went “Stupid cat.”

• I’m not. You’re not. He came home this morning and as I’m sitting at the dining room
table checking my e-mail, he sits down and tells me he is going to need my social, and all
my names I’ve had in my life. Immediately my throat tightens.

• So, anyway... bad mood yesterday morning. My mom asked if grandma was upset that
Mom and I were spending the day together. She said no and stormed off. When we got
home, she’d been brooding and pouting and stomping her feet as she sulked around the
house with nothing to do.

• “I’ll never let anyone hurt you again. I promise.” She started to shake her head, to deny
it all yet again, but something inside her broke, some wall came tumbling down, and she
was left standing in the ruins. A loud sob raced up the back of her throat, choking her, and
her knees buckled.

• “And?” he prompted, the last of his patience vanishing sharply away. “Well, we ate
together, and then he took the check before I could get to it.” “You let him pay for your
meal?” He felt his eyebrows fly up in astonishment.

• Looking through these pics today brought and smile to my face and tears to my eyes.

• “But he will,” Harry asked, nervously wringing his hands, “He will wake up?” “At the
moment we can not see any reason why he might remain in this condition for any longer
than a week. As long as his condition does not deteriorate then the prognosis is good.”
Zayn crossed his arms, he hated it when people dressed up words.

SemEval2018 dataset, we report the performance of Seq2Emo that was trained over GoE-

motions, as it performs better over our dataset. All these models take a text snippet as input

and generate multi-label emotions. Finally, we evaluated Aff-BERT developed in our prior

work [225], an affective event classifier that takes an event phrase as input and identifies its

affective polarity. In our experiments, all reproduced models achieved performance that is

comparable to the reported performance in the corresponding paper.

These models were trained on different types of input, so we experimented with four

strategies for applying each classifier to instances in our CHEER data. Consider the in-

stance below with the underlined “eyes” as the targeted body part:

Preceding Context: Every step he took echoed throughout the room. He stood in front of me,

empty eyes locked into mine.

Sentence: Then my eyes instantly widened and my mouth dropped open.
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The first two strategies provide full sentences as input to a classifier: a) Multi-sent: the

input is the preceding context concatenated with the sentence that mentions the body part.

b) Sent: the input is just the sentence that mentions the body part.

The next two strategies zero in on the context immediately surrounding the body part

mention: c) Window: the input is the k-word window around the body part mention

(e.g., the 2-word window is “Then my eyes instantly widened”); d) Event: the input is the

event phrase that mentions the body part (e.g., “my eyes widened”). We extract events

from dependency parse trees following the same representation used by Aff-BERT. In all

cases, the instance is labeled as Embodied Emotion if the classifier recognizes the corre-

sponding input as emotional/affective. If the body part is mentioned in multiple event

phrases, we label the instance as Embodied Emotion if any of the phrases is tagged as

emotional/affective by the classifier.

6.3.1 Experimental Results

We present the performance of these emotion classifiers using all four input strategies

in Table 6.4. For SpanEmo, Seq2Emo and GE-BERT, the Window strategy consistently has

a higher macro F1 score than Multi-sent and Sent. For the Embodied Emotion category,

we see that the Window strategy has higher precision but lower recall than the other two

strategies. This is probably because contexts of a smaller scope contain less irrelevant

emotion information such as the emotions of other people. The Window strategy also out-

performs the Event strategy except for SpanEmo, mainly because the Event strategy has

lower recall of Embodied Emotion. This is probably because the emotion classifiers could

not recognize emotion in event phrases. Indeed, Aff-BERT achieves a much higher recall

of Embodied Emotion than other emotion classifiers with the Event strategy, since it is

trained to recognize affective polarity for event phrases. However, its recall of Neutral is

much lower. This is not surprising, because events that are affective are not necessarily

Embodied Emotion. For example, events that describe physical disorder and injury, such

as “My leg feels sore during the exercise” and “I hurt my back,” are affective (negative). But they

are not Embodied Emotion since these physical conditions are not evoked by emotion.

Overall, GE-BERT produces the best macro F1 score of 58.2%. But it only achieves about

30% recall and precision for recognizing embodied emotions. Aff-BERTEvent achieves the
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Table 6.4: Evaluating emotion classification models.

Method Macro Embodied Emotion Neutral
F1 Precision Recall F1 Precision Recall F1

SpanEmo
Multi-sent 26.7 18.1 92.1 30.3 89.0 13.2 23.0
Sent 32.0 18.1 83.9 29.8 86.3 21.2 34.1
Window 37.6 18.4 74.4 29.5 85.4 31.1 45.6
Event 45.2 18.4 53.7 27.4 83.9 50.4 63.0

Seq2Emo
Multi-sent 52.3 21.0 33.3 25.7 84.2 74.0 78.8
Sent 53.7 23.3 22.8 23.1 84.0 91.4 87.5
Window 54.4 28.8 16.7 21.2 84.1 91.4 87.6
Event 51.0 24.7 9.4 13.7 83.3 94.0 88.3

GE-BERT
Multi-sent 52.6 21.6 36.2 27.1 84.5 72.6 78.1
Sent 54.0 23.2 30.1 26.2 84.5 79.3 81.8
Window 58.2 31.0 30.3 30.6 85.6 85.9 85.7
Event 53.5 28.4 14.4 19.1 83.8 92.5 87.9

Aff-BERTEvent 50.3 21.7 56.1 31.3 86.4 57.8 69.3

best F1 score of 31.3% for Embodied Emotion, with a higher recall but lower precision

as compared to GE-BERT. These results demonstrate that embodied emotions cannot be

reliably recognized by existing methods for emotion recognition, which motivates the need

for further research on this topic.

6.4 Producing Weakly Labeled Data
for Embodied Emotions

Our goal was to create a classifier for recognizing embodied emotion expressions. We

produced gold training data, but its amount is relatively small as human annotation is

time-consuming. In this section, we introduce two methods to automatically produce a

large amount of weakly labeled instances. We will later show that this weakly labeled

data can be used to train an effective classifier without any gold data at all, or used in

combination with gold data to further improve classification performance.

6.4.1 Labeling Data Using Dependency Patterns

Our first method produces new Embodied Emotion instances by identifying body part

words that are syntactically connected to an explicit emotion word through a manner
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expression. Specifically, we extract two types of manner expressions using a syntactic

dependency parse :

• Prepositional phrases with “in” or “with” and an emotional head noun (e.g., “My

mouth opened in surprise” or “I clapped my hands with great excitement”).

• Emotional adverb (e.g., “I angrily clenched my fists” or “I impatiently tapped my fin-

ger”).

We observed that emotional manner expressions in the forms above often describe a

physical experience when emotion arises (e.g., “I angrily broke the window”). As a result,

when a body part is syntactically connected to such emotional manner expressions, the

sentence tends to describe the physical experience of emotion via the body part.

For emotional nouns in prepositional phrases, we used all positive and negative nouns

labeled with strong subjectivity (641 nouns in total) in the MPQA lexicon [208]. For emo-

tional adverbs, we leveraged the WordNet Affect lexicon [183], which associates a subset

of words in WordNet [122] with emotions. We extracted the 121 adverbs that are associated

with the 6 basic Ekman’s emotions [50].

Our pattern-based method first extracts sentences that contain a body part word and

one of the emotional manner expressions described earlier. We create an Embodied Emo-

tion instance if a body part word is connected to an emotional manner expression matching

one of the dependency relation patterns illustrated in Figure 6.2. In practice, we used

CoreNLP [117] to obtain the dependency parse for a sentence. Finally, we remove the

emotional manner expression from the sentence so that the classifier cannot use it when

learning to recognize embodied emotions.

6.4.2 Labeling Data by LLM Prompting

The pattern-based method is not able to harvest Neutral Instances. In addition, the

diversity of the harvested instances may be limited because some body parts rarely co-

occur with the emotional manner expressions. To overcome these issues, we also produced

new labeled instances by prompting a large language model (GPT3.5). Specifically, we

construct a template with an instruction and input placeholders. Given an input instance,

we fill the input placeholders with the body part and the sentence that mentions it (see an

example in Figure 6.3) and feed it to the language model. We then assign the label based
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Figure 6.2: Dependency relation patterns. Under each pattern, an example that matches
the pattern is shown. E-Prep: a prepositional phrase with emotion head noun. E-Adv: an

emotion adverb.

Figure 6.3: Example prompt for GPT3.5. Input placeholders are wrapped by boxes in red.

on the yes-or-no answer. Note that the preceding sentences are not used in the prompt, as

we found that using them hurt performance.

6.4.3 Weakly Labeled Dataset

We applied both methods to the subset of the 868,003 sentences in Section 6.2 that

were not labeled by the annotators. The pattern-based method produced 7,162 Embodied

Emotion instances. For the prompting method, we used GPT3.5 because it achieved the

best zero-shot performance (see Section 6.5.1). We first applied the prompting method

to collect 7,000 Embodied Emotion instances. We chose the number of 7,000 to make it

comparable to the size of the data generated by the pattern-based method. Up to this

point, the two methods generated 14,162 Embodied Emotion instances. We then continued

to generate Neutral instances using the prompting method (note that the pattern-based
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method cannot generate Neutral instances). To maintain a distribution of 20% Embodied

Emotion and 80% Neutral, we produced 56,648 Neutral instances with the prompting

method.

6.5 Experimental Results
We conducted experiments with classification models trained on weakly labeled data,

gold labeled data, or both. We also present results for zero-shot prompting with LLMs as

a baseline comparison. For the evaluation metric, we report the macro-averaged F1 score

over the test set, as well as Precision, Recall and F1 for each class.

Our classification model is based on fine-tuning the pretrained BERT model [44] with

the base-uncased version. Given an input instance, we concatenate the preceding sentences

and the sentence that mentions the body part, and insert the CLS token between them. We

pass this to BERT and get its last-layer token embeddings. Finally, we produce an embed-

ding for the body part word by averaging the embeddings of its leftmost and rightmost

tokens, and then feed it through a linear classification layer to predict the label. For the

sake of brevity, we will refer to the classification model as the Embodied Emotion Classifier

(EEC).

6.5.1 Baselines and Gold Supervision

Large language models (LLMs) have shown impressive zero-shot performance on un-

seen tasks. So as a point of comparison, we evaluated the performance of several LLMs

for zero-shot prompting, including Llama-2-70B [194], Falcon-180B [143] and GPT3.5. Fig-

ure 6.3 shows the prompt template that we used. In our preliminary study, we also exper-

imented with few-shot prompting. However, we found that few-shot examples produced

worse performance in our task.

The first three rows of Table 6.5 show the zero-shot prompting performance. The best

model is GPT3.5, which achieves a macro F1 score of 70.2%. The highest F1 score for Em-

bodied Emotion, however, is only 53.5%. This indicates that all models struggle to reliably

recognize embodied emotions. The last row of Table 6.5 (EECgold) shows the performance

of EEC trained with the gold training data (see Section 6.5.3), for comparison. We see that

the supervised learning model achieves an F1 score of 83.5%, substantially outperforming
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Table 6.5: Zero-shot prompting and gold training results.

Method Macro Embodied Emotion Neutral
F1 Pre Rec F1 Pre Rec F1

Llama-2 43.7 23.1 95.3 37.1 97.2 33.9 50.2
Falcon 65.8 36.8 79.1 50.2 94.3 71.6 81.4
GPT3.5 70.2 44.0 68.3 53.5 92.5 81.9 86.9
EECgold 83.5 73.2 72.1 72.6 94.2 94.5 94.4

the zero-shot prompting results. Compared to the best large language model, GPT3.5, the

supervised learning model has a substantially higher precision by 29.2 absolute points and

a slightly higher recall by 3.8 absolute points for Embodied Emotion.

6.5.2 Weak Supervision Results

Next, we train EEC using only weakly labeled data. We explored different sets of

weakly labeled Embodied Emotion instances. Specifically, we trained EEC using:

• EPAT : The Embodied Emotion instances (7,162) labeled by the pattern-based method.

• ELM : The Embodied Emotion instances (7,000) labeled by the LM-based prompting

method.

In experiments, we use the Neutral instances generated by the prompting method, de-

noted by NLM . In each experiment, we randomly selected instances from NLM to enforce

a distribution of 20% Embodied Emotion and 80% Neutral (to approximately match the

gold distribution). For each set of weakly labeled data, we then randomly selected 2,000

instances for validation and used the rest for training. For the hyperparameters, we set

the maximum sequence length in BERT to be 256 and the batch size to 16. We also used

the AdamW optimizer with a linear schedule and a warmup rate of 0.1. Before gradient

descent, we clipped the gradient norm using the threshold of 1.0. We observed in our early

experiments that varying the number of training epochs and the learning rate did not have

a significant impact. So we trained the model for 10 epochs with a learning rate of 1e-5 for

all experiments.

Table 6.6 presents the results averaged across three runs. The first row shows the per-

formance of zero-shot prompting with GPT3.5 once again, for the sake of comparison.

Rows 2 to 6 show the performance of models trained with different sets of weakly labeled

data. All of these models outperform zero-shot prompting. The EPAT model achieves a
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Table 6.6: Results with weakly labeled data only.

Method Macro Embodied Emotion Neutral
F1 Pre Rec F1 Pre Rec F1

GPT3.5 70.2 44.0 68.3 53.5 92.5 81.9 86.9
EEC with
EPAT 71.5 68.0 40.6 50.8 88.6 96.0 92.2
ELM 74.7 52.4 69.2 59.6 93.1 86.8 89.9
ELM ⇥ 2 74.5 53.3 66.6 59.2 92.7 87.7 90.1
EPAT [ ELM 79.3 62.1 71.1 66.3 93.8 91.0 92.4

EECgold 83.5 73.2 72.1 72.6 94.2 94.5 94.4

macro F1 score of 71.5% , while the ELM model achieves 74.7% F1 score. For the Embodied

Emotion class, the EPAT model has higher precision but the ELM model has higher recall.

This suggests that the EPAT data is more precise while the ELM data is more diverse.

Next, we tried adding more training data. The ELM ⇥ 2 row shows results when using

twice as many Embodied Emotion instances (14,000) labeled by the prompting method,

and twice as many Neutral instances. This model produces a macro F1 score of 74.5%,

which is comparable to the ELM model. This suggests that the value of this weakly labeled

data source has maxed out.

Our next experiment trains EEC using both types of weakly labeled data together

(EPAT [ ELM). This training set contains 14,162 Embodied Emotion instances, with a cor-

responding balance of Neutral instances. Table 6.6 shows that training with both sets of

data together produces a substantially better classifier, resulting in an F1 score of 79.3%.

Importantly, note that training with 14k instances produced by two different methods

yields much better results than training with 14k instances produced by the prompting

method alone. These results suggest that the instances produced by the two methods are

complementary.

The bottom row of Table 6.6 again shows the result of the model trained with gold

data, for easy comparison. The model trained with only weakly labeled data (EPAT [ ELM)

performs nearly as well as the model trained with gold supervision (just 4.2 points lower

in F1 score). We conclude that an embodied emotion classifier can be effectively trained

using only weakly labeled data.
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6.5.3 Exploiting Both Gold and Weakly Labeled Data

We also investigated whether the weakly labeled data could provide additional benefits

when combined with gold labeled data. So we fine-tuned EEC using both the gold train-

ing data and the weakly labeled data together. Specifically, we used the best performing

weakly labeled data: negative examples from NLM and positive examples from EPAT [ELM.

We used EEC fine-tuned with only gold data for comparison. During training, we optimize

the model with respect to the weighted cross entropy loss: L = Lgold + lLweak, where Lgold

is the loss over the gold data, Lweak is the loss over the weakly labeled data and l is a

hyperparameter. For the number of training epochs, we tried 5 and 10. For the learning

rate, we searched through the set of (1e-5, 2e-5, 3e-5). For the weight hyperparameter l,

we searched through the range from 0.1 to 1.0 with an increment of 0.1. We then selected

the hyperparameters that performed the best over the gold validation set.

Table 6.7 shows the model performance averaged across three runs. The model trained

with only gold data (row 1) yields a macro F1 of 83.5%. When the weakly labeled data

is added (row 2), the model improves to achieve an F1 score of 85.4%. This improvement

is mainly due to a large increase of 7.4 points in recall of Embodied Emotion (72.1% !

79.5%). Overall, the addition of the weakly labeled data helps the model recognize many

more instances of embodied emotion with nearly the same precision.

6.6 Analysis
We present several analyses to better understand the behavior of our embodied emo-

tion classifier.

In Section 6.5.3, we showed that combining the gold training data with weakly labeled

data improves the performance of our classifier (EECgold+weak in Table 6.7). So we further

investigated how the different sources of weakly labeled data (ELM and EPAT) impact the

model. Table 6.8 shows the performance when we remove one source at a time. Removing

Table 6.7: Using gold and weakly labeled data together.

Method Macro Embodied Emotion Neutral
F1 Pre Rec F1 Pre Rec F1

EECgold 83.5 73.2 72.1 72.6 94.2 94.5 94.4
+weak 85.4 72.9 79.5 76.1 95.7 93.9 94.7
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Table 6.8: The effects of removing EPAT or ELM from the weakly labeled data, one at a
time.

Method Macro Embodied Emotion Neutral
F1 Pre Rec F1 Pre Rec F1

All 85.4 72.9 79.5 76.1 95.7 93.9 94.7
- EPAT 83.9 72.3 74.9 73.5 94.8 93.9 94.3
- ELM 84.1 71.7 76.3 73.9 95.0 93.7 94.3

either source decreases performance, particularly on the recall for embodied emotions

which drops from 79.5% down to 74.9% without EPAT or to 76.3% without ELM. These

results reinforce the earlier observation that the weakly labeled data produced by the two

different methods seem to be complementary and so using them together is beneficial.

Some body parts occur much more frequently than others, as shown in Table 6.1. We

expect the classifier to generalize across body parts to some degree, but some body parts

are fundamentally different than others (e.g., eyebrows versus spine) so we also expect

substantially different language around different body parts. We did an analysis to see

how the amount of training data for a specific body part correlates with performance on

instances of that body part. We partitioned the 55 body parts into two groups: 27 high-

frequency body parts with � 20 training examples and 28 low-frequency body parts with

< 20 training examples. Figure 6.4 plots the F1 score for each body part on the y-axis,

based on the performance of the EECgold+weak model in Table 6.7. Overall, there is a strong

correlation between training frequency and performance: most high-frequency body parts

show high F1 scores, with a few exceptions. The low-frequency body parts typically have

only one or a few instances in the test set so their performance is volatile, but most perform

poorly. This analysis strongly suggests that producing additional training data for low-

frequency body parts would likely further improve our model.

Finally, we manually analyzed the errors of the best classifier in Table 6.7 (EECgold+weak)

and categorized them into two types. The first error type is false negative Embodied

Emotion. For most cases of this error, we suspect the classifier failed because it cannot

recognize the causal relationship between an emotional experience in the preceding con-

text and the physical reaction. We show two examples in the upper portion of Table 6.9. For

instance, “lip” in (a) is involved in embodied emotion as the biting results from the negative

conversation in the preceding context. The second error type is false positive Embodied
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Figure 6.4: F1 scores based on body part frequency.

Table 6.9: Error cases.

False Negative Embodied Emotion

(a) He glared up at Ianto. “Thought I told you I didn’t want to see your face.” Ianto bit
his lip.

(b) The tragedies that I had brought to my family and friends broke into fragments and
stabbed me, as though they were taking revenge ... My chest began to tighten ...

False Positive Embodied Emotion

(c) The doctor there told me, “you are having a heart attack even as we speak.” My heart
arrested twice, I was shocked four times.

(d) Eames choked and gasped for air, his head already pounding from where he hit the
other man.

Emotion. Most cases of this error mention body parts involved in physical disorders. The

bottom portion of Table 6.9 shows two examples. Polysemy may explain why the classifier

is confused by many of these cases. For example, in (c) the word “shocked” refers to an

electrical shock (presumably defibrillation), but it also commonly refers to a reaction of

surprise. Similarly, in (d) the word “gasped” simply refers to sharp breathing in this case,

but it commonly refers to an emotional response as well.

6.7 Conclusion
This chapter presents the first study on recognizing expressions of embodied emo-

tion in natural language. We first created a dataset that contains 7,300 body part men-

tions with human annotation for this task, which can be found at https://github.com/

https://github.com/yyzhuang1991/Embodied-Emotions
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yyzhuang1991/Embodied-Emotions. We then performed extensive experiments to show

that this task is challenging for existing emotion recognition methods. Two methods were

introduced to automatically produce a large set of weakly labeled instances, including one

pattern-based method that extracts manner expressions with explicit emotional words,

and one prompting method that exploits a large language model. We showed that the

weakly labeled data can be used to train an effective embodied emotion classifier, and that

combining it with gold data yields a better classifier than using gold data alone.

https://github.com/yyzhuang1991/Embodied-Emotions
https://github.com/yyzhuang1991/Embodied-Emotions


CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This dissertation presents research on learning two types of implicit affective expres-

sions that are common and critical for affective text analysis. The first type of implicit

affective expressions is affective events, which refer to events that impact most people in

a positive way or negative way. For example, the event “I graduate with a PHD degree”

is positive and the event “I did not pass my exam” is negative for most people. The

second type of implicit affective expressions is embodied emotions, which refer to physical

responses in our body when emotion arises. For example, we often clench our fists when

we are angry and throw our hands in the air when we are excited. This chapter gives

a summary of research contributions presented in this dissertation, and then discusses

future research directions based on this dissertation.

7.1 Research Summary and Contributions
In Section 1.3 of Chapter 1, this dissertation presents two research claims. In this section,

I will revisit the two research claims and show that they are supported by the results

demonstrated in this dissertation.

The first research claim focuses on the task of affective event recognition and is shown

below:

Claim 1: Accuracy for affective event recognition can be improved with deep learning
models that exploit novel semi-supervised algorithms including Discourse-Enhanced
Self-Training and Multiple View Co-Prompting.

In Chapter 3, I first identified several limitations of previous approaches that developed

lexicons for affective events, including: 1) lexicons of affective events do not generalize

well to unseen events and 2) the quality of polarity labels in these lexicons is not high

in some cases. To measure these limitations, we introduced a new dataset for affective

events, TWITTER, and evaluated over it the largest existing lexicon of affective events,
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AEKB. Experiments demonstrated that only 66% events in TWITTER are found in AEKB,

and AEKB only achieves a macro-F1 score of 65.2% over these events. In order to address

these limitations, I developed a deep learning model, Aff-BERT, based on fine-tuning the

pretrained language model BERT. Experiments on TWITTER demonstrated that Aff-BERT

substantially outperforms other methods and generalizes better to unseen events.

The performance of Aff-BERT is potentially limited by the small amount of available

training data. In Chapter 4, I presented the Discourse-Enhanced Self-Training (DEST) method

to improve Aff-BERT with weakly labeled data. DEST is motivated by the observation

that the polarity of an event is often indicated by the sentiment of coreferent sentiment

expressions following the event (e.g., “I got COVID-19. I feel terrible.”). To generate weakly

labeled events, DEST assigns a polarity label to an event based on: 1) the prediction of a

classifier (e.g., Aff-BERT) that is trained on the training set, and 2) the average polarity

of the coreferent sentiment expressions of the event. Experiments over the TWITTER data

demonstrate that Aff-BERT trained with DEST outperforms Aff-BERT with only gold data

and Aff-BERT trained with traditional self-training.

Chapter 5 introduced another semi-supervised algorithm, Multiple View Co-Prompting,

to improve affective event classifiers. Different from DEST, which harvests weakly labeled

data from a text corpus, Multiple View Co-Prompting is a simpler but more effective

method that generates weakly labeled data by prompting language models. It consists

of two key steps: 1) the Event Generation step to generate (unlabeled) event phrases by

prompting a language model such as GPT2; 2) the Polarity Assignment step to assign po-

larity labels to the generated event phrases. To assign an accurate polarity label to an

event, it first extracts two views (Associated Event View and Emotion View) that contain

complementary polarity information for the event. Then the two views are combined to

produce a polarity label for the event. Experiments demonstrate that the generated weakly

labeled data can substantially improve Aff-BERT when combined with gold training data,

achieving state-of-the-art performance for this task. Our analysis also showed that the

weakly labeled data has a high quality - the accuracy of the polarity labels of these weakly

labeled events is 91%, as assessed by human annotators.

Claim 2: Recognizing expressions of embodied emotion in natural language can be
improved by training a model specifically for this task and exploiting semi-supervised
learning.
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In Chapter 6, I proposed a new task to recognize embodied emotion expressions in

natural language. I formalized the learning task as a binary classification problem, which

determines whether a body part mention is involved in Embodied Emotion or Neutral. For

example, the body part “throat” is categorized as Embodied Emotion in the statement “I

have not seen her for ten years. My throat immediately tightened when I saw her face,” as the

tightened throat is evoked by emotions. On the other hand, the “throat” is categorized as

Neutral in the statement “I have been sick for a few days and my throat hurts from coughing,” as

the throat-hurting symptom is a physical condition. To facilitate the study, I constructed a

gold dataset, CHEER, that contains 7,300 instances with human annotations. As shown in

experiments, this dataset is challenging for a wide range of existing affect recognition clas-

sifiers, including emotion classifiers, affective event classifiers and large language models

with zero-shot learning.

To recognize embodied emotion expressions, I proposed an embodied emotion clas-

sifier (EEC) based on fine-tuning BERT, which achieves a macro-F1 score of 83.5% over

the CHEER dataset. As the training data is small, I also presented two semi-supervised

methods to generate weakly labeled data to improve EEC. The first method mines weakly

labeled data from a text corpus by exploiting manner expressions with emotion (e.g., “I

crossed my arms with frustration,” “I clenched my fists in anger”). The second method produces

weakly labeled data by prompting large language models such as GPT3.5. Experiments

showed that the weakly labeled data generated by the two methods can train an effective

EEC classifier on its own, which achieves a macro-F1 score of 79.3%. It can also improve

the EEC classifier when combined with the gold training data, boosting the macro-F1 score

from 83.5% to 85.4%.

7.2 Future Research Directions
7.2.1 Improving Affect Recognition in NLP and Other

Disciplines with Affective Event Recognition
and Embodied Emotion Recognition

The studies of affective event recognition and embodied emotion recognition in this

dissertation are motivated by the ultimate goal of improving affect recognition in text.

One promising direction for future research is to exploit these two tasks to improve affect

recognition in narratives and stories, where the story plot consists of a sequence of experi-
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ences of characters. One potential way to improve affect recognition in narratives with the

two tasks is to use the knowledge of affective events and embodied emotions as auxiliary

features for an affect recognition system. Consider using an affect recognition system to

predict the affective state of Jack in the line ‘‘When Jack went past the haunted house, a chill

ran down his spine and his heart raced.” We can apply an embodied emotion classifier to the

body part mentions (“spine” and “heart”). At the same time, we can also apply an affective

event classifier to the events such as “Jack went past the haunted house.” Then the predictions

of the embodied emotion classifier and the affective event classifier could be used as

extra features to help an affect recognition system determine the affective state of Jack.

Another potential way is to train an affect recognition system with multi-task learning over

the tasks of affect recognition (e.g., sentiment analysis and emotion detection), affective

event recognition and embodied emotion recognition. Prior work [27, 112] has found that

training a model over multiple tasks that share common knowledge can improve the

model performance over each task, as knowledge learned in one task can benefit other

tasks. As all three tasks emphasize identifying affect, jointly learning over them could

potentially improve an affect recognition system in NLP.

The knowledge of affective events and embodied emotions could also be potentially

useful for affect recognition systems in other fields of AI. One such area is the research on

social robots, which usually convert the speech of a user to text and then detect emotions

by using NLP systems. I believe that it could be valuable to integrate our classifiers of af-

fective events and embodied emotions into the NLP system in a social robot. For example,

the knowledge of affective events could help a social robot detect the positive emotion

conveyed by the speech: “I bought a house.” The knowledge of embodied emotion could

help a social robot detect that the speech is emotional: “What you said made my stomach

turn.” To do so, one could potentially store an embodied emotion classifier and an affective

event classifier in the NLP system of a social robot and apply them when the speech of a

user contains an event or a bodily response.

In addition, affect recognition in computer vision (CV) can potentially benefit from our

study of affective events and embodied emotions. In recent years, researchers have been

interested in developing CV models that detect emotions in images. A line of work focuses

on detecting emotions expressed by facial expressions [141, 180] and body gestures [174,
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137]. Our study of embodied emotion could be valuable for this line of work. Consider

identifying the emotions in an image that shows a man with pursed lips. We could first

leverage an image captioning model to generate a caption for the image (e.g., “the man

pursed his lips”), and apply an embodied emotion classifier to the bodily responses in the

caption to determine if there is any emotional state. Then the information provided by the

embodied emotion classifier could serve as an extra signal for emotion detection.

Another line of work [98] in CV focuses on detecting emotions based on the scene

contexts in images, including the surroundings of a person and the actions occurring

around a person. As discussed in the paragraph above, an embodied emotion classifier

could potentially benefit models in this research, as it may provide extra signals about

the emotional states conveyed by the body gestures and facial expressions in the textual

description. In addition, affective event recognition could be valuable for this task. This is

because many scene contexts refer to events in our daily life, such as having a birthday

party, watching a movie, and resting on the beach. Consider again the method proposed

above that generates a caption for an image. The caption may describe the events shown

in an image (e.g., “The child is having a birthday party”). We could apply an affective event

classifier to the events in the caption, and then use the generated information as extra

signals to help detect the emotions in the image.

7.2.2 Studying the Intensity of Affective Events

One interesting future direction for affective event recognition is to study the strength

or intensity of an affective event. In our daily life, the events we experience do not neces-

sarily affect us to the same degree, even if they have the same polarity. For example, the

negative event of losing a pen might be a small matter for most people, but the negative

event of losing a car is probably a big deal for most people. I refer to the degree to which

an event impacts us positively or negatively as its affective intensity. Studying the affective

intensity of an event could benefit a lot of tasks. First, it could help an affect recognition

system detect the overall affective state of a person. Consider the online review of a hotel:

“Good thing: I got free breakfast. Bad thing: I could not sleep for 5 nights in a row due to the noise.”

We probably infer that the person has a very negative opinion towards the hotel, as for

most people the positive impact of the event “I got free breakfast” is much smaller than the
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negative impact of the event “I could not sleep for 5 nights in a row.” Second, it could be

beneficial for domains where it is critical to consider the impact of an event. Consider an

emergency management system, which often sends more resources and rescues to areas

that are more severely impacted by crises, such as hurricanes and earthquakes. To better

assess a crisis’s impact in the affected areas, information on social media (e.g., tweets

posted in Twitter) is usually considered in the decision making. Developing an NLP system

that detects the affective intensity of events reported in social media during crisis (e.g.,

“some people died here,” “we are out of water,” “our houses burned down” and “I don’t feel any

wind here”) could potentially help a management system assess the impact of a crisis in

different affective areas, prioritize its responses and make better responses.

7.2.3 Extending the Scope of Embodied Emotion Recognition

In this dissertation, the study of recognizing expressions of embodied emotion in nat-

ural language focuses on body part mentions, for the reasons mentioned in Chapter 6. But

many expressions of embodied emotion in natural language do not necessarily contain

body part mentions. On the other hand, many expressions use verbs that describe body

movement, such as “I kicked the wall because I was angry,” “I jumped as I saw a spider on

the table,” and “I collapsed after I heard the news.” One valuable future direction for this

research is to include these expressions with verbs that describe body part movement. To

conduct research in this direction, it could be useful to first collect verbs that are closely

related to body part movement, and then focus on expressions with verbs in this lexicon.

As a starting point, one might consider collecting verbs under the body movement frame

in FrameNet [11], which refers to motions or actions an agent performs with some part of

his/her body.

7.2.4 Associating Expressions of Embodied
Emotions with Emotional Labels

In this dissertation, our task to recognize expressions of embodied emotion in natural

language is formulated as a binary classification problem: categorize a body part mention

as Embodied Emotion or Neutral. While it identifies an emotional state based on bodily

responses, it does not tell what the emotional state is. A valuable line of future research is to

associate expressions of embodied emotion with emotional labels. For example, given the
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statement “My palms were sweaty before I got on the stage,” an embodied emotion classifier

should not only categorize “palm” as Embodied Emotion, but also associate the sweaty

palm with nervousness.

The task of associating expressions of embodied emotions with emotional labels could

fundamentally benefit the task of emotion detection in NLP, as it provides more emo-

tional information than the work in this dissertation. Nowadays, most existing tasks of

emotion detection are classification problems with at least 6 emotion labels. For example,

the GoEmotions dataset [39] contains 27 emotion labels. The study in this dissertation,

which performs binary classification, may provide relatively limited information for these

emotion detection tasks. If we associate expressions of embodied emotions with emotional

labels, this study could not only help these emotion detection systems discover ongoing

emotions but also help them identify what these ongoing emotions are.

NLP models that associate expressions of embodied emotions with emotional labels

might also enhance the development of more empathetic conversational agents. Consider

the potential application of embodied emotion recognition in social robots, as discussed

in Section 7.2.1. If an embodied emotion classifier could associate the detected embodied

emotions with emotional labels, a social robot could better understand the specific emo-

tional states conveyed by bodily responses in the speech of a user and act accordingly. For

example, recognizing that “sweaty palms” of a user indicates nervousness, a social robot

could respond with calming reassurances or support, which improves user experience and

interaction quality.

7.2.5 Addressing the Subjectivity of Affective Norms

The problems studied in this dissertation are highly relevant to knowledge about af-

fective norms. Our study of affective events recognizes the stereotypical affective impact

of an event independent of context. For example, it considers the event of going on a

vacation a positive event and the event of working overtime a negative event. The study

of embodied emotions recognizes the bodily manifestations of emotions, the interpretation

of which is heavily based on our commonsense. Consider the text “my eyes get watery after

I heard the news.” Most people would interpret the bodily response “my eyes get watery” as

a manifestation of emotion. While we consider context in this task, we rely greatly on the
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affective norms to recognize embodied emotions.

Knowledge about affective norms is a type of commonsense knowledge that is preva-

lent and essential in our language, and it has gained a lot of research interests in the

research community. However, one major challenge in the current study is that our knowl-

edge about affective norms is subjective and relevant to many factors. For instance, people

with different cultural backgrounds may have different knowledge about affective norms.

Consider the case where someone receives a watch as a birthday gift. This event is positive

in Western culture but very negative in Chinese culture. This is because giving a watch can

be interpreted as a reference to the end of life or time running out in Chinese culture. As

another example, the hand gesture of joining the thumb and the index finger into a circle

(the OK gesture) expresses a positive emotion in the U.S., but it conveys a very negative

emotion (e.g., “you are a loser”) in some other countries such as France, Brazil and Germany.

People in different social classes may also have different knowledge about affective norms.

For instance, the event of “getting a phone” may be very positive for people with very

low income but more neutral for people with very high income. In addition, affective

norms could be different for people with similar backgrounds, since different people have

different personal preferences. For example, the event of having a party could be positive

for extroverted persons but negative for some introverted people. Getting pregnant could

be positive for some people but negative for others.

I believe that it is crucial to address this subjectivity problem of affective norms in

future work. Otherwise, it could be challenging to effectively learn and apply the knowl-

edge about affective norms in practice. One valuable direction is to learn knowledge about

affective norms with respect to different languages, cultures and other important factors.

Consider the task of embodied emotion recognition. As it is mainly subjective to cultural

norms, we could learn embodied emotion expressions in different cultures separately.

Suppose we want to recognize expressions of embodied emotions in Chinese culture. To

facilitate this study, we could first create benchmark datasets by collecting texts in Chinese.

As Chinese texts could be written by people with different cultural backgrounds (e.g.,

people from Taiwan and people from mainland China), it is also essential to focus the

study on data collected from a region with cultural homogeneity (e.g., mainland China).

Regarding the subjectivity issue due to personal preferences, one potential solution is
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to capture the likelihoods of affective norms (i.e., how likely is this an affective norm, or

how likely is this affective norm true?). Consider the task of affective event recognition.

We could capture the likelihoods of different polarities for an event. To build a manually

annotated dataset for this task, one could perform large-scale crowdsourcing (e.g., collect

human annotations using Mechanical Turk). Suppose we want to collect the likelihoods

of different polarities for the event of getting pregnant. We could ask 1,000 mechanical

turkers whether this event is positive, negative or neutral. Then based on the statistics, we

could estimate the probabilities of polarities for the event (e.g., 80% of the time the event

of getting pregnant might be viewed as a positive event and 20% of the time it is viewed

as a negative event). I believe that capturing probabilities of affective norms could help

address the subjectivity problem due to personal preferences. In addition, it could be useful

for comparing and contrasting affective norms across different cultures and demographic

sectors.

7.2.6 Addressing the Ethical Concerns of
AI Systems with Emotional Intelligence

The ultimate goal of this research is to help build AI systems with emotional intelli-

gence, which can detect emotions and respond with appropriate emotions. I believe that

AI systems with emotional intelligence could significantly impact humans in a positive

way. For example, they can create more engaging and satisfying interactions for users,

leading to better user experiences. As another example, AI with emotional intelligence can

provide basic emotional support and companionship, which can be particularly beneficial

for individuals who are lonely or dealing with mental health issues.

However, these systems could come with ethical concerns that cause unexpected con-

sequences and harm to our society. In the rest of this section, I will discuss the concerns of

AI systems that detect emotion and AI systems that generate emotional responses.

The major concern of AI systems that can recognize users’ emotions is that they could

be potentially used to manipulate individuals based on their emotional states and reduce

their autonomy (i.e., the capability of individuals to make decisions on their own without

external control). For example, our shopping behaviors might be manipulated by these

AI systems. Companies may create shopping recommendation systems that detect users

with negative affective states and suggest retail therapy they do not need. Marketers might
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create advertisement systems that exploit emotional data to target consumers at their ex-

cited or vulnerable moments and show ads for comfort foods or luxury items. These

manipulations can occur in many other domains too. One example is the political realm,

where emotionally intelligent AI could be used to analyze the emotions and opinions

of users and tailor their messages to change or enhance those users’ opinions to impact

election outcomes. Another concern with these emotion recognition systems is: Is it ethically

justified to analyze users’ emotional states? The emotional state of an individual is private, so

it is worthy of protection. Though people usually express their emotions and opinions in

public, many may not want their private states to be analyzed by AI systems.

Our behaviors and decisions may be easily impacted by AI systems that generate emo-

tional responses, as psychology literature has found that our perception of the world and

decision-making are influenced by emotion [24]. For example, a conversation system could

generate emotional responses to subtly increase one’s anger/affection towards a subject

matter. Companies could develop shopping AI systems that tell a hesitant person to buy a

product by using persuasive tones. Question-answering systems may gain high credibility

when they answer in confident tones. Even those AI systems designed for the good could

negatively change our behaviors too. For example, AI systems that provide emotional

support may make their users overly reliant and diminish their ability to regulate their

emotional states on their own. Another concern is that AI systems that generate emotional

responses could look very human-like, blurring the lines between human and machine

interactions. This ambiguity could potentially make us vulnerable to crimes. For instance,

recent reports indicate that scammers have exploited AI-driven chatbots to impersonate

real customer service agents or friends, deceiving victims into transferring money or dis-

closing sensitive personal information.

I believe that addressing these concerns is crucial for the responsible development

and deployment of AI systems with emotional intelligence. Without careful considera-

tion and ethical safeguards, the potential benefits of these systems could be outweighed

by the risks they pose to individuals and society. For example, we should implement

comprehensive ethical guidelines and standards for the development and deployment

of emotionally intelligent AI systems. These guidelines should prioritize transparency,

ensuring that users are aware when they are interacting with AI and understand the
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capabilities and limitations of these systems. In addition, it is important to protect users’

privacy. For example, users should be informed about how their data will be used and

have the option to decline it. To address the complicated ethical challenges, it is essential

to conduct interdisciplinary research that engages experts in psychology, ethics, law, com-

puter science, and other relevant fields. Furthermore, regulatory frameworks must evolve

to keep pace with advancements in AI technology. Legislators and policymakers should

collaborate with experts across various disciplines to develop regulations that ensure the

ethical use of emotionally intelligent AI.
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[148] F. Petroni, T. Rocktäschel, S. Riedel, P. Lewis, A. Bakhtin, Y. Wu, and A. Miller, Lan-
guage models as knowledge bases?, in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing, Association for Computational Linguistics, 2019,
pp. 2463–2473.

[149] R. W. Picard, Affective Computing, MIT Press, Cambridge, MA, 1997.

[150] R. Plutchik, A general psychoevolutionary theory of emotion, in Emotion: Theory, Re-
search, and Experience, R. Plutchik and H. Kellerman, eds., Academic Press, Lon-
don, UK, 1980, pp. 3–33.

[151] J. Prinz, Embodied emotions, in Thinking About Feeling: Contemporary Philosophers
on Emotions, R. C. Solomon, ed., Oxford University Press, Oxford, UK, 2004, pp. 44–
58.



116

[152] A. Qadir, E. Riloff, and M. Walker, Learning to recognize affective polarity in similes,
in Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, Association for Computational Linguistics, 2015, pp. 190–200.

[153] A. Qadir, E. Riloff, and M. A. Walker, Automatically inferring implicit properties in
similes, in Proceedings of the 2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, As-
sociation for Computational Linguistics, 2016, pp. 1223–1232.

[154] G. Qin and J. Eisner, Learning how to ask: Querying LMs with mixtures of soft prompts,
in Proceedings of the 2021 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Association
for Computational Linguistics, 2021, pp. 5203–5212.

[155] C. Quan and F. Ren, Construction of a blog emotion corpus for Chinese emotional expres-
sion analysis, in Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, Association for Computational Linguistics, 2009, pp. 1446–
1454.

[156] R. Quirk, S. Greenbaum, G. Leech, and J. Svartvik, A Comprehensive Grammar of the
English Language, Longman, London, UK, 1985.

[157] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, Language models
are unsupervised multitask learners, preprint, Papers with Code, 2019.

[158] H. Rashkin, M. Sap, E. Allaway, N. A. Smith, and Y. Choi, Event2Mind: Commonsense
inference on events, intents, and reactions, in Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics, Association for Computational
Linguistics, 2018, pp. 463–473.

[159] H. Rashkin, S. Singh, and Y. Choi, Connotation frames: A data-driven investigation,
in Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, Association for Computational Linguistics, 2016, pp. 311–321.

[160] E. Riloff, J. Wiebe, and T. Wilson, Learning subjective nouns using extraction pattern boot-
strapping, in Proceedings of the Seventh Conference on Natural Language Learning
at HLT-NAACL 2003, Association for Computational Linguistics, 2003, pp. 25–32.

[161] K. Roberts, M. A. Roach, J. Johnson, J. Guthrie, and S. M. Harabagiu, EmpaTweet: An-
notating and detecting emotions on Twitter, in Proceedings of the Eighth International
Conference on Language Resources and Evaluation, European Language Resources
Association, 2012, pp. 3806–3813.

[162] S. Rosenthal, N. Farra, and P. Nakov, SemEval-2017 task 4: Sentiment analysis in
Twitter, in Proceedings of the 11th International Workshop on Semantic Evaluation,
Association for Computational Linguistics, 2017, pp. 502–518.

[163] D. E. Rumelhart, J. L. McClelland, and PDP Research Group, Parallel Distributed
Processing, Volume 1: Explorations in the Microstructure of Cognition: Foundations, The
MIT Press, Cambridge, MA, 1986.

[164] J. Russell, A circumplex model of affect, J. Pers. Soc. Psychol., 39 (1980), pp. 1161–1178.



117

[165] M. Sachan and E. Xing, Self-training for jointly learning to ask and answer questions, in
Proceedings of the 2018 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, Association for
Computational Linguistics, 2018, pp. 629–640.

[166] J. Saito, Y. Murawaki, and S. Kurohashi, Minimally supervised learning of affective
events using discourse relations, in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing, Association for Computational Linguistics, 2019,
pp. 5758–5765.

[167] P. Saraf, R. Sedamkar, and S. Rathi, PrefixSpan algorithm for finding sequential pattern
with various constraints, Int. J. Appl. Inf. Syst., 9 (2015), pp. 37–41.

[168] S. Schachter and J. E. Singer, Cognitive, social, and physiological determinants of emo-
tional state, Psychol. Rev., 69 (1962), pp. 379–399.

[169] M. Scheeff, J. Pinto, K. Rahardja, S. Snibbe, and R. Tow, Experiences with Sparky, a
social robot, in Socially Intelligent Agents: Creating Relationships with Computers
and Robots, K. Dautenhahn, A. Bond, L. Cañamero, and B. Edmonds, eds., Springer,
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