
In Proceedings of ACL-08

Semantic Class Learning from the Web with Hyponym Pattern Linkage
Graphs

Zornitsa Kozareva
DLSI, University of Alicante

Campus de San Vicente
Alicante, Spain 03080

zkozareva@dlsi.ua.es

Ellen Riloff
School of Computing

University of Utah
Salt Lake City, UT 84112
riloff@cs.utah.edu

Eduard Hovy
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292-6695

hovy@isi.edu

Abstract

We present a novel approach to weakly super-
vised semantic class learning from the web,
using a single powerful hyponym pattern com-
bined with graph structures, which capture
two properties associated with pattern-based
extractions:popularity andproductivity. In-
tuitively, a candidate ispopular if it was dis-
covered many times by other instances in the
hyponym pattern. A candidate isproductive
if it frequently leads to the discovery of other
instances. Together, these two measures cap-
ture not only frequency of occurrence, but also
cross-checking that the candidate occurs both
near the class name and near other class mem-
bers. We developed two algorithms that begin
with just a class name and one seed instance
and then automatically generate a ranked list
of new class instances. We conducted exper-
iments on four semantic classes and consis-
tently achieved high accuracies.

1 Introduction

Knowing the semantic classes of words (e.g., “trout”
is a kind of FISH) can be extremely valuable for
many natural language processing tasks. Although
some semantic dictionaries do exist (e.g., Word-
Net (Miller, 1990)), they are rarely complete, espe-
cially for large open classes (e.g., classes of people
and objects) and rapidly changing categories (e.g.,
computer technology). (Roark and Charniak, 1998)
reported that 3 of every 5 terms generated by their
semantic lexicon learner were not present in Word-
Net. Automatic semantic lexicon acquisition could

be used to enhance existing resources such as Word-
Net, or to produce semantic lexicons for specialized
categories or domains.

A variety of methods have been developed for
automatic semantic class identification, under the
rubrics of lexical acquisition, hyponym acquisition,
semantic lexicon induction, semantic class learn-
ing, and web-based information extraction. Many
of these approaches employ surface-level patterns to
identify words and their associated semantic classes.
However, such patterns tend to overgenerate (i.e.,
deliver incorrect results) and hence require addi-
tional filtering mechanisms.

To overcome this problem, we employed one sin-
gle powerfuldoubly-anchoredhyponym pattern to
query the web and extract semantic class instances:
CLASS NAME such asCLASS MEMBER and *.

We hypothesized that a doubly-anchored pattern,
which includes both the class name and a class
member, would achieve high accuracy because of
its specificity. To address concerns about coverage,
we embedded the search in a bootstrapping process.
This method produced many correct instances, but
despite the highly restrictive nature of the pattern,
still produced many incorrect instances. This re-
sult led us to explore new ways to improve the ac-
curacy of hyponym patterns without requiring addi-
tional training resources.

The main contribution of this work is a novel
method for combining hyponym patterns with graph
structures that capture two properties associated
with pattern extraction:popularityandproductivity.
Intuitively, a candidate word (or phrase) ispopular
if it was discovered many times by other words (or

phrases) in a hyponym pattern. A candidate word is
productiveif it frequently leads to the discovery of
other words. Together, these two measures capture
not only frequency of occurrence, but also cross-
checking that the word occurs both near the class
name and near other class members.

We present two algorithms that usehyponym pat-
tern linkage graphs (HPLGs)to represent popularity
and productivity information. The first method uses
a dynamically constructed HPLG to assess the pop-
ularity of each candidate and steer the bootstrapping
process. This approach produces an efficient boot-
strapping process that performs reasonably well, but
it cannot take advantage of productivity information
because of the dynamic nature of the process.

The second method is a two-step procedure that
begins with an exhaustive pattern search that ac-
quires popularity and productivity information about
candidate instances. The candidates are then ranked
based on properties of the HPLG. We conducted ex-
periments with four semantic classes, achieving high
accuracies and outperforming the results reported by
others who have worked on the same classes.

2 Related Work

A substantial amount of research has been done in
the area of semantic class learning, under a variety
of different names and with a variety of different
goals. Given the great deal of similar work in infor-
mation extraction and ontology learning, we focus
here only on techniques for weakly supervised or
unsupervised semantic class (i.e., supertype-based)
learning, since that is most related to the work in
this paper.

Fully unsupervised semantic clustering (e.g.,
(Lin, 1998; Lin and Pantel, 2002; Davidov and Rap-
poport, 2006)) has the disadvantage that it may or
may not produce the types and granularities of se-
mantic classes desired by a user. Another related
line of work is automated ontology construction,
which aims to create lexical hierarchies based on se-
mantic classes (e.g., (Caraballo, 1999; Cimiano and
Volker, 2005; Mann, 2002)), and learning semantic
relations such as meronymy (Berland and Charniak,
1999; Girju et al., 2003).

Our research focuses on semantic lexicon induc-
tion, which aims to generate lists of words that be-

long to a given semantic class (e.g., lists ofFISH

or VEHICLE words). Weakly supervised learning
methods for semantic lexicon generation have uti-
lized co-occurrence statistics (Riloff and Shepherd,
1997; Roark and Charniak, 1998), syntactic in-
formation (Tanev and Magnini, 2006; Pantel and
Ravichandran, 2004; Phillips and Riloff, 2002),
lexico-syntactic contextual patterns (e.g.,“resides
in <location>” or “moved to<location>”) (Riloff
and Jones, 1999; Thelen and Riloff, 2002), and
local and global contexts (Fleischman and Hovy,
2002). These methods have been evaluated only on
fixed corpora1, although (Pantel et al., 2004) demon-
strated how to scale up their algorithms for the web.

Several techniques for semantic class induction
have also been developed specifically for learning
from the web. (Paşca, 2004) uses Hearst’s pat-
terns (Hearst, 1992) to learn semantic class instances
and class groups by acquiring contexts around the
pattern. Pasca also developed a second technique
(Paşca, 2007b) that creates context vectors for a
group of seed instances by searching web query
logs, and uses them to learn similar instances.

The work most closely related to ours is Hearst’s
early work on hyponym learning (Hearst, 1992)
and more recent work that has followed up on her
idea. Hearst’s system exploited patterns that explic-
itly identify a hyponym relation between a seman-
tic class and a word (e.g.,“such authors as Shake-
speare”). We will refer to these ashyponym pat-
terns. Pasca’s previously mentioned system (Paşca,
2004) applies hyponym patterns to the web and ac-
quires contexts around them. The KnowItAll system
(Etzioni et al., 2005) also uses hyponym patterns to
extract class instances from the web and then evalu-
ates them further by computing mutual information
scores based on web queries.

The work by (Widdows and Dorow, 2002) on lex-
ical acquisition is similar to ours because they also
use graph structures to learn semantic classes. How-
ever, their graph is based entirely on syntactic rela-
tions between words, while our graph captures the
ability of instances to find each other in a hyponym
pattern based on web querying, without any part-of-
speech tagging or parsing.

1Meta-bootstrapping (Riloff and Jones, 1999) was evaluated
on web pages, but used a precompiled corpus of downloaded
web pages.

3 Semantic Class Learning with Hyponym
Pattern Linkage Graphs

3.1 A Doubly-Anchored Hyponym Pattern

Our work was motivated by early research on hy-
ponym learning (Hearst, 1992), which applied pat-
terns to a corpus to associate words with semantic
classes. Hearst’s system exploited patterns that ex-
plicitly link a class name with a class member, such
as “X and other Ys” and “Ys such as X”. Relying
on surface-level patterns, however, is risky because
incorrect items are frequently extracted due to poly-
semy, idiomatic expressions, parsing errors, etc.

Our work began with the simple idea of using an
extremelyspecific pattern to extract semantic class
members with high accuracy. Our expectation was
that a very specific pattern would virtually eliminate
the most common types of false hits that are caused
by phenomena such as polysemy and idiomatic ex-
pressions. A concern, however, was that an ex-
tremely specific pattern would suffer from sparse
data and not extract many new instances. By using
the web as a corpus, we hoped that the pattern could
extract at least a few instances for virtually any class,
and then we could gain additional traction by boot-
strapping these instances.

All of the work presented in this paper uses just
one doubly-anchoredpattern to identify candidate
instances for a semantic class:

<classname> such as<classmember> and *

This pattern has two variables: the name of the se-
mantic class to be learned (classname) and a mem-
ber of the semantic class (classmember). The aster-
isk (*) indicates the location of the extracted words.
We describe this pattern as beingdoubly-anchored
because it is instantiated with both the name of the
semantic class as well as a class member.

For example, the pattern“ CARS such asFORD

and *” will extract automobiles, and the pattern
“ PRESIDENTS such asFORD and *” will extract
presidents. The doubly-anchored nature of the pat-
tern serves two purposes. First, it increases the like-
lihood of finding a true list construction for the class.
Our system does not use part-of-speech tagging or
parsing, so the pattern itself is the only guide for
finding an appropriate linguistic context.

Second, the doubly-anchored pattern virtually

Members = {Seed};
P0= “Class such asSeed and *”;
P = {P0};
iter = 0;
While ((iter < Max Iters) and (P 6= {}))

iter++;
For eachPi ∈ P

Snippets = web query(Pi);
Candidates = extractwords(Snippets,Pi);
Pnew = {};
For eachCandidatek ∈ Candidates

If (Candidatek /∈ Members);
Members = Members ∪ {Candidatek};
Pk= “Class such asCandidatek and *”;
Pnew = Pnew ∪ { Pk };

P = Pnew;

Figure 1: Reckless Bootstrapping

eliminates ambiguity because theclassnameand
classmembermutually disambiguate each other.
For example, the wordFORD could refer to an auto-
mobile or a person, but in the pattern“ CARSsuch as
FORD and *” it will almost certainly refer to an au-
tomobile. Similarly, the class “PRESIDENT” could
refer to country presidents or corporate presidents,
and “BUSH” could refer to a plant or a person. But
in the pattern“ PRESIDENTSsuch asBUSH” , both
words will surely refer to country presidents.

Another advantage of the doubly-anchored pat-
tern is that an ambiguous or underspecified class
name will be constrained by the presence of the class
member. For example, to generate a list of com-
pany presidents, someone might naively define the
class name asPRESIDENTS. A singly-anchored pat-
tern (e.g.,“ PRESIDENTSsuch as *”) might gener-
ate lists of other types of presidents (e.g., country
presidents, university presidents, etc.). Because the
doubly-anchored pattern also requires a class mem-
ber (e.g.,“ PRESIDENTSsuch asBILL GATES and
*”), it is likely to generate only the desired types of
instances.

3.2 Reckless Bootstrapping

To evaluate the performance of the doubly-anchored
pattern, we began by using the pattern to search the
web and embedded this process in a simple boot-
strapping loop, which is presented in Figure 1. As
input, the user must provide the name of the desired

semantic class (Class) and a seed example (Seed),
which are used to instantiate the pattern. On the
first iteration, the pattern is given to Google as a
web query, and new class members are extracted
from the retrieved text snippets. We wanted the
system to be as language-independent as possible,
so we refrained from using any taggers or parsing
tools. As a result, instances are extracted using only
word boundaries and orthographic information. For
proper name classes, we extract all capitalized words
that immediately follow the pattern. For common
noun classes, we extract just one word, if it is not
capitalized. Examples are shown below, with the ex-
tracted items underlined:

countries such as China and Sri Lankaare ...
fishes such as trout and basscan ...

One limitation is that our system cannot learn
multi-word instances of common noun categories,
or proper names that include uncapitalized words
(e.g., “United States of America”). These limita-
tions could be easily overcome by incorporating a
noun phrase (NP) chunker and extracting NPs.

Each new class member is then used as a seed in-
stance in the bootstrapping loop. We implemented
this process as breadth-first search, where each “ply”
of the search process is the result of bootstrapping
the class members learned during the previous it-
eration as seed instances for the next one. During
each iteration, we issue a new web query and add
the newly extracted class members to the queue for
the next cycle. We run this bootstrapping process for
a fixed number of iterations (search ply), or until no
new class members are produced. We will refer to
this process asreckless bootstrappingbecause there
are no checks of any kind. Every term extracted by
the pattern is assumed to be a class member.

3.2.1 Results

Table 1 shows the results for 4 iterations of reck-
less bootstrapping for four semantic categories:U.S.
states, countries, singers, and fish. The first two
categories are relatively small, closed sets (our gold
standard contains 50 U.S. states and 194 countries).
Thesingersandfishcategories are much larger, open
sets (see Section 4 for details).

Table 1 reveals that the doubly-anchored pattern
achieves high accuracy during the first iteration, but

Iter. countries states singers fish
1 .80 .79 .91 .76
2 .57 .21 .87 .64
3 .21 .18 .86 .54
4 .16 – .83 .54

Table 1:Reckless Bootstrapping Accuracies

quality deteriorates rapidly as bootstrapping pro-
gresses. Figure 2 shows the recall and precision
curves for countries and states. High precision is
achieved only with low levels of recall for countries.
Our initial hypothesis was that such a specific pat-
tern would be able to maintain high precision be-
cause non-class members would be unlikely to co-
occur with the pattern. But we were surprised to find
that many incorrect entries were generated for rea-
sons such as broken expressions like “Merce -dez”,
misidentified list constructions (e.g.,“In countries
such as China U.S. Policyis failing...”), and incom-
plete proper names due to insufficient length of the
retrieved text snippet.

Incorporating a noun phrase chunker would elim-
inate some of these cases, but far from all of them.
We concluded that even such a restrictive pattern is
not sufficient for semantic class learning on its own.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

Recall

Country/State

Country
State

Figure 2: Recall/precision for reckless bootstrapping

In the next section, we present a new approach
that creates a Hyponym Pattern Linkage Graph to
steer bootstrapping and improve accuracy.

3.3 Using Dynamic Graphs to Steer
Bootstrapping

Intuitively, we expect true class members to occur
frequently in pattern contexts with other class mem-

bers. To operationalize this intuition, we create ahy-
ponym pattern linkage graph, which represents the
frequencies with which candidate instances generate
each other in the pattern contexts.

We define ahyponym pattern linkage graph
(HPLG)as aG = (V,E), where each vertexv ∈ V
is a candidate instance and each edge(u, v) ∈ E
means that instancev was generated by instanceu.
The weightw of an edge is the frequency with which
u generatedv. For example, consider the following
sentence, where the pattern is italicized and the ex-
tracted instance is underlined:

Countries such as China andLaoshave been...

In the HPLG, an edgee = (China,Laos) would
be created because the pattern anchored by China
extracted Laos as a new candidate instance. If this
pattern extracted Laos from 15 different snippets,
then the edge’s weight would be 15. The in-degree
of a node represents itspopularity, i.e., the number
of instance occurrences that generated it.

The graph is constructed dynamically as boot-
strapping progresses. Initially, the seed is the only
trusted class memberand the only vertex in the
graph. The bootstrapping process begins by instan-
tiating the doubly-anchored pattern with the seed
class member, issuing a web query to generate new
candidate instances, and adding these new instances
to the graph. A score is then assigned to every node
in the graph, using one of several different metrics
defined below. The highest-scoring unexplored node
is then added to the set oftrusted class members, and
used as the seed for the next bootstrapping iteration.

We experimented with three scoring functions for
selecting nodes. TheIn-Degree (inD) score for ver-
texv is the sum of the weights of all incoming edges
(u, v), whereu is a trusted class member. Intuitively,
this captures the popularity ofv among instances
that have already been identified as good instances.
TheBest Edge (BE) score for vertexv is the maxi-
mum edge weight among the incoming edges(u, v),
whereu is a trusted class member.

The Key Player Problem (KPP) measure is used in
social network analysis (Borgatti and Everett, 2006)
to identify nodes whose removal would result in a
residual network of minimum cohesion. A node re-
ceives a high value if it is highly connected and rel-
atively close to most other nodes in the graph. The

KPP score for vertexv is computed as:

KPP (v) =

∑

u∈V

1

d(u, v)
|V |−1

whered(u, v) is the shortest path between two ver-
tices, whereu is a trusted node. For tie-breaking, the
distances are multiplied by the weight of the edge.

Note that all of these measures rely only on in-
coming edges because a node does not acquire out-
going edges until it has already been selected as a
trusted class member and used to acquire new in-
stances. In the next section, we describe a two-step
process for creating graphs that can take advantage
of both incoming and outgoing edges.

3.4 Re-Ranking with Precompiled Graphs

One way to try to confirm (or disconfirm) whether
a candidate instance is a true class member is to see
whether it can produce new candidate instances. If
we instantiate our pattern with the candidate (i.e.,
“ CLASS NAME such asCANDIDATE and *”) and
successfully extract many new instances, then this
is evidence that the candidate frequently occurs with
the CLASS NAME in list constructions. We will re-
fer to the ability of a candidate to generate new in-
stances as itsproductivity.

The previous bootstrapping algorithm uses a dy-
namically constructed graph that is constantly evolv-
ing as new nodes are selected and explored. Each
node is scored based only on the set of instances
that have been generated and identified as “trusted”
at that point in the bootstrapping process. To use
productivity information, we must adopt a different
procedure because we need to know not only who
generated each candidate, but also the complete set
of instances that the candidate itself can generate.

We adopted a two-step process that can use both
popularity and productivity information in a hy-
ponym pattern linkage graph to assess the quality of
candidate instances. First, we performreckless boot-
strapping for a classnameand seeduntil no new
instances are generated. Second, we assign a score
to each node in the graph using a scoring function
that takes into account both the in-degree (popular-
ity) and out-degree (productivity) of each node. We
experimented with four different scoring functions,
some of which were motivated by work on word

sense disambiguation to identify the most “impor-
tant” node in a graph containing its possible senses
(Navigli and Lapata, 2007).

The Out-degree (outD) score for vertexv is the
weighted sum ofv’s outgoing edges, normalized by
the number of other nodes in the graph.

outD(v) =

∑

∀(v,p)∈E

w(v, p)

|V |−1

This measure captures only productivity, while the
next three measures consider both productivity and
popularity. TheTotal-degree (totD) score for ver-
tex v is the weighted sum of both incoming and
outgoing edges, normalized by the number of other
nodes in the graph. TheBetweenness (BT) score
(Freeman, 1979) considers a vertex to be important
if it occurs on many shortest paths between other
vertices.

BT (v) =
∑

s,t∈V :s 6=v 6=t

σst(v)

σst

whereσst is the number of shortest paths froms to t,
andσst(v) is the number of shortest paths froms to
t that pass through vertexv. PageRank (Page et al.,
1998) establishes the relative importance of a ver-
tex v through an iterative Markov chain model. The
PageRank (PR) score of a vertexv is determined
on the basis of the nodes it is connected to.

PR(v) = (1−α)
|V | + α

∑

u,v∈E

PR(u)

outdegree(u)

α is a damping factor that we set to 0.85. We dis-
carded all instances that produced zero productivity
links, meaning that they did not generate any other
candidates when used in web queries.

4 Experimental evaluation

4.1 Data

We evaluated our algorithms on four semantic cat-
egories: U.S. states, countries, singers, and fish.
The statesand countries categories are relatively
small, closed sets: our gold standards consist of 50
U.S. states and 194 countries (based on a list found
on Wikipedia). Thesingersandfish categories are
much larger, open classes. As our gold standard for
fish, we used a list of common fish names found on
Wikipedia.2 All the singer names generated by our

2We also counted as correct plural versions of items found
on the list. The total size of our fish list is 1102.

States
Popularity Prd Pop&Prd

N BE KPP inD outD totD BT PR
25 1.0 1.0 1.0 1.0 1.0 .88 .88
50 .96 .98 .98 1.0 1.0 .86 .82
64 .77 .78 .77 .78 .78 .77 .67

Countries
Popularity Prd Pop&Prd

N BE KPP inD outD totD BT PR
50 .98 .97 .98 1.0 1.0 .98 .97
100 .96 .97 .94 1.0 .99 .97 .95
150 .90 .92 .91 1.0 .95 .94 .92
200 .83 .81 .83 .90 .87 .82 .80
300 .60 .59 .61 .61 .62 .56 .60
323 .57 .55 .57 .57 .58 .52 .57

Singers
Popularity Prd Pop&Prd

N BE KPP inD outD totD BT PR
10 .92 .96 .92 1.0 1.0 1.0 1.0
25 .89 .90 .91 1.0 1.0 1.0 .99
50 .92 .85 .92 .97 .98 .95 .97
75 .89 .83 .91 .96 .95 .93 .95
100 .86 .81 .89 .96 .93 .94 .94
150 .86 .79 .88 .95 .92 .93 .87
180 .86 .80 .87 .91 .91 .91 .88

Fish
Popularity Prd Pop&Prd

N BE KPP inD outD totD BT PR
10 .90 .90 .90 1.0 1.0 .90 .70
25 .80 .88 .76 1.0 .96 .96 .72
50 .82 .80 .78 1.0 .94 .88 .66
75 .72 .69 .72 .93 .87 .79 .64
100 .63 .68 .66 .84 .80 .74 .62
116 .60 .65 .66 .80 .78 .71 .59

Table 2:Accuracies for each semantic class

algorithms were manually reviewed for correctness.
We evaluated performance in terms of accuracy (the
percentage of instances that were correct).3

4.2 Performance

Table 2 shows the accuracy results of the two al-
gorithms that use hyponym pattern linkage graphs.
We display results for the top-ranked N candidates,
for all instances that have a productivity value>
zero.4 The Popularity columns show results for the

3We never generated duplicates so the instances are distinct.
4Obviously, this cutoff is not available to the popularity-

based bootstrapping algorithm, but here we are just comparing
the top N results for both algorithms.

bootstrapping algorithm described in Section 3.3,
using three different scoring functions. The re-
sults for the ranking algorithm described in Sec-
tion 3.4 are shown in the Productivity (Prd) and
Popularity&Productivity (Pop&Prd) columns. For
thestates, countries, andsingerscategories, we ran-
domly selected 5 different initial seeds and then av-
eraged the results. For thefishcategory we ran each
algorithm using just the seed“salmon” .

The popularity-based metrics produced good ac-
curacies on thestates, countries, andsingerscate-
gories under all 3 scoring functions. Forfish, KPP
performed better than the others.

The Out-degree (outD)scoring function, which
uses only Productivity information, obtained the
best results across all 4 categories. OutD achieved
100% accuracy for the first 50 states and fish, 100%
accuracy for the top 150 countries, and 97% accu-
racy for the top 50 singers. The three scoring met-
rics that use both popularity and productivity also
performed well, but productivity information by it-
self seems to perform better in some cases.

It can be difficult to compare the results of differ-
ent semantic class learners because there is no stan-
dard set of benchmark categories, so researchers re-
port results for different classes. For the state and
country categories, however, we can compare our
results with that of other web-based semantic class
learners such as Pasca (Paşca, 2007a) and the Know-
ItAll system (Etzioni et al., 2005). For the U.S.
states category, our system achieved 100% recall
and 100% precision for the first 50 items generated,
and KnowItAll performed similarly achieving 98%
recall with 100% precision. Pasca did not evaluate
his system on states.

For thecountriescategory, our system achieved
100% precision for the first 150 generated instances
(77% recall). (Paşca, 2007a) reports results of 100%
precision for the first 25 instances generated, and
82% precision for the first 150 instances gener-
ated. The KnowItAll system (Etzioni et al., 2005)
achieved 97% precision with 58% recall, and 79%
precision with 87% recall.5 To the best of our
knowledge, other researchers have not reported re-
sults for the singer and fish categories.

5(Etzioni et al., 2005) do not report exactly how many coun-
tries were in their gold standard.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

A
cc

ur
ac

y

Iterations

outD
inD

cutoff, t

Figure 3: Learning curve for Placido Domingo

Figure 3 shows the learning curve for both al-
gorithms using their best scoring functions on the
singercategory withPlacido Domingoas the initial
seed. In total, 400 candidate words were generated.
The Out-degreescoring function ranked the candi-
dates well. Figure 3 also includes a vertical line
indicating where the candidate list was cut (at 180
instances) based on the zero productivity cutoff.

One observation is that the rankings do a good
job of identifying borderline cases, which typically
are ranked just below most correct instances but just
above the obviously bad entries. For example, for
states, the 50 U.S. states are ranked first, followed
by 14 more entries (in order):

Russia, Ukraine, Uzbekistan, Azerbaijan,
Moldova, Tajikistan, Armenia, Chicago,
Boston, Atlanta, Detroit, Philadelphia, Tampa,
Moldavia

The first 7 entries are all former states of the So-
viet Union. In retrospect, we realized that we
should have searched for “U.S. states” instead of just
“states”. This example illustrates the power of the
doubly-anchored hyponym pattern to correctly iden-
tify our intended semantic class by disambiguating
our class name based on the seed class member.

The algorithms also seem to be robust with re-
spect to initial seed choice. For thestates, coun-
tries, and singers categories, we ran experiments
with 5 different initial seeds, which were randomly
selected. The 5 country seeds represented a diverse
set of nations, some of which are rarely mentioned in
the news:Brazil, France, Guinea-Bissau, Uganda,

andZimbabwe. All of these seeds obtained≥ 92%
recall with≥ 90% precision.

4.3 Error Analysis

We examined the incorrect instances produced by
our algorithms and found that most of them fell into
five categories.

Type 1 errors were caused by incorrect proper
name extraction. For example, in the sentence
“states such as Georgia and English speaking coun-
tries like Canada...”, “English” was extracted as
a state. These errors resulted from complex noun
phrases and conjunctions, as well as unusual syn-
tactic constructions. An NP chunker might prevent
some of these cases, but we suspect that many of
them would have been misparsed regardless.

Type 2 errors were caused by instances that for-
merly belonged to the semantic class (e.g.,Serbia-
MontenegroandCzechoslovakiaare no longer coun-
tries). In this error type, we also include border-
line cases that could arguably belong to the semantic
class (e.g., Wales as a country).

Type 3 errors were spelling variants (e.g.,Kyrgys-
tan vs. Kyrgyzhstan) and name variants (e.g.,Bey-
oncevs. Beyonce Knowles). Officially, every entity
has one official spelling and one complete name, but
in practice there are often variations that may occur
nearly as frequently as the official name. For exam-
ple, it is most common to refer to the singerBeyonce
by just her first name.

Type 4 errors were caused by sentences that were
just flat out wrong in their factual assertions. For ex-
ample, some sentences referred to“North America”
as a country.

Type 5 errors were caused by broken expressions
found in the retrieved snippets (e.g.Michi -gan).
These errors may be fixable by cleaning up the web
pages or applying heuristics to prevent or recognize
partial words.

It is worth noting that incorrect instances of Types
2 and 3 may not be problematic to encounter in a
dictionary or ontology. Name variants and former
class members may in fact be useful to have.

5 Conclusions

Combining hyponym patterns with pattern linkage
graphs is an effective way to produce a highly ac-

curate semantic class learner that requires truly min-
imal supervision: just the class name and one class
member as a seed. Our results consistently produced
high accuracy and for thestatesandcountriescate-
gories produced very high recall.

The singersandfish categories, which are much
larger open classes, also achieved high accuracy and
generated many instances, but the resulting lists are
far from complete. Even on the web, the doubly-
anchored hyponym pattern eventually ran out of
steam and could not produce more instances. How-
ever, all of our experiments were conducted using
just a singlehyponym pattern. Other researchers
have successfully used sets of hyponym patterns
(e.g., (Hearst, 1992; Etzioni et al., 2005; Paşca,
2004)), and multiple patterns could be used with
our algorithms as well. Incorporating additional hy-
ponym patterns will almost certainly improve cover-
age, and could potentially improve the quality of the
graphs as well.

Our popularity-based algorithm was very effec-
tive and is practical to use. Our best-performing al-
gorithm, however, was the 2-step process that be-
gins with an exhaustive search (reckless bootstrap-
ping) and then ranks the candidates using theOut-
degreescoring function, which represents produc-
tivity. The first step is expensive, however, because
it exhaustively applies the pattern to the web until
no more extractions are found. In our evaluation, we
ran this process on a single PC and it usually finished
overnight, and we were able to learn a substantial
number of new class instances. If more hyponym
patterns are used, then this could get considerably
more expensive, but the process could be easily par-
allelized to perform queries across a cluster of ma-
chines. With access to a cluster of ordinary PCs,
this technique could be used to automatically create
extremely large, high-quality semantic lexicons, for
virtually any categories, without external training re-
sources.

Acknowledgments

This research was supported in part by the Department

of Homeland Security under ONR Grants N00014-07-1-014

and N0014-07-1-0152, the European Union Sixth Framework

project QALLME FP6 IST-033860, and the Spanish Ministry

of Science and Technology TEXT-MESS TIN2006-15265-C06-

01.

References

M. Berland and E. Charniak. 1999. Finding Parts in Very
Large Corpora. InProc. of the 37th Annual Meeting of
the Association for Computational Linguistics.

S. Borgatti and M. Everett. 2006. A graph-theoretic per-
spective on centrality.Social Networks, 28(4).

S. Caraballo. 1999. Automatic Acquisition of a
Hypernym-Labeled Noun Hierarchy from Text. In
Proc. of the 37th Annual Meeting of the Association
for Computational Linguistics, pages 120–126.

P. Cimiano and J. Volker. 2005. Towards large-scale,
open-domain and ontology-based named entity classi-
fication. InProc. of Recent Advances in Natural Lan-
guage Processing, pages 166–172.

D. Davidov and A. Rappoport. 2006. Efficient unsu-
pervised discovery of word categories using symmet-
ric patterns and high frequency words. InProc. of the
21st International Conference on Computational Lin-
guistics and the 44th annual meeting of the ACL.

O. Etzioni, M. Cafarella, D. Downey, A. Popescu,
T. Shaked, S. Soderland, D. Weld, and A. Yates.
2005. Unsupervised named-entity extraction from the
web: an experimental study.Artificial Intelligence,
165(1):91–134, June.

M.B. Fleischman and E.H. Hovy. 2002. Fine grained
classification of named entities. InProc. of the 19th
International Conference on Computational Linguis-
tics, pages 1–7.

C. Freeman. 1979. Centrality in social networks: Con-
ceptual clarification.Social Networks, 1:215–239.

R. Girju, A. Badulescu, and D. Moldovan. 2003. Learn-
ing semantic constraints for the automatic discovery of
part-whole relations. InProc. of Conference of HLT /
North American Chapter of the Association for Com-
putational Linguistics.

M. Hearst. 1992. Automatic acquisition of hyponyms
from large text corpora. InProc. of the 14th confer-
ence on Computational linguistics, pages 539–545.

D. Lin and P. Pantel. 2002. Concept discovery from text.
In Proc. of the 19th International Conference on Com-
putational linguistics, pages 1–7.

D. Lin. 1998. Automatic retrieval and clustering of sim-
ilar words. InProc. of the 17th international confer-
ence on Computational linguistics, pages 768–774.

G. Mann. 2002. Fine-grained proper noun ontologies for
question answering. InProc. of the 19th International
Conference on Computational Linguistics, pages 1–7.

G. Miller. 1990. Wordnet: An On-line Lexical Database.
International Journal of Lexicography, 3(4).

R. Navigli and M. Lapata. 2007. Graph connectiv-
ity measures for unsupervised word sense disambigua-
tion. In Proc. of the 20th International Joint Confer-
ence on Artificial Intelligence, pages 1683–1688.

M. Paşca. 2004. Acquisition of categorized named en-
tities for web search. InProc. of the Thirteenth ACM
International Conference on Information and Knowl-
edge Management, pages 137–145.

M. Paşca. 2007a. Organizing and searching the world
wide web of facts – step two: harnessing the wisdom
of the crowds. InProc. of the 16th International Con-
ference on World Wide Web, pages 101–110.

M. Paşca. 2007b. Weakly-supervised discovery of
named entities using web search queries. InProc. of
the sixteenth ACM conference on Conference on infor-
mation and knowledge management, pages 683–690.

L. Page, S. Brin, R. Motwani, and T. Winograd. 1998.
The pagerank citation ranking: Bringing order to the
web. Technical report, Stanford Digital Library Tech-
nologies Project.

P. Pantel and D. Ravichandran. 2004. Automatically
labeling semantic classes. InProc. of Conference of
HLT / North American Chapter of the Association for
Computational Linguistics, pages 321–328.

P. Pantel, D. Ravichandran, and E. Hovy. 2004. To-
wards terascale knowledge acquisition. InProc. of the
20th international conference on Computational Lin-
guistics, page 771.

W. Phillips and E. Riloff. 2002. Exploiting Strong Syn-
tactic Heuristics and Co-Training to Learn Semantic
Lexicons. InProc. of the 2002 Conference on Empiri-
cal Methods in Natural Language Processing.

E. Riloff and R. Jones. 1999. Learning Dictionaries for
Information Extraction by Multi-Level Bootstrapping.
In Proc. of the Sixteenth National Conference on Arti-
ficial Intelligence.

E. Riloff and J. Shepherd. 1997. A Corpus-Based Ap-
proach for Building Semantic Lexicons. InProc. of
the Second Conference on Empirical Methods in Nat-
ural Language Processing, pages 117–124.

B. Roark and E. Charniak. 1998. Noun-phrase Co-
occurrence Statistics for Semi-automatic Semantic
Lexicon Construction. InProc. of the 36th Annual
Meeting of the Association for Computational Linguis-
tics, pages 1110–1116.

H. Tanev and B. Magnini. 2006. Weakly supervised ap-
proaches for ontology population. InProc. of 11st
Conference of the European Chapter of the Associa-
tion for Computational Linguistics.

M. Thelen and E. Riloff. 2002. A Bootstrapping Method
for Learning Semantic Lexicons Using Extraction Pat-
tern Contexts. InProc. of the 2002 Conference on Em-
pirical Methods in Natural Language Processing.

D. Widdows and B. Dorow. 2002. A graph model for
unsupervised lexical acquisition. InProc. of the 19th
International Conference on Computational Linguis-
tics, pages 1–7.

