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Abstract. Programming language syntax is a barrier to learning programming for
novice programmers and persons with vision or mobility loss. A spoken language
interface for programming provides one possible solution to the problems these
groups face. We developed a prototype text-based natural language interface for
Java programming that accepts English sentences from the keyboard and produces
syntactically correct Java source code. We also conducted a Wizard of Oz study
to learn how introductory programming students might ultimately use a fully func-
tional version of a spoken language programming interface. This study shows that
students typically make simple requests, that they tend to use a shared vocabulary,
and that disfluencies will pose a challenge to a working system.

1. Introduction

Students learning to write computer programs are often put off by the arcane complexity
of programming language syntax. Students with vision loss are unable to see syntactic
presentations in the classroom, and they quickly discover that debugging syntactic errors
is an inherently visual task. Students with mobility loss encounter extreme difficulty
entering source code at the keyboard.

All of these students could benefit from a way to create programs without having to
worry about the complexities of syntax. We are in the early stages of developing a spoken
language interface for writing computer programs. Our goal is a system in which the user
talks to a computer using natural English sentences or sentence fragments, in response to
which the computer generates syntactically correct Java source code. We are not trying
to create a system that can synthesize programs from high-level specifications spoken
by non-programmers. In the system that we envision, students will describe the creation
of programs, step by step, in much the same way that an instructor in an introductory
programming class might describe program creation in a lecture (Figure 1). Our goal is
to enable students to work at a higher level of abstraction by allowing them to program
without getting bogged down in syntactic details.

To test whether a natural language interface for programming is feasible, we imple-
mented a prototype that reads English requests from the keyboard and produces syntacti-
cally correct Java source code in response [8]. This prototype, NaturalJava, works within
a small subset of Java and, more significantly, within the small subset of English that we
found sufficient to describe programs.

Many technical challenges and questions must be addressed before our simple text-
based language interface can be generalized into a fully functional and robust spoken
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1. Create a public method called dequeue.

2. It returns a comparable.

3. Define an int called index and initialize it to 1.

4. Declare an int called minindex equal to 0.

5. Create a comparable called minValue which is equal
to elements’ firstelement cast to a comparable.

6. Loop while index is less than elements’ size.

Figure 1. Sample input sentences given to NaturalJava.

language interface for programming. We investigated three questions surrounding the
use of spoken requests by novice programmers to create programs: How complex are
typical user requests? To what degree do the vocabularies employed by different users
overlap? What is the impact of disfluent speech on information extraction? In this paper,
we describe our efforts to answer these questions and present our results.

To answer these questions, we needed to observe beginning students as they used a
spoken language interface for programming. In order to do this without first building such
an interface, we conducted a Wizard of Oz study in which volunteer subjects believed that
they were interacting with a working system. This bit of subterfuge was critical because
studies show that subjects who believe that they are interacting with a computer behave
differently than subjects who believe they are interacting with other people [7].

In our study, we asked novice programmers from an introductory C++ class to use
our “system” to work on their assignments [10]. Each subject sat in front of a computer
displaying what appeared to be a spoken language interface for creating programs. In
reality, an expert programmer (the “wizard”) was using a remote computer to monitor
the subject’s utterances and generate the correct responses on the subject’s computer.

We recorded and analyzed all subject interactions. Our analysis shows that the indi-
vidual requests that subjects made of the interface were simple in nature, that the subjects
as a group used substantially the same vocabulary when making requests, and that speech
disfluencies will pose a problem for working interfaces. We also found, however, that
natural language processing technology performs surprisingly well despite disfluencies.

Section 2 discusses previous research in syntax-free methods of programming. Sec-
tion 3 describes the NaturalJava prototype. Section 4 describes our Wizard of Oz study.
Section 5 discusses the results of our analysis of the study. Finally, Section 6 presents the
conclusions we drew from our research.

2. Related Work

Previous work on syntax-free programming spans three fields: automatic programming,
structure editors, and natural language-based interfaces for programming. The goal for
automatic programming is the generation of computer programs from an end-user’s non-
technical description [11]. Unfortunately, this goal is well beyond the state of the art.
Structure editors, also known as syntax-directed editors, do not allow the user to
create a syntactically incorrect program [6]. Instead, each modification to the evolving
source code, made by selecting from menus and filling in templates, is governed by the
grammar of the programming language. Such interfaces are cumbersome for the blind.
Several natural language-based interfaces for programming have been developed.
All but one of these accept input from the keyboard. NLC [1] accepts natural language
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input and carries out matrix manipulations, but creates no source code. Moon [15] is
an interpreted programming language that approximates natural language understanding.
TUJA [4] generates frameworks for Java code (class, method, and data member declara-
tions) from Turkish sentences. Metafor [5] builds, from the linguistic structure of English
sentences, “scaffolding code” in Python to demonstrate the framework of a solution.

VoiceCode [2] is the first spoken language programming interface. It accepts spo-
ken instructions using a constrained syntax and produces source code in one of two lan-
guages (Python or C++). VoiceCode uses templates to generate common programming
constructs, such as loops and class declarations. While several specific keywords are
associated with each of these templates to allow the user some flexibility in phrasing
commands, the grammatical structure of the user requests is rigidly defined.

3. The NaturalJava Prototype

Because we wanted to ensure that it was possible to create Java programs using natural
language we implemented a prototype that takes English sentences and sentence frag-
ments typed on a keyboard and generates Java source code. In this section, we briefly
discuss this prototype and describe its limitations.

The prototype interface is fully implemented and can be used to produce Java source
code. During a programming session, the interface comprises three text areas, an edit
box, and a prompt. The largest text area displays the evolving source code. Beneath this
text area is a prompt indicating that the program is processing a request or waiting for
input from the user. The user types requests to the system in the edit box below the
prompt. The text area at the bottom of the window shows error messages and any requests
the program is making to the user (such as, “What is the name of the index variable
for this loop?”). The text area along the right side of the window provides information
requested by the user (such as the names and parameters for methods within a class or
associated with an object) or a list of variables in scope.

3.1. Architecture of the Prototype

The NaturalJava user interface has three components[8]. The first component is Sun-
dance [14], a natural language processing system that uses a shallow parser to perform
information extraction [13,12]. For NaturalJava, Sundance extracts information from En-
glish sentences and generates case frames representing programming concepts. The sec-
ond component is PRISM, a knowledge-based case frame interpreter that uses a manu-
ally constructed decision tree to infer high-level editing operations from the case frames.
The third component is TreeFace, an abstract syntax tree (AST) manager. PRISM uses
TreeFace to manage the syntax tree of the program being constructed.

Figure 2 illustrates the dependencies among the three modules and the user. PRISM
presents a graphical interface to the user, who types an English sentence describing a
program construction command or editing directive. PRISM passes the sentence to Sun-
dance, which returns a set of case frames that extract the key components of the sentence.
PRISM analyzes the case frames and determines the appropriate program construction
and editing operations, which it carries out by making calls to TreeFace. TreeFace main-
tains an internal AST representation of the evolving program. After each operation,
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(3) Case frames 4) AST methods
Sundance :>:: PRISM :>:: TreeFace
(2) Sentence (5) Source code

(1) English command | | | |(6) Java source code
line input

User

Figure 2. Architecture of the NaturalJava prototype.

TreeFace transforms the syntax tree into Java source code and makes it available to
PRISM. PRISM displays this source code to the user, and can save it to a file at any time.

3.2. Limitations of the Prototype

The NaturalJava prototype possesses a number of limitations resulting from our depth-
first development strategy. Its interface is very simple, allowing only input typed at the
keyboard. It is best suited to program creation—editing features are extremely limited.

NaturalJava’s input and output languages are limited in several ways. Its English
vocabulary is limited to the words we use to describe programs. Additionally, Sundance
has problems correctly parsing some of the unusual grammatical structures that might be
used in programming. For output, NaturalJava supports most of the core Java language,
but supports little of the Java API.

4. The Design of a Wizard of Oz Study

The NaturalJava prototype demonstrated that it is possible to build a Java programming
system with a text-based natural language interface, albeit one with the limitations de-
scribed in the previous section. To study how students would use a spoken language in-
terface for programming, we designed and conducted a Wizard of Oz study[10]. We re-
cruited eight subjects from an introductory C++ programming class to participate in this
study. (We chose students from a C++ class because no Java class was offered; fortu-
nately for our goals, Java and C++ are syntactically and conceptually similar.)

Over the course of the semester, each subject used the system once a week for two
hours. During each session, the subject would typically use the system to work on a
homework assignment from his or her programming class.

During the study, each subject sat at a computer that displayed a simple one-window
user interface [10]. The interface was divided into a code region, a prompt region, and a
message region. The evolving source code appeared in the code region, which was the
largest of the three. The prompt region indicated whether the system was processing an
input or was ready to receive the next input. The message region displayed, as necessary,
messages that requested more information from the user or warned that the previous
command was not understood.

The keyboard and the mouse were removed from the computer, leaving an audio
headset with a boom microphone as the only input device available to the subject. The
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subject communicated with the system by speaking into the microphone, and the wizard
communicated with the user by displaying source code, messages, and status updates in
one of the three regions.

Before each subject’s first session, we explained the purpose of the three window
regions. We advised them to think of the computer as a classmate and to describe the
program they wanted to that person. All source code modifications and messages were
logged in coordination with the subject’s audio requests. This made it possible, during
the subsequent analysis phase, to recreate the exact sequence of events of each session.

5. Wizard of Oz Study Results

The goal of our research was to provide an understanding of three basic issues that arise
in the development of a spoken language interface for programming: the complexity
of requests made of the interface, the commonality of vocabulary across users, and the
problems posed by disfluent speech on information extraction. We focused on a single
potential group of users: novice programmers taking an introductory programming class.

The Wizard of Oz study comprised 67 sessions totaling approximately 125 hours.
During these sessions, the subjects made 8117 requests to the interface. Each session
generated four types of data: an audio recording of each request, the output from the
NaturallySpeaking speech recognition system for each request, any messages sent to the
message region, and the sequence of changes to the source code. We manually tran-
scribed the audio recording of each request to make further analysis possible.

Results from our analysis of the data set make up the remainder of this section.
Recall that we suggested the students talk to the computer as to a classmate. This resulted
in very noisy data with many disfluencies and, in some cases, a lot of thinking aloud.
In Section 5.1, we discuss the types of commands the subjects used. In Section 5.2, we
analyze the vocabulary used by the subjects. The final section examines the effect that
disfluencies had on the underlying NLP system used in NaturalJava.

5.1. Command Type Results

Each request uttered by a subject when creating or editing source code would require an
interface to take one or more distinct actions, such as moving within the source code or
declaring variables. We refer to each distinct type of action as a command type.

We manually labeled each request with one or more tags that indicate the types
of commands that the request expresses [9]. The set of tags that characterize a request
is unordered (doesn’t reflect the order of command types) and contains no duplicates
(doesn’t reflect multiple occurrences of command types).

The relative frequencies of the different command types were navigation (24%),
edit (22%), declaration (8%), 1/0 (7%), parameter passing (6%), comment (5%) ,
method calls (5%), system 1/O (4%), assighments (4%), other (15%). These data show
frequent uses of navigation and editing commands. In retrospect, the predominance of
these command types is not surprising. As novice programmers write source code, they
often forget to include necessary declarations and other statements, and so they move
around in the file to add these missing pieces.

The presence of more than one command type within a single utterance further com-
plicates the classification of user requests. For instance, “go to the first line in this method
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and change i to index” contains two command types—a navigation command and an
edit command. If multiple command types routinely co-occur within requests, it would
greatly increase the complexity of the process needed to identify the command types
present within a request. Our data show that 61.0% of the commands contain only one
command, 28.5% of the requests contain exactly two commands, and 7.7% of requests
contain exactly three commands. Since 97% of the requests contain three or fewer types
of commands, an automated procedure for classifying command types need not be overly
concerned with complicated requests.

In summary, our data show that the subjects tended to make simple requests of the
interface, using predominantly one or two commands within a request and using a small
subset of command types for the bulk of their requests. These results suggest that de-
termining the types of actions being requested by novice programmers is not an overly
complex task. However, the small number of subjects, working on a small number of
tasks, may not provide a large enough sample size to reliably generalize these results.

5.2. Vocabulary Results

The vocabulary used by the subjects must be understandable by any natural language
interface for programming. Consequently, gaining insight about the range of vocabulary
across subjects would greatly impact how any future interfaces are designed. If all of
the subjects use a consistent vocabulary, future systems can be designed around this
“core vocabulary”. If the vocabulary varies widely between subjects, building a spoken
language interface for programming without placing restrictions on the language that can
be used would be more complex.

However, it is unrealistic to expect that all the subjects would completely share a
single vocabulary. Each programmer uses a variety of novel words within their source
code, such as class/method/variable names and text within comments, that are not words
that a natural language interface for programming would have to understand and process.
Therefore, it is unrealistic to expect that a dictionary will ever attain complete coverage
of the words uttered by users.

However, one would expect that the percentage of novel words of this nature (e.g.,
variable names, method names, etc.) uttered by a user should be relatively constant across
users, and be a relatively small percentage of the words uttered. If this is the case, then a
system should not expect to achieve 100% vocabulary coverage for new users but should
expect to achieve good vocabulary coverage, since most words do represent general pro-
gramming and editing command directives that should be common across users.

For the following analyses, we removed all stop words [3] from the transcripts.
Throughout this section, word instances refers to the collection of all of the uttered
words, while unique words is a synonym for the set of unique words found within that
collection (i.e., all duplicate instances have been removed).

In these experiments, we imagined that a system has been created to support the
collective vocabulary used by N subjects. We then measured the vocabulary coverage
that this imaginary system would provide for the NV + 1th subject. In the first experiment,
we treated each subject as a new user. We combined the vocabularies of all of the other
subjects into a “base” vocabulary. We then compared the new user’s vocabulary against
this base vocabulary to determine the percentage of unique words uttered by a “new
user” that would be covered by the base vocabulary. The results are shown in Table 1.
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Subject Number of Percent overlap
unique words  against other Subjects
uos 406 81.0
u20 572 80.9
u24 859 69.6
U39 682 80.8
u45 964 69.4
us2 426 88.3
u66 629 77.9
U6 677 72.8
Average across
all subjects 651.9 77.6

Table 1. Percentage of each subject’s vocabulary that overlaps with a vocabulary established by the other
seven subjects.

These results show a surprisingly high level of coverage of a new user’s vocabulary,
averaging 77.6%. Furthermore, a similar analysis of word instances (instead of unique
words) resulted in coverage of more than 95% of a new user’s vocabulary[9].

In summary, the acquisition of a common vocabulary occurs quickly, reaching a
vocabulary coverage of unique words approaching 80% when the base vocabulary is built
from seven subjects. Furthermore, the words in the base vocabulary cover more than 95%
of the word instances uttered. These high levels of vocabulary coverage suggest that a
common vocabulary can be developed. However, the selection of all the subjects from a
single class may introduce a bias to these results because the students may have adopted
the language used by their instructor.

5.3. Disfluencies

Spoken language often contains disfluencies. A disfluency is a contiguous portion of an
utterance that must be removed to achieve the speaker’s intended utterance. There are
four types of disfluencies: filled pauses, such as um, er, uh (e.g., “declare a um public
class”); repetitions, where words are repeated exactly (e.g., “declare a declare a public
class”); false starts, where the first part of the utterance is discarded (e.g., “declare a
move down three lines”); and repairs, where aspects of the utterance are changed (e.g.,
“Declare a private no public class™). In each case, removing the disfluency results in the
intended utterance (e.g., “Declare a um public class” becomes “declare a public class”).

To create the data set for examining the effect of disfluencies, we randomly sampled
10% of each subject’s utterances from the original transcripts and marked each instance
of a disfluency. We found that the frequencies of disfluencies within this domain varies
widely among the users but, on average, disfluencies occur in 50% of the subject requests
[9]. Clearly, a spoken language interface must cope with an abundance of disfluencies.

Information extraction (IE) is one approach to natural language processing. It seeks
to find relevant information for a task. One technique for performing IE begins by parsing
sentences to determine their syntactic structure. Since disfluencies may disrupt the syntax
of a sentence, they may interfere with the process of IE. To test the impact of disfluencies
on IE, we examined the effects of disfluencies on the Sundance IE system [14].
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Trigger: declare
Type: create
CreateType: “a public class”

Figure 3. An example of an instantiated Sundance case frame triggered by the verb ‘declare’.

We used two data sets to perform this test. For the first data set, we used the original
sentences that we tagged for disfluencies. To build the second data set, we removed the
disfluencies from the original utterances, obtaining the intended utterances. These two
data sets provided us with lists of original utterances (i.e., potentially containing disflu-
encies) and their corresponding intended utterances (i.e., with all disfluencies removed).

We processed each of the original utterances and its corresponding intended ut-
terance using Sundance. For each utterance, Sundance instantiates a collection of case
frames. We compared the case frames instantiated for the original utterance against those
for the intended utterance. The differences between these case frames resulted from the
disfluencies found within the original utterance.

Each case frame instantiated by Sundance contains four components: the word trig-
gering the case frame, the type of the case frame, the slot names, and the strings extracted
from the input. Each of these components provides valuable information. The triggering
word can be a useful keyword indicator while processing case frames. The case frame
type represents the concept embodied in the case frame. The slot names for the extracted
strings indicate the role played by the phrase extracted in that slot. The extracted strings
are usually noun phrases, with the most important element being the head noun. For ex-
ample, given the sentence fragment “declare a public class”, Sundance instantiates the
case frame seen in Figure 3. Sundance extracts the direct object noun phrase “a public
class.” The head noun for this phrase is “class.” It is the most important element of this
string because it indicates the type of object to be created.

We used these four components of the case frames to compare the case frames in-
stantiated from the original utterance to those instantiated from the intended utterance.
We utilized three levels of equivalence between case frames to examine the impact of
disfluencies on IE. These levels of equivalence are:

e Exact Match: All components of the case frames are identical.

e Head Noun Match: Modifiers in the extracted string differ, but all other compo-
nents of the case frames are identical. For instance, for the original utterance, “de-
clare a um public class”, the original utterance case frame would contain the ex-
tracted string “a um public class”, while the intended utterance case frame would
contain the extracted string “a public class”.

e Slot Name Match: The head noun (generally right-most) is missing, but all other
components of the case frames are identical. For example, the original utterance
“declare a um let’s see public class” results in the extracted string “a um” in the
original utterance case frame, while the intended utterance case frame contains
“a public class”. The concept embodied by the case frame remains, but crucial
information is lost.

Table 2 shows the differences in Sundance’s ability to extract information from the
original utterances and the corresponding intended utterances. Slightly more than 88%
of the case frames generated from the original utterances exactly match those generated
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Count  Percent
Exact matches 1,542 88.2
Exact + head noun matches 1,576 90.1
Exact + head noun + slot name matches | 1,616 924

Table 2. Statistics on the numbers of case frames that match for both the original utterance and the effective
utterance.

from the intended utterances. Thus, Sundance successfully extracted the correct infor-
mation 88.2% of the time despite the presence of disfluencies.

Slightly less than 2% of the case frames generated from the original utterances do
not match exactly but satisfy the head noun match criteria. So, for 90.1% of the utter-
ances, the disfluencies had no effect or only very minor effects on the natural language
processing. Matches to slot names occur for 2.3% of the original utterance case frames.
Slot name matches increases the coverage of original utterance case frames containing
relevant information to 92.4%.

In summary, disfluencies present problems for a spoken language interface for pro-
gramming. However, an IE system appears to be surprisingly resilient in the presence of
these disfluencies. Sundance extracts approximately 90% of the information required for
processing user requests. Therefore, the problems posed by disfluencies do not appear to
be catastrophic for a spoken language interface for programming.

6. Conclusions

The first step in a computer science education is learning to program. The complexities
of programming language syntax pose problems for many groups of potential students.
These groups include novice programmers as well as persons with vision or mobility
impairments. These problems present barriers to students wishing to enter the field of
computer science. A spoken language interface for programming is a potential method
to remove these barriers.

Many difficult problems remain to be solved before a flexible, fully-functional spo-
ken language interface for programming can be developed. The goal of our research was
to provide an understanding of some of the basic issues faced in this development pro-
cess. We investigated three aspects of a spoken language interface for programming in
the context of novice programmers taking an introductory programming class. We found
the following results: (1) 97% of the requests made by subjects contained three or fewer
command types, suggesting that a real system will not need to deal with overly complex
requests; (2) almost 80% of the vocabulary of a new user is covered by a vocabulary
derived from a small number of existing users, suggesting that few restrictions will need
to be placed on a user’s vocabulary; and (3) disfluencies will pose a problem for a spoken
language interface for programming, but information extraction technology is resilient,
extracting ~90% of the information correctly.

The subjects of the study were enthusiastic about using this type of interface for
programming. They particularly enjoyed the assistance with syntax provided by the in-
terface. Therefore, we believe that a spoken language interface would provide a useful
tool for learning to program and break down some of the barriers keeping students from
entering computer science.
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