To appear in Al Journal, Vol. 85, Elsevier Publishers, cover date August 1996.

An Empirical Study of Automated Dictionary
Construction for Information Extraction in Three
Domains

Ellen Riloff

Department of Computer Science, University of Utah, Salt Lake City, UT 84112

A primary goal of natural language processing researchers is to de-
velop a knowledge-based natural language processing (NLP) system
that is portable across domains. However, most knowledge-based
NLP systems rely on a domain-specific dictionary of concepts,
which represents a substantial knowledge-engineering bottleneck.
We have developed a system called AutoSlog that addresses the
knowledge-engineering bottleneck for a task called information ez-
traction. AutoSlog automatically creates domain-specific dictionar-
ies for information extraction, given an appropriate training corpus.
We have used AutoSlog to create a dictionary of extraction patterns
for terrorism, which achieved 98% of the performance of a hand-
crafted dictionary that required approximately 1500 person-hours
to build. In this paper, we describe experiments with AutoSlog in
two additional domains: joint ventures and microelectronics. We
compare the performance of AutoSlog across the three domains,
discuss the lessons learned about the generality of this approach,
and present results from two experiments which demonstrate that
novice users can generate effective dictionaries using AutoSlog.

1 Introduction

Portability is a crucial concern for researchers in knowledge-based natural
language processing (NLP). Knowledge-based NLP systems typically rely on
a conceptual dictionary that has been manually encoded for a specific do-
main. Although knowledge-based systems have performed well on certain tasks
(e.g., [2,4,5,11,16,23]), these systems will not be practical for real world appli-
cations until the knowledge that they need can be acquired automatically.

Preprint submitted to Elsevier Preprint 21 March 1996

We have developed a system called AutoSlog that generates conceptual dictio-
naries for information extraction automatically. Information extraction (IE)
is essentially a form of text skimming, in which specific types of informa-
tion are extracted from text. There has been a lot of work recently on in-
formation extraction in conjunction with the recent message understanding
conferences [26-28]. Most information extraction systems rely on a manually
encoded dictionary of extraction patterns (e.g., see [12,15,1]). Using AutoSlog,
the UMass/MUC-4 system was the first system that could acquire domain-
specific extraction patterns automatically [17,18].

In previous work, we showed that AutoSlog could create effective extraction
patterns for the domain of terrorism [30]. A dictionary generated by Au-
toSlog for the terrorism domain achieved 98% of the performance of a hand-
crafted dictionary that required approximately 1500 person-hours to build.
The heuristics used by AutoSlog are domain-independent linguistic rules, but
it was unclear whether these heuristics would be effective in other domains.
In this paper, we describe the results of experiments with AutoSlog in two
additional domains: joint ventures and microelectronics. Our goal was to de-
termine whether the domain-independent linguistic rules used by AutoSlog are
sufficient to generate effective extraction patterns for other types of domains.
If not, would small modifications to the heuristics be sufficient to produce
good dictionaries? Or did the heuristics need to be completely overhauled? Or
perhaps this domain-independent approach was not portable at all.

We also conducted two experiments to determine whether novice users could
produce effective dictionaries using AutoSlog. Knowledge acquisition systems
that can be used only by computer scientists will not be practical in most real-
world situations. The results of these experiments provided valuable feedback
about the effectiveness and variation of dictionaries produced by different
people.

In the first section, we provide some background about information extraction
and give a brief overview of the CIRCUS sentence analyzer used in these
experiments. In Section 2, we describe the AutoSlog system for automated
dictionary construction, and present results from the terrorism domain. In
Section 3, we describe the modifications made to AutoSlog and experimental
results for the joint ventures and microelectronics domains. Section 4 describes
the experiments with novice users. Finally, Section 5 discusses related work
and the implications of AutoSlog.

1.1 Information Extraction

Information extraction (1E) is a natural language processing task that involves

automatically extracting specific types of information from text. In contrast
to in-depth understanding, information extraction systems extract only the
information that is relevant to a specific domain. For example, an information
extraction system for the domain of terrorism might extract the names of
perpetrators, victim, physical targets, and weapons involved in a terrorist
incident. An information extraction system for the domain of joint ventures
might extract the names of people and companies involved in joint ventures
and the names of products and facilities associated with them.

Information extraction has received a lot of attention recently because of the
message understanding conferences (MUCs) sponsored by the U.S. govern-
ment [26-28]. The message understanding conferences are competitive per-
formance evaluations that involve participants from a variety of academic
and industrial research labs. The third and fourth message understanding
conferences (MUC-3 and MUC-4) were held in 1991 and 1992 and involved
information extraction for the domain of Latin American terrorism. Each par-
ticipating site developed an information extraction system for the terrorism
domain, and the systems were formally evaluated and compared. Fifteen sites
participated in MUC-3 and seventeen sites participated in MUC-4. The fifth
message understanding conference (MUC-5) was held in 1994 and involved in-
formation extraction for two new domains: joint ventures (a business domain)
and microelectronics (a technical domain).

The information extraction task was to extract relevant information from texts
and put the extracted information into predefined templates. For MUC-4, 22
types of information had to be extracted for each terrorist incident mentioned
in a text. Figure 1 shows a text from the MUC-4 corpus that describes a bomb-
ing of the U.S. embassy in Miraflores, Peru. For this text, a bombing template
had to be generated that included the date of the bombing (“15 JANUARY”),
the location (“MIRAFLORES”), the perpetrators (“TEN TERRORISTS”), the
weapons (“DYNAMITE STICKS”), the physical target (“U.S. EMBASSY FACIL-
ITIES”), the human targets (“EMBASSY OFFICIALS” and “SECURITY OFFI-
CERS”), and the information about damage and casualties.

The MUC participants were provided with a development corpus to use for
training purposes and a blind test set for the final evaluation. The MUC-4
development corpus consisted of 1500 texts and associated answer keys. The
answer keys are templates that were filled out manually with the information
that should be extracted from the texts. If several terrorist incidents were
reported in a text, then multiple templates had to be filled out. If no terrorist
incidents were reported, then no templates had to be filled out. 53% of the
texts in the MUC-4 corpus contained relevant information and therefore had
one or more associated answer key templates.

LIMA, 16 JAN 90 (TELEVISION PERUANA) — [TEXT| TEN TERRORISTS HURLED DY-
NAMITE STICKS AT U.S. EMBASSY FACILITIES IN THE MIRAFLORES DISTRICT, CAUS-
ING SERIOUS DAMAGE BUT FORTUNATELY NO CASUALTIES. THE ATTACK TOOK
PLACE AT 2100 oN 15 JANUARY [0100 GMT ON 16 JAN].

INSIDE THE FACILITY, WHICH WAS GUARDED BY 3 SECURITY OFFICERS, A GROUP
OF EMBASSY OFFICIALS WERE HOLDING A WORK MEETING.

ACCORDING TO THE FIRST POLICE REPORTS, THE ATTACK WAS STAGED BY 10
TERRORISTS WHO USED 2 TOYOTA CARS WHICH WERE LATER ABANDONED. ONE
OF THE VEHICLES WAS LEFT ON THE THIRD BLOCK OF JOSE PARDO AVENUE,
WHILE THE OTHER WAS LEFT ON THE FIRST BLOCK OF BELLA VISTA STREET IN
MIRAFLORES.

Fig. 1. A MUC-4 terrorism text
1.2 The CIRCUS Sentence Analyzer

The natural language processing group at the University of Massachusetts par-
ticipated in MUC-3, MUC-4, and MUC-5 using a conceptual sentence analyzer
called CIRCUS [16]. The heart of CIRCUS is a domain-specific dictionary of
concept nodes. A concept node is essentially a case frame that is activated
by certain linguistic expressions and extracts information from the surround-
ing text. Figure 2 shows a sample sentence and an instantiated concept node
produced by CIRCUS. The concept node SMURDER-PASSIVES is activated by
the passive form of the verb “murdered” and extracts the “three peasants” as
victims and the “guerrillas” as perpetrators.

Sentence: Three peasants were murdered by guerrillas.

$MURDER-PASSIVE$
victim = “three peasants”
perpetrator = “guerrillas”

Fig. 2. An instantiated concept node

Figure 3 shows the concept node definition of SMURDER-PASSIVES in the dic-
tionary. This concept node is activated by passive forms of the verb “mur-
dered”, such as “was murdered”, “were murdered”, and “have been murdered.”
Once activated, it extracts the subject of the verb as a victim, and the object
of the preposition “by” as a perpetrator. The dictionary also contains a similar
concept node called SMURDER-ACTIVES which is activated by active forms of
the verb “murdered”, such as “John murdered Sam” or “John has murdered
Sam.” SMURDER-ACTIVE$ extracts the subject of the verb as a perpetrator
(i.e., John) and its direct object as a victim (i.e., Sam).

A concept node definition contains a trigger word that determines when the
concept node is activated. For example, both SMURDER-PASSIVES and $MURDER-

Name: $MURDER-PASSIVES
Trigger Word: murdered
Variable Slots: (victim (*suBJECT* 1))

(perpetrator (*PREP-PHRASE™ (is-prep? ’(by))))
Slot Constraints: (class VICTIM *SUBJECT)

(class PERPETRATOR *PREP-PHRASE™)
Constant Slots: (type murder)
Enabling Conditions: (passive)

Fig. 3. The concept node definition for SMURDER-PASSIVE$

ACTIVES are triggered by the word “murdered.” However, a concept node
stays active only if its enabling conditions are satisfied. The enabling condi-
tions ensure that each concept node recognizes specific linguistic expressions.
For example, SMURDER-PASSIVES contains enabling conditions that recognize
passive forms of the verb “murdered”, and $MURDER-ACTIVES contains en-
abling conditions that recognize active forms of the verb “murdered.” Only
one of these concept nodes will remain active for each occurrence of the verb
“murdered.”

A concept node definition also contains variable slots that identify the syn-
tactic constituents extracted by the concept node and their role assignments
(e.g., victim or perpetrator). Slot constraints restrict the kind of fillers that
a slot will accept (e.g., the victim slot only accepts humans). Each concept
node also has a constant slot that defines the event type represented by the
concept node. For example, both of the murder concept nodes have the type
“murder” because they are activated by expressions that refer to murder.

All of the information extraction done by CIRCUS happens through concept
nodes, so it is essential to have a concept node dictionary that provides good
coverage of the domain. The UMass/MUC-3 system [19] used a concept node
dictionary for the terrorism domain that was constructed by hand. Although
the hand-crafted dictionary performed well! | we estimate that it required ap-
proximately 1500 person-hours to build. Furthermore, creating concept nodes
by hand required system developers who were experienced with CIRCUS. As a
result, the UMass/MUC-3 system was not portable across domains. To apply
the system to a new domain, the entire knowledge engineering process had to
be repeated.

1 The UMass/MUC-3 system had the highest combined recall and precision of all
the MUC-3 systems [20].

2 Automated Dictionary Construction Using AutoSlog

2.1 Motivation

Building a concept node dictionary by hand was tedious and time-consuming,
but in retrospect we realized that the process mainly involved looking for gaps
in the dictionary and then creating definitions to fill those gaps. Looking back,
most concept nodes were defined using this four-step procedure:

(1) Run a text through CIRCUS and identify information that should have
been extracted but was not (the “targeted” information).

(2) Determine whether the targeted information was the subject of a clause,
the direct object, or a prepositional phrase.

(3) Determine which word in the sentence was the strongest indicator that
the information should have been extracted. Use this word as the trigger
word for a concept node.

(4) Create a concept node that is activated by the trigger word in the same
immediate context, and extracts information from the syntactic con-
stituent identified in step (2).

On the surface, Step (3) seems like the most difficult step to automate. How-
ever, in most cases the trigger word can be reliably identified using simple
linguistic rules. For example, if the targeted information is the subject or di-
rect object of a verb, then the verb is usually an appropriate trigger word. If
the targeted information is in a prepositional phrase, then a pp-attachment
algorithm can be used to find the best trigger word. Simple rules also deter-
mine how much context should be included in Step (4). In general, the concept
node should be activated by the same word in the same type of immediate
linguistic context (e.g., active or passive verb forms).

Based on these observations, we developed a system that uses linguistic rules
to build concept node definitions automatically. The advantages of automating
this process are (1) a substantial reduction in the time required for knowledge
engineering and (2) a dictionary that potentially provides better coverage of
the domain. The next section describes the AutoSlog system that automat-
ically creates concept node dictionaries using this approach. The following
section presents the results of an experiment with AutoSlog in the MUC-4
terrorism domain.

2.2 AutoSlog

The main idea behind AutoSlog is that domain-independent linguistic rules
can be used to construct patterns for information extraction automatically.
As input, AutoSlog needs examples of information that should be extracted.
Figure 4 shows a flowchart that depicts the stages involved in automated
dictionary construction.

annotated

r
corpus or source text
answer keys vorid Trade MEMS "The Wrld Trade Center
Cent er was bonbed by terrorists.”
B
Sentence Analyzer
Conceptual
CONCEPT NODE[] Anchor S: Wrld Trade Center
DEFINITION: O -— Point <+—— V. was bonbed
<x> was bonbed Heuristics PP:. by terrorists

Fig. 4. AutoSlog flowchart

STEP 1: GENERATE AN APPROPRIATE TRAINING CORPUS

The input to AutoSlog is a set of answer keys or an annotated corpus in which
the targeted information for each text has been labeled with semantic tags.
The only requirement imposed by AutoSlog is that only noun phrases can be
tagged. To illustrate, Figure 5 shows a sentence that has been annotated for
the terrorism domain: “A POLICEMAN” has been tagged as an injury victim,
the “URBAN GUERRILLAS” have been tagged as the perpetrators of the attack,
“THE GUARDS” have been tagged as victims, and “SAN SALVADOR” has been
tagged as the location of the attack.

For the experiments described in this paper, we used the MUC-4 and MUC-
5 answer keys as input to AutoSlog instead of an annotated corpus because
they were available and contain the information that AutoSlog needs. How-
ever, they also contain information that AutoSlog does not need. In fact,
AutoSlog did not use a lot of the information contained in the templates. An
annotated corpus is sufficient for AutoSlog and much easier to generate for a
new application. Throughout this paper, we will refer to AutoSlog’s input as
a “training corpus”, which could be an annotated corpus or a set of texts and
associated answer keys.

STEP 2: IDENTIFY THE SYNTACTIC ROLE OF THE TARGETED INFORMATION

I T WAS OFFI Cl ALLY REPORTED THAT A POLI CEMAN WAS WOUNDED TODAY WHEN

\

injury
victim

URBAN GUERRI LLAS ATTACKED THE GUARDS AT A PONER SUBSTATI ON LOCATED

\ v

attack attack
perpetrator victim

I'N DOANTOAN SAN_SAL VADOR.

'

attack
location

Fig. 5. Example text annotations for AutoSlog

For each targeted noun phrase in the training corpus, AutoSlog identifies the
sentence from which it should be extracted. Given an annotated corpus, Au-
toSlog can just grab the sentence in which the noun phrase was tagged. Given a
corpus of texts and answer keys, AutoSlog must map the targeted information
back to the original source text. In this case, AutoSlog makes the assumption
that the first sentence containing the noun phrase is the one from which it
should have been extracted. This assumption is based on the fact that the
MUC corpora consist mainly of newswire articles. Stylistically, news articles
have the property that the most important information is usually reported
first. Secondary information and details are usually reported later. For exam-
ple, an article about the assassination of a mayor probably mentions that the
mayor was assassinated before it provides details about his political career
and family.

Given a targeted noun phrase and the sentence from which it should be ex-
tracted, AutoSlog passes the sentence to CIRCUS for syntactic analysis. CIR-
CUS’ syntactic analyzer generally assigns each noun phrase to one of three
syntactic categories: subject, direct object, or prepositional phrase. AutoSlog
then identifies the syntactic category of the noun phrase.

STEP 3: IDENTIFY A TRIGGER WORD FOR A CONCEPT NODE

Given the syntactic category of the targeted noun phrase, a small set of heuris-
tics is used to identify a trigger word. Intuitively, the trigger word should be
the word that determines the conceptual role of the noun phrase (e.g., whether
someone is a victim or perpetrator). For example, it is impossible to look at
a name such as “John Smith” and determine whether John Smith is a victim
or a perpetrator. His role is defined by the surrounding context. The sentence
“John Smith was killed” identifies John as a victim, and the sentence “John
Smith killed a man” identifies John as a perpetrator. In both cases, the verb

“killed” determines the conceptual role that John played in the event. In gen-
eral, we will refer to this word as a “conceptual anchor point.” With respect
to CIRCUS, a conceptual anchor point is a trigger word for a concept node.

Figure 6 shows the set of thirteen conceptual anchor point heuristics used by
AutoSlog. The heuristics do two things: (a) they identify the conceptual anchor
point (trigger word) for a concept node, and (b) they identify the surrounding
context that the concept node needs to recognize. The first column of Figure 6
shows the general patterns recognized by the heuristics, where the bracketed
item identifies the syntactic category of the targeted noun phrase (subject,
direct object, or prepositional phrase). The second column shows an example
of how each pattern might be instantiated by AutoSlog; the underlined word
is the trigger word and the bracketed item shows the conceptual role assigned
to the extracted information.

Linguistic Pattern Example

<subject> active-verb <perpetrator> bombed
<subject> passive-verb <victim> was murdered
<subject> verb infinitive <perpetrator> attempted to kill
<subject> auxiliary noun <victim> was victim
active-verb <direct-object> bombed <target>
passive-verb <direct-object> killed <victim>

infinitive <direct-object> to kill <victim>

verb infinitive <direct-object> threatened to attack <target>
gerund <direct-object> killing <victim>

noun auxiliary <direct-object> fatality was <victim>

noun prep <noun-phrase> bomb against <target>
active-verb prep <noun-phrase> | killed with <instrument>
passive-verb prep <noun-phrase> | was aimed at <target>

Fig. 6. AutoSlog heuristics and examples from the terrorism domain

The heuristics fall into three sets based on the syntactic category of the tar-
geted noun phrase. The first set of heuristics applies when the noun phrase is
the subject of a clause. In this case, the verb is used as the trigger word because
the verb determines the conceptual role of the subject. Several different verb
forms are recognized. If the verb is in a passive construction, then the pattern
must recognize passive verb forms. If the verb is in an active construction, then
the pattern must recognize active verb forms. If an active verb is followed by
an infinitive, then the infinitive is included in the pattern. For example, given
the sentence “he intended to kill the president”, the pattern “<perpetrator>
intended to kill” is more informative than just “<perpetrator> intended.” A
special pattern handles the case where the verb is an auxiliary verb (i.e., “to
be” or “to have”). These verbs do not convey much semantic information on

their own, so the head noun of the direct object is included in the pattern.
For example, given the sentence “John was the fifth fatality”, the pattern
“<victim> was fatality” is more informative than “<victim> was.”

The second set of heuristics applies when the targeted noun phrase is the
direct object of a verb. In this case, the verb is also used as the trigger word
because the verb determines the conceptual role of the object. The verb is
almost always in an active or infinitive construction.? There are a few special
cases. If the verb is followed by an infinitive then the infinitive is included in
the pattern. If the verb is an auxiliary verb, then the head noun of the subject
is included in the pattern. And one heuristic recognizes gerunds that take
direct objects. For example, given the sentence “The FMLN has been accused
of killing peasants.” and the targeted noun phrase “peasants”, a concept node
would be generated for the pattern “killing <victim>,” which is activated by

the gerund form of “killing.”

The third set of heuristics applies when the targeted noun phrase is in a
prepositional phrase. In this case, a prepositional phrase attachment algorithm
attaches the prepositional phrase to a noun or verb preceding it. The noun or
verb chosen as the attachment point is combined with the preposition to form
the pattern for a concept node.® In most cases, the heuristics are mutually
exclusive so only one will fire for a given noun phrase. In the few cases where
multiple rules apply, the longest pattern is selected.

2.3 Ezxamples from the Terrorism Domain

To illustrate how AutoSlog works, we will show a few examples of concept node
definitions created by AutoSlog for the terrorism domain. Figure 7 shows a
sentence about a bombing incident. The noun phrase “public buildings” has
been tagged as the target of the bombing. CIRCUS analyzes this sentence and
identifies the “public buildings” as the subject of the first clause. The con-
ceptual anchor point heuristics recognize the <subject> passive-verb pat-
tern and produce a concept node to recognize expressions such as “<target>
was bombed.” This concept node is activated by passive forms of the verb
“bombed”, and extracts its subject as the target of a bombing. This concept

2 In principle, passive verbs should not have direct objects but we included this
pattern because CIRCUS occasionally confused active and passive verb forms.

3 The pp-attachment algorithm used by AutoSlog is separate from CIRCUS. If the
preposition is “of”, “against”, or “on”, then the algorithm attaches the preposi-
tional phrase to the most recent constituent. Otherwise, the algorithm attaches the
prepositional phrase to the most recent verb or noun phrase but skips over interven-
ing prepositional phrases. This algorithm makes a lot of mistakes and was intended
only as a simple attempt to handle pp-attachment.

10

node represents a useful pattern for the terrorism domain because it is likely
to appear in many stories about bombings.

Sentence: In La Oroya, Junin department, in the central Peruvian mountain
range, public buildings were bombed and a car-bomb was detonated.

CONCEPT NODE

Name: target-subject-passive-verb-bombed
Trigger: bombed

Variable Slots: (target (*suBJECT* 1))
Constraints: (class PHYS-TARGET *SUBJECT)
Constant Slots: (type bombing)

Enabling Conditions: (passive)

Fig. 7. Concept node definition for “<target> was bombed”

Figure 8 shows an example of a concept node that recognizes a more com-
plicated expression. Given the noun phrase “guerrillas” tagged as perpetra-
tors, CIRCUS identifies the “guerrillas” as the subject of the first clause. The
conceptual anchor point heuristics recognize the pattern <subject> verb
infinitive and produce a concept node that is activated by the expression
“threatened to murder.” This concept node is triggered by the word “mur-
der” but has enabling conditions that require it to be preceded by the words
“threatened to.” When the concept node is activated, it extracts the subject
as a perpetrator. This concept node is also useful for the terrorism domain
because it is likely to appear in many texts that describe death threats.

Sentence: The Salvadoran guerrillas today threatened to murder
individuals involved in 19 March presidential elections if they do not resign
from their posts.

CONCEPT NODE

Name: perpetrator-subject-verb-infinitive-threatened-to-murder
Trigger: murder

Variable Slots: (perpetrator (*suBJECT* 1))

Constraints: (class PERPETRATOR *SUBJECT™)

Constant Slots: (type perpetrator)

Enabling Conditions: ((active))

(trigger-preceded-by ’threatened ’to))

Fig. 8. Concept node definition for “<perpetrator> threatened to murder”

However, AutoSlog does not always generate concept nodes that represent use-
ful expressions. Figure 9 shows a concept node produced by AutoSlog that rec-
ognizes expressions of the form “took <Y>.” AutoSlog identified the targeted
noun phrase, “Gilberto Molasco”, as the direct object of the first clause and
constructed a concept node that is triggered by the verb “took” and extracts

11

its direct object as a kidnapping victim. This concept node works correctly in
the sentence it was given; Gilberto Molasco was indeed a kidnapping victim.
But the expression “took <Y>" does not always apply to kidnappings. The
word “took” commonly appears in many contexts. For example, one can take
a friend to the movies or take a child to school.

Sentence: They took 2-year-old Gilberto Molasco, son of Patricio
Rodriguez, and 17-year-old Andres Argueta, son of Emimesto Argueta.

CONCEPT NODE

Name: victim-active-verb-dobj-took
Trigger: took

Variable Slots: (victim (*DIRECT-OBJECT* 1))
Constraints: (class VICTIM *DIRECT-OBJECT*)
Constant Slots: (type kidnapping)

Enabling Conditions: (active)

Fig. 9. Concept node definition for “took <victim>"

Figure 10 shows another example of a concept node that represents an unre-
liable pattern. AutoSlog found the targeted noun phrase “machineguns” in a
prepositional phrase and the pp-attachment algorithm incorrectly attached it
to the noun “priests.” The resulting concept node is activated by the pattern
“priests with <X>" and extracts X as a weapon. This pattern is not likely
to be reliable because priests aren’t usually associated with weapons. If the
pp-attachment algorithm had correctly attached the machineguns to the word
“killing”, then AutoSlog would have produced a better concept node that rec-
ognized the pattern “killing with <weapon>.”

Sentence: Ambassador William Walker, if you still have any shame, tell the
world and answer this question: if the armed forces general staff did not kill
the jesuit priests, how could the murderers — as this international

dispatch says — remain in the residence for 1 hour after the heavy shooting,
after killing the priests with machineguns in tripods, as the cable says?

CONCEPT NODE

Name: instrument-pp-noun-priests-with

Trigger: priests

Variable Slots: (instrument (*PREP-PHRASE™ (pp-check 'with)))
Constraints: (class WEAPON *PREP-PHRASE™)

Constant Slots: (type weapon)

Enabling Conditions: (noun-triggered)

Fig. 10. Concept node definition for “priests with <instrument>”

12

2./ Results for the Terrorism Domain

To evaluate AutoSlog, we created a concept node dictionary for the MUC-
4 terrorism domain using AutoSlog and compared it with the hand-crafted
dictionary used in MUC-4.* We used 772 relevant texts from the MUC-4 de-
velopment corpus and their answer keys as the training corpus. The targeted
noun phrases came from six of the MUC-4 template slots that corresponded
to human targets, physical targets, perpetrators, and weapons. These six in-
formation types, shown in Figure 11, were selected because the answer keys
contained strings that could be easily mapped back to the source text.

Information Type Example

human target description “a security guard”
human target name “Ricardo Castellar”
instrument id “car-bomb”

perpetrator individual “a group of subversives”
perpetrator organization “the FMLN”

physical target id “car dealership”

Fig. 11. Targeted information for the terrorism domain

The 772 texts contained 4780 tagged noun phrases of these six types, which
were given to AutoSlog as input along with the original source texts.® In re-
sponse to these 4780 noun phrases, AutoSlog generated 1237 unique concept
node definitions. AutoSlog does not necessarily generate a concept node for
every input. For example, sometimes none of the heuristics apply or CIRCUS
produces a faulty sentence analysis. Also, AutoSlog does not generate du-
plicate definitions. For example, many texts contain expressions of the form
“X was kidnapped” so AutoSlog will propose this pattern many times in re-
sponse to different inputs. AutoSlog keeps track of the number of times each
concept node is proposed, but will not generate the same definition twice.
Figure 12 shows the patterns of the fifteen concept nodes that were proposed
most frequently by AutoSlog. For example, AutoSlog proposed a concept node
to recognize the pattern “<victim> was kidnapped” 46 times.

4 In fact, this was a slightly improved version of the hand-crafted dictionary used in
MUC-3. We augmented the hand-crafted dictionary with 76 concept nodes created
by AutoSlog before the final MUC-4 evaluation, which improved the performance
of the UMass/MUC-4 system by filling gaps in its coverage. Without these addi-
tional concept nodes, the AutoSlog dictionary would likely have shown even better
performance relative to the MUC-4 dictionary.

> Many of the template slots contained several possible references to the same object
(“disjuncts”), any one of which was a legitimate answer. In this case, AutoSlog
identified the first sentence that contained any of the references.

13

Linguistic Pattern Number of Times Proposed
<victim> was killed 121
murder of <victim> 111
assassination of <victim> 95
<victim> was wounded 50
<victim> was kidnapped 46
<weapon> exploded 43
killed <victim> 42
death of <victim> 40
murdered <victim> 36
<victim> died 35
<victim> was murdered 34
<perpetrator> attacked 32
<victim> was injured 29
<victim> was assassinated 29
kidnapped <victim> 29

Fig. 12. Frequently proposed patterns for terrorism

As we mentioned in the previous section, AutoSlog generates many useful
concept nodes but it also generates many unreliable concept nodes. Therefore
we put a human in the loop to weed out the unreliable definitions. We de-
veloped a simple user interface that displays the pattern associated with each
concept node to a user and asks whether the concept node should be accepted
or rejected. The concept nodes rejected by the user are thrown away, and the
concept nodes accepted by the user are retained for the final dictionary.

The process of manually filtering the dictionary is very fast and does not
require any knowledge of CIRCUS or natural language processing. For this
experiment, a second-year graduate student with some knowledge of CIRCUS
and NLP manually filtered the terrorism dictionary. It took him 5 hours to
review all 1237 concept node definitions and he accepted 450 of them for the
final dictionary. Figure 13 shows the distribution by types. The first column
shows the number of concept nodes proposed by AutoSlog, and the second
column shows the number of concept node accepted by the user (e.g., the
user accepted 34 of the 191 human target description concept nodes). Overall,
36% of the concept nodes proposed by AutoSlog were accepted for the final
dictionary.

Finally, we compared the dictionary created by AutoSlog with the hand-
crafted dictionary. We took the official UMass/MUC-4 system, removed the
hand-crafted dictionary, and replaced it with the AutoSlog dictionary. The
two information extraction systems were therefore identical except that they
used different concept node dictionaries.® We then scored the official MUC-4

6 We also added four manually constructed concept node definitions to the AutoSlog
dictionary because they were important for discourse analysis. These special concept

14

CN Type #CNs #CNs
Proposed | Kept
human target description 191 34
human target name 169 51
instrument id 129 93
perpetrator individual 303 102
perpetrator organization 165 31
physical target id 280 139
TOTAL 1237 450

Fig. 13. Acceptance rates for the terrorism dictionary

system (with the hand-crafted dictionary) and the AutoSlog version using the
MUC-4 scoring program [27]. The results appear in Figure 14.

System/Test Set | Recall | Precision | F-measure
MUC-4/TST3 46 56 50.51
AutoSlog/TST3 43 56 48.65
MUC-4/TST4 44 40 41.90
AutoSlog/TST4 39 45 41.79

Fig. 14. Comparative results

The MUC-4 scoring program generated recall and precision scores as well as
an f-measure score. Recall measures the percentage of correct information that
was extracted by the system; intuitively, how much of the desired information
the system found. Precision measures the percentage of information that the
system extracted which was actually correct; intuitively, how often the system
was correct when it extracted something. The f-measure combines both recall
and precision, in this case with equal weighting.

Both systems were evaluated on two blind test sets of 100 texts each, TST3
and TST4. Figure 14 shows that the AutoSlog dictionary achieved perfor-
mance comparable to the hand-crafted dictionary. On TST3, the AutoSlog
dictionary achieved 96.3% of the performance of the hand-crafted dictionary,
comparing f-measures. On TST4, the f-measures were almost indistinguish-
able, with the AutoSlog dictionary achieving 99.7% of the performance of the
hand-crafted dictionary. The hand-crafted dictionary achieved higher recall
than the AutoSlog dictionary on TST4, but the AutoSlog dictionary achieved
higher precision.

Overall, the dictionary created by AutoSlog achieved 98% of the performance
of a dictionary that was built manually, with substantially less time required
for knowledge engineering. Although the hand-crafted dictionary required ap-
proximately 1500 person-hours to build, the AutoSlog dictionary required only

nodes were not used to extract information, but only to identify textual cues for
discourse purposes.

15

5 person-hours for filtering plus the time required to generate the training
corpus.” Furthermore, building a concept node dictionary by hand requires
experienced system developers, but no experience is required to filter dictio-
naries produced by AutoSlog. We will present empirical results to support this
claim in Section 4.

3 Moving AutoSlog to New Domains

The previous experiment showed that a concept node dictionary produced
by AutoSlog performed well in the terrorism domain. However, we wanted to
know whether AutoSlog could produce effective dictionaries for other domains
as well, so we generated concept node dictionaries for two additional domains:
a business-oriented domain of joint venture activities, and a technical domain,
microelectronics. We chose these domains because they were the focus of the
MUC-5 evaluation and we had access to large training corpora of texts and an-
swer keys. The domains also represent very different topics, and were therefore
a good testbed for evaluating the generality of AutoSlog.

Because we participated in MUC-5 as part of the NLP group at the Univer-
sity of Massachusetts, the dictionaries produced by AutoSlog were used by
the UMass/MUC-5 system. AutoSlog’s heuristics are domain-independent so
porting AutoSlog to the new domains was easy. However, we needed AutoSlog
to generate the best dictionaries that it possibly could. Therefore, our pur-
poses were twofold: (1) to determine whether the domain-independent heuris-
tics could produce effective concept nodes for different domains, and (2) to
determine whether the heuristics (or possibly the whole approach) needed to
be modified. We were fully prepared to make significant changes to AutoSlog
if we felt that the original heuristics were not adequate. In the next section,
we discuss improvements to AutoSlog for these new domains.

3.1 Improvements and Modifications to AutoSlog

Our strategy was to apply AutoSlog to the new domains, review the result-
ing concept node definitions, and make changes to AutoSlog as needed. In
the end, we were pleasantly surprised to find that the original set of heuris-

" The answer keys used in this experiment contained a lot of information that
AutoSlog did not use, so we cannot estimate the time required to generate an
appropriate training corpus based on the time it took to generate the answer keys.
However, preliminary experiments showed that a user can annotate 160 texts in
about 8 hours.

16

tics performed well and required few modifications. However, we added a few
capabilities to AutoSlog to improve its performance.

We made only three changes to the heuristics. Two of these changes were mi-
nor, but one was more significant. First, the passive-verb <direct-object>
pattern was dropped. This heuristic was used in the terrorism system only be-
cause early versions of CIRCUS had trouble distinguishing active and passive
verb forms. In principle, this heuristic should never have fired unless CIRCUS
made a mistake. Second, a new pattern was added: infinitive preposition
<noun-phrase>. This heuristic represents patterns such as “to collaborate
on a project.” We simply hadn’t seen this pattern in the terrorism domain,
probably because terrorist events are usually reported in the past tense. Joint
venture activities, however, are often reported in the future tense.

The third, more significant change was another new pattern: <subject>
verb direct-object, which represents expressions such as “Toyota and Nissan
formed a joint venture.” This pattern reflects an important difference between
the language typically used to describe terrorist events and the language used
to describe joint ventures. Verbs usually carry the semantics associated with
terrorist events. For example, the words “bombed, “murdered”, and “kid-
napped”, commonly describe terrorist events. However, nouns typically carry
the semantics associated with joint ventures while the verbs are relatively
weak. For example, common expressions are: “X and Y formed a joint ven-
ture”, “X agreed to a tie-up with Y”, or “X signed an agreement with Y.” The
verbs (formed, agreed, and signed) are not specific to joint ventures; the nouns
(venture, tie-up, agreement) are the words most strongly associated with joint
ventures.

The original <subject> active-verb heuristic would have proposed con-
cept nodes to recognize expressions such as “X formed”, “X agreed”, and “X
signed.” These patterns are too general and will extract a lot of irrelevant
information. Therefore, we added the new <subject> verb direct-object
heuristic to include the direct object as part of the pattern. If a direct object
is present, then this heuristic takes precedence over the original one and a
concept node is generated using both the verb and the head noun of its di-
rect object. If a direct object is not present, then AutoSlog falls back on the
original heuristic. The new pattern produced many useful concept nodes for
the joint ventures domain, including expressions such as “X formed venture”,
“X completed acquisition”, and “X signed agreement.” The modified set of
AutoSlog heuristics appears in Figure 15.

A few other modifications were made as well. In the joint ventures domain,
particles play an important role in many expressions, such as “set up ven-
ture”, “linked up with”, and “carrying out study.” The heuristics that include
verbs were modified so that AutoSlog searches for a particle immediately fol-

17

Linguistic Pattern Example

<subject> passive-verb <entity> was formed
<subject> active-verb <entity> linked

<subject> verb direct-object <entity> completed acquisition
<subject> verb infinitive <entity> agreed to form
<subject> auxiliary noun <entity> is conglomerate
active-verb <direct-object> acquire <entity>

infinitive <direct-object> to acquire <entity>

verb infinitive <direct-object> agreed to establish <entity>
gerund <direct-object> producing <product-service>
noun auxiliary <direct-object> partner is <entity>

noun prep <noun-phrase> partnership between <entity>
active-verb prep <noun-phrase> buy into <entity>
passive-verb prep <noun-phrase> was signed between <entity>
infinitive prep <noun-phrase> to collaborate on <product-service>

Fig. 15. AutoSlog heuristics and examples from the joint ventures domain

lowing the verb. For example, given the sentence “company X was set up ...
“ the <subject> passive-verb heuristic fires and finds the particle “up”
following the verb “set.” The resulting concept node represents the pattern
“<entity> was set up”, which is more appropriate than just “<entity> was
set.” Particle recognition would have been useful in the terrorism domain as
well for expressions such as “blew up”, “blown up”, and “carried out”, but the
UMass/MUC-4 system used a hand-crafted phrasal lexicon to identify these
expressions. In retrospect, AutoSlog could have automatically created concept
nodes to recognize many of the expressions that were manually encoded in the

terrorism phrasal lexicon.

Another improvement to AutoSlog involved objects with computable values.
For example, ownership percentages and monetary values are prevalent in the
joint ventures domain. The original version of AutoSlog produced concept
nodes that recognized overly specific patterns, such as “<entity> controls
51%”, and “<entity> invested $50000000.” To address this problem, we mod-
ified AutoSlog so that concept nodes can be triggered by general types of
objects (e.g., percentages and monetary figures). For example, given the sen-
tence “IBM controls 51%...”, the <subject> verb direct-object heuristic
fires and recognizes that the head noun of the direct object is a percentage.
AutoSlog then proposes a concept node that is activated by all expressions
of the form “<entity> controls PERCENTAGE.” The UMass/MUC-4 system
contained specialist functions to recognize percentages and monetary values,
which were used to identify these objects.

For the sake of completeness, we will briefly mention a few other changes.
We replaced the original pp-attachment algorithm with a frequency-based pp-

18

attachment algorithm (see [31] for details). We divided the heuristics involving
auxiliary verbs (<subject> auxiliary noun and noun auxiliary <direct-
object>) into separate heuristics that distinguish between the verbs “to be”
and “to have.” And we modified AutoSlog to skip over clauses that contain
communication verbs, such as “said”, “reported” and “announced”, since they
merely indicate that something is being reported. Finally, we added a mor-
phology component that automatically generates morphological variants of
proposed patterns. For example, if AutoSlog generates a concept node trig-
gered by a singular noun then a new concept node is generated dynamically
for the same pattern with the plural noun. All morphological variants were
presented to the user for manual filtering. ®

These changes were all general improvements that would have applied to the
terrorism domain as well. The only modification made to AutoSlog that ap-
pears to be domain-specific is the addition of the <subject> verb direct-
object pattern. In the next two sections, we describe the dictionaries gener-
ated for the joint ventures and microelectronics domains.

3.2 Results for the Joint Ventures Domain

The joint ventures information extraction task revolves around cooperative
agreements between multiple partners, usually to jointly produce a product
or service. Figure 16 shows the eight types of information for which concept
nodes were generated. The most important information corresponds to the
names of the entities involved in the joint venture; relevant entities can be
companies, people, or governments. Other relevant information includes fa-
cilities, products, services, and people associated with a joint venture, the
ownership percentage of entities, and several monetary values.

These types of information cannot be identified without context! Many com-
pany names can be recognized simply by looking for abbreviations such as
Corp. or Inc.. But we only want to extract the names of companies that are
involved in a joint venture. Therefore, simply looking for patterns such as “X
Corp.” or “X Inc.” will likely produce many false hits by extracting companies
that have nothing to do with a joint venture. Similarly, monetary figures and
percentages can be easily recognized but we only want to extract them if they
are assoclated with a joint venture.

8 This component was not necessary for the terrorism domain because the
UMass/MUC-4 system contained a morphological analyzer so each concept node
was automatically triggered by all morphological variants. The UMass/MUC-5 sys-
tem did not contain a morphological analyzer, however, so separate concept nodes
had to be created for each variant.

19

Information Type Example

entity name “Toyota Motor Corp.”
facility name “Beijing jeep plant”
ownership percent “51%”

ownership total capitalization “$46,000,000”

person name “Paul Phillips”
product/service “V2500 jet engine”
revenue rate “$80,000,000 per year”
revenue total “$80,000,000”

Fig. 16. Targeted information for the joint ventures domain

Figure 17 shows a concept node generated by AutoSlog for the joint ventures
domain. Given the targeted noun phrase “Berliner Bank”, AutoSlog identified
the bank as the subject of the first clause. The new <subject> verb direct-
object heuristic kicked in and produced a concept node that is activated by
the expression “<X> formed venture” and extracts X as a joint venture entity
(i.e., partner). This concept node represents a reliable pattern associated with
joint ventures.

Sentence: Berliner Bank last year formed a joint venture with KF'TCIC to
channel investment into medium-sized German companies.

CONCEPT NODE

Name: jv-entity-subject-verb-and-dobj-formed-venture
Trigger: venture

Variable Slots: (name (*suBJECT* 1))

Constraints: (class JV-ENTITY *SUBJECT™)

Constant Slots: (type jv-entity subtype company

relationship jv-parent)
Enabling Conditions: (dobj-preceded-by-verb ’formed ’venture)

Fig. 17. Concept node definition for “<entity> formed venture”

As in the terrorism domain, not all of the concept nodes generated by Au-
toSlog were useful. Figure 18 shows a bizarre concept node produced by Au-
toSlog. The targeted noun phrase, ICI, was identified as the subject of the
verb “thrown.” The new <subject> verb direct-object heuristic kicked in
and generated a concept node that recognizes the pattern “<entity> thrown
hat.” The metaphorical expression “thrown its hat into the ring” is not usually
associated with joint ventures, so this concept node was rejected.

As input, AutoSlog was given 924 relevant texts from the MUC-5 joint ven-
tures corpus that contained 10,684 targeted noun phrases. The overwhelming
majority represented entities (mostly companies) and products or services as-
sociated with them. Figure 19 shows statistics for the joint ventures dictionary.
The first column shows the number of targeted noun phrases. The second col-
umn shows the number of concept nodes generated by AutoSlog. The third

20

Sentence: In addition to Japanese, Taiwanese and South Korean firms, ICI
has thrown its hat into the ring with 350000 ton ayear PTA plants in Taiwan
and Thailand.

CONCEPT NODE

Name: jv-entity-subject-verb-and-dobj-thrown-hat
Trigger: hat

Variable Slots: (entity (*suBJECT* 1))

Constraints: (class JV-ENTITY *SUBJECT*)

Constant Slots: (type jv-entity subtype company

relationship jv-parent)
Enabling Conditions: (dobj-preceded-by-verb "thrown ’hat)

Fig. 18. Concept node definition for “<entity> thrown hat”

column shows the number of concept nodes that were accepted by the user.
And the fourth column shows the total number of concept nodes accepted for
the final dictionary, including the ones generated by the morphology module.
When a concept node was accepted, morphological variants of the pattern
were generated dynamically and the user was asked whether any of the vari-
ants should be accepted as well. For example, if the user accepted the pattern
“X formed venture”, then new concept nodes were created for the patterns “X
form venture”, “X forms venture”, “X forming venture”, and “X formed ven-
tures.” On average, 1.7 morphological variants were accepted for each original
concept node.

CN Type #NPs #CNs | #CNs | #CNs Kept
Proposed | Kept w/Morph.

Variants

entity 4689 1562 527 1570
facility 97 80 20 38
ownership percent 814 174 90 184
ownership total capitalization 139 25 14 16
person 554 243 119 355
product/service 4296 1034 138 273
revenue rate 50 19 14 22
revenue total 45 30 22 57
TOTAL 10,684 3167 944 2515

Fig. 19. AutoSlog dictionary statistics for joint ventures

The human-in-the-loop took 20 hours to review the 3167 concept nodes pro-
posed by AutoSlog (the human-in-the-loop for this experiment was the au-
thor). This is substantially more time than it took to review the terrorism
definitions (5 hours). The increased time is due to two factors. First, AutoSlog
proposed 2.6 times as many definitions for the joint ventures domain (3167)
as for the terrorism domain (1237), primarily because AutoSlog received 2.2
times as many noun phrases for joint ventures (10,684) as for terrorism (4780).

21

Second, a lot of the increased filtering time is due to the overhead associated
with the morphology module, which substantially increased the number of
definitions displayed to the user. Consequently, the filtering processes for the
joint ventures and terrorism dictionaries were not directly comparable.

Evaluating the joint ventures dictionary is difficult because we did not have
a hand-crafted dictionary with which to compare it, and building one by
hand is expensive. Alternatively, we could compare the UMass/MUC-5 results
with the UMass/MUC-4 results and infer that the new dictionary performs
well if we obtain similar results. However, this is not a valid comparison be-
cause the MUC-4 and MUC-5 systems were almost completely different. The
UMass/MUC-5 system used a different part-of-speech tagger, noun phrase
bracketer, word sense disambiguation module, and discourse analyzer. The
only common component was the sentence analyzer, CIRCUS.

The UMass/MUC-5 system achieved scores of 26% recall and 54% precision
(f-measure = 35.18) for the joint ventures domain. Therefore we can infer a
lower bound on the performance of the AutoSlog dictionary: it was able to
extract at least 26% of the desired information.® However, we believe that the
dictionary actually performed much better than these numbers would suggest.
In the next section, we describe a small experiment in which we manually
inspected 25 random texts and found that CIRCUS actually achieved 68%
recall on those texts.

Linguistic Pattern Times Proposed
venture with <entity> 230
agreement with <entity> 54
venture between <entity> 51
<entity> formed venture 45
was owned by <entity> 39
<entity> agreed 38
<entity> set up venture 37
<entity> was capitalized 35
subsidiary of <entity> 34
<entity> signed agreement 34
unit of <entity> 34
PERCENTAGE by <entity> 29
<entity> agreed to form 27

Fig. 20. Frequently proposed joint venture patterns

AutoSlog clearly created many patterns that were appropriate for the joint
ventures domain and CIRCUS appeared to be doing a good job of extracting
most of the relevant information. Figure 20 shows the concept nodes most

9 This should be interpreted with respect to the current state-of-the-art in infor-
mation extraction. The best information extraction systems at MUC-4 obtained
roughly 50-60% recall using hand-crafted dictionaries.

22

frequently proposed by AutoSlog. As might be expected, many frequent pat-
terns include the word “venture”, “agreement”, or “agreed.” Other relevant
patterns represent expressions having to do with ownership, capitalization, or
percentages. As Figure 19 indicated, a user ultimately accepted 944 of the
original concept nodes as being good extraction patterns, plus an additional
1571 morphological variants of those patterns. Therefore a human judged that
944 of AutoSlog’s definitions were desirable extraction patterns, plus over 1500
morphological variants. In the end, the filtered joint ventures dictionary was
substantially bigger than the terrorism dictionary and presumably provided
better coverage as a result.

3.3 Results for the Microelectronics Domain

The microelectronics information extraction task was concerned with infor-
mation about four microelectronics processes: layering, lithography, etching,
and packaging. To be relevant, a specific company or research group had to
be associated with one of these process types. Figure 21 shows the twelve in-
formation types for which concept nodes were generated.

Information Type Example

bonding type LASER_BONDING

device function MICROPROCESSOR

device size 64 MBIT

device speed 70 MHZ

entity name “Material Research Corp.”
equipment name “Precision 8000”
equipment type CVD_SYSTEM

film type SILICON_DIOXIDE
granularity size LINE WIDTH 0.25MI
material type CERAMIC

pin count 408

process type CHEMICAL VAPOR DEPOSITION

Fig. 21. Targeted information for microelectronics

The microelectronics task was fundamentally different from the terrorism and
joint ventures tasks because the information to be extracted was delimited in
advance. The MUC-5 guidelines contained a finite list of the legitimate values
for 10 of the 12 information types. For example, the guidelines listed all of
the legitimate bonding types. In a few cases, the guidelines listed units (e.g.,
MBIT and MHZ) for which numbers had to be extracted (e.g., device size and
speed). Words or phrases that did not match one of the predefined values did
not have to be extracted. In contrast, arbitrary values needed to be extracted
for the terrorism and joint ventures domains, so the set of legitimate values

23

could not be predetermined. Only two information types could take arbitrary
strings in the microelectronics domain: entity names and equipment names.

Figure 22 shows a good concept node produced by AutoSlog to extract en-
tities. “Fujitsu Laboratories” was given to AutoSlog as input and CIRCUS
identified it as the subject of the first clause. The <subject> verb direct-
object heuristic fired and produced a concept node that recognizes the pattern
“<entity> developed technology.” This pattern is not specific to microelec-
tronics and could extract companies that develop other types of technology.
But this pattern will appear in many texts describing microelectronics tech-
nology, so it should be retained or a lot of relevant information will be missed.

Sentence: Fujitsu Laboratories has developed a technology to selectively

form a two-dimensional electron gas layer on top of an electron donor layer.

CONCEPT NODE

Name: me-entity-subject-verb-and-dobj-developed-technology
Trigger: technology

Variable Slots: (name (*suBJECT* 1))

Constraints: (class ME-ENTITY *SUBJECT™)

Constant Slots: (type me-entity subtype company

relationship developer)
Enabling Conditions: (dobj-preceded-by-verb ’developed 'technology)

Fig. 22. Concept node definition for “<entity> developed technology”

Figure 23 shows a concept node produced by AutoSlog to extract microelec-
tronics processes, such as layering and lithography. In the given sentence, the
targeted noun phrase is “MBE” (molecular beam epitaxy). AutoSlog identi-
fied “MBE” as the direct object of the verb “using” and created a concept
node for the pattern “using <X>.” Although this pattern extracts a relevant
process in this particular sentence, “using” is a general verb that appears in a
wide variety of contexts. There is a balance that must be maintained between
generality and specificity. Overly general patterns will swamp the discourse
analyzer with irrelevant information and merely shift the burden of identi-
fying relevant information to later stages of processing. This concept node
is therefore not particularly useful because it is likely to extract a lot more
irrelevant than relevant information.

We applied AutoSlog to 787 relevant microelectronics texts from the MUC-5
corpus. ' Figure 24 shows the ten concept nodes that were proposed most
frequently by AutoSlog. The patterns are not as specific as those for the joint

10 One of these texts was classified as relevant when we did these experiments but
was reclassified as irrelevant by the MUC-5 organizers before the final evaluation.
Therefore the MUC-5 microelectronics corpus officially contains 786 relevant texts.

24

Sentence: To form the layer, the laboratory developed a continuous process
for growing crystals in an ultra-high vacuum environment using MBE, a
method of selectively implanting impurities with an FIB (focused ion beam)
method, and adopted a high-speed heat treating process.

CONCEPT NODE

Name: me-process-type-dobj-verb-using
Trigger: using

Variable Slots: (name (*DIRECT-OBJECT™ 1))
Constraints: (class ME-PROCESS *DIRECT-OBJECT™)
Constant Slots: (type me-process subtype layering)
Enabling Conditions: (active)

Fig. 23. Concept node definition for “using <process>"

ventures domain, but most of them are likely to extract companies or equip-
ment associated with microelectronics processes. However, AutoSlog did not
produce many concept nodes that were useful for extracting the other 10 types
of information (called the set-fill types). Most of the concept nodes represented
patterns that were too general and would have extracted an overwhelming
amount of irrelevant information. This is because the words and phrases as-
sociated with microelectronics are almost exclusively noun phrases that are
unambiguous and self-contained. For example, microelectronics processes in-
clude “physical vapor deposition” and “chemical vapor deposition” (CVD),
equipment types include “stepper systems” and “CVD systems”, and device
functions include “microprocessor.”

Linguistic Pattern Number of Times Proposed
agreement with <entity> 18
researchers at <entity> 17
order from <entity> 14
manager at <entity> 14
includes <equipment-name> 13
<entity> developed technology 12
was developed by <entity> 12
order for <equipment-name> 11
introduced <equipment-name> 11
include <entity> 10

Fig. 24. Frequently proposed patterns for microelectronics

As we noted earlier, information associated with terrorism and joint ventures
cannot be identified without context. It is not possible to look solely at a
person’s name and determine whether that person is a perpetrator or victim.
Similarly, it is not possible to look only at a company’s name and determine
whether it is involved in a joint venture. Verbs (e.g., “was killed”), verb phrases
(e.g., “formed venture”), and verb nominalizations (e.g., “assassination of”)
are essential for identifying the conceptual roles of these objects. However, it

25

is possible to look for specific microelectronics terms independent of context.
The phrase “chemical vapor deposition” means essentially the same thing
in almost any context. Furthermore, the set of technical terms specific to
microelectronics is relatively small and finite (essentially a closed class). In
contrast, the sets of potential perpetrators and joint venture companies are
infinitely large. As a result, contextual patterns are essential for extracting
most terrorism and joint ventures information but keywords and phrases are
sufficient for recognizing microelectronics terms.

Figure 25 shows the number of concept nodes proposed by AutoSlog for each
information type, the number of concept nodes accepted during manual filter-
ing, and the total number of concept nodes in the final dictionary, including
those generated by the morphology component. As Figure 25 shows, we did
not filter the set-fill concept nodes. ! Instead, we added a keyword recognizer
to extract the microelectronics terminology. The keyword recognizer was com-
bined with the concept nodes to capture role relationships associated with the
microelectronics terms. 2 The set-fill concept nodes were all loaded into the
system but information extracted by them was filtered by the keyword recog-
nizer.

CN Type #CNs #CNs | #CNs Kept with
Proposed | Kept | Morph. Variants

entity name 971 451 1445

equipment name 249 96 209

set-fill type 1732 1728 2566

TOTAL 2952 2275 4220

Fig. 25. AutoSlog dictionary statistics for microelectronics

The concept nodes were used by the discourse analyzer to identify relation-
ships across items. For example, consider the sentence “A CVD system was
developed by Motorola.” Two concept nodes are triggered by the word “de-
veloped.” First, a set-fill concept node is activated by the general pattern “X
was developed” and extracts “a CVD system” as a product. The keyword
recognizer identifies “CVD” as a microelectronics term so the information is
considered to be relevant. Second, an entity concept node is activated by the
pattern “was developed by Y” and extracts “Motorola” as a company name.
The discourse analyzer can then link the CVD system to Motorola by virtue
of the common verb “developed” that triggered both concept nodes. This ap-
proach shows how keyword recognition can be combined with concept nodes
to handle both specialized terminology and conceptual role relationships.

1 Only 1728 of the 1732 were kept because four definitions were discarded
accidentally.

12 The keyword recognizer was also used to identify relevant information indepen-
dently from the concept nodes.

26

The UMass/MUC-5 system achieved scores of 31% recall and 39% precision
(f-measure = 34.84) for the microelectronics domain. As before, we can infer a
lower bound: CIRCUS was able to extract at least 31% of the desired informa-
tion. However we believed that the performance of CIRCUS was much higher,
so we conducted an experiment to assess its actual performance. Choosing 25
texts at random, we manually inspected the intermediate output and found
that CIRCUS had extracted information with 68% recall and 54% precision.
Obviously, much of the information was deleted or confounded by subsequent
components (see [21] for more details). After discourse analysis, our official
scores for these 25 texts were 32% recall and 45% precision, which is consis-
tent with the overall results. If these texts were representative, then it appears
that the MUC-5 system was able to achieve roughly 68% recall, which is ac-
tually higher than the recall reported by the UMass/MUC-4 system.

To conclude, we have shown that AutoSlog is a viable approach for automat-
ically acquiring patterns for information extraction, and can produce effec-
tive extraction patterns for different domains. However, we learned a valuable
lesson in applying the system to new domains. The nature of the domain is
crucially important in determining what type of extraction patterns are neces-
sary. In the terrorism domain, verbs often carry the semantics associated with
an event so simple verb patterns were sufficient. In the joint ventures domain,
nouns often carry the semantics associated with an event, so an additional
heuristic was needed to pair nouns with verbs. And in the microelectronics
domain, the technical jargon was most easily identified using keywords. The
extraction patterns were useful, however, for identifying the roles associated
with the technical information. We conclude that AutoSlog is most appropri-
ate for recognizing role relationships between events and objects. The domain-
independent heuristics used by AutoSlog are most well-suited for event-based
domains.

4 Experiments with Novice Users

The previous experiments relied on a person to manually filter the dictionaries
and discard unreliable definitions. From a practical perspective, it is important
to know whether the filtering must be done by an expert (i.e., someone who
is knowledgeable about natural language processing and CIRCUS in particu-
lar), or whether the filtering can be done by anyone knowledgeable about the
domain. It is also important to have some idea of how much variation there is
between dictionaries filtered by different people. So we set out to answer the
following questions:

(1) Can people with little or no background in text processing create effective
concept node dictionaries using AutoSlog?

27

(2) How much variation is there in the performance of dictionaries created
by different people?

We addressed these questions by conducting two experiments with novice users
(i.e., people who had little or no previous experience with CIRCUS). In the
first experiment, we asked ten students in an introductory natural language
processing course to filter the terrorism dictionary created by AutoSlog. In
the second experiment, we asked two government analysts to filter the joint
ventures dictionary created by AutoSlog.

4.1 An Ezxperiment with Students in the Terrorism Domain

The first experiment involved ten students, including undergraduate and grad-
uate students, in the introductory natural language processing course at the
University of Massachusetts. Prior to this experiment, the students had re-
ceived some exposure to CIRCUS in the form of 2 lectures, 1 paper, and 2
programming assignments. That had also been given 1 lecture and 1 paper
on information extraction in the terrorism domain. So the students were not
complete novices, in the sense that they had some knowledge about natu-
ral language processing and a little experience with an educational version
of CIRCUS. But they had no experience with the UMass/MUC-4 system on
which the dictionaries would be tested, except for one graduate student who
we will refer to as Student X.

The students were given 1 hour of instruction on how to use the AutoSlog in-
terface and were given two weeks to filter the terrorism dictionary produced by
AutoSlog. We evaluated each dictionary by removing the hand-crafted dictio-
nary from the UMass/MUC-4 system and replacing it with one of the student
dictionaries. Then we ran the new system on the two blind test sets TST3
and TST4 (see Section 2.4), and scored the output using the MUC-4 scoring
program [27].

Figure 26 shows the scores produced by the student dictionaries (these are the
combined results for both TST3 and TST4). For the sake of comparison, we in-
cluded the scores produced by the hand-crafted terrorism dictionary, denoted
as MUC-4. Two of these data points are somewhat anomalous. Student X was
a research assistant in the natural language processing lab and had some expe-
rience with the UMass/MUC-4 system, so his results should not be interpreted
as those of a novice (although he was not one of the principal developers of
the system). Student X’s dictionary achieved the best performance, and was
used in the experiments described in Section 2.4. The second anomalous data
point is Student I. Student I was not a native English speaker and apparently
did not understand the instructions given in class. We discovered that he did

28

System Recall | Precision | F-measure
MUC-4 45 49 46.93
Student X 41 51 45.65
Student A 38 46 42.00
Student B 37 39 38.14
Student C 32 47 37.80
Student D 36 39 37.61
Student E 34 39 36.34
Student F 31 40 35.01
Student G 33 36 34.56
Student H 33 34 33.57
Student 1 33 16 21.29

Fig. 26. Student dictionary scores on TST texts

not filter the dictionary at all, but kept every concept node proposed by Au-
toSlog! Therefore, the scores produced by Student I's dictionary represent an
interesting baseline; they tell us how well the AutoSlog dictionary performs
with no filtering at all.

If we disregard the data points associated with Student X and Student I, the
range of scores is relatively small: the f-measures range from 33.57 to 42.00.
There was a fair amount of variation in the performance of the dictionaries,
but the scores were all within 9 points of one another so the differences were
not extreme. The student dictionaries achieved 72-89% of the performance of
the hand-crafted dictionary. Figure 27 shows the scatterplot for the recall and
precision scores.

100
90
80
70
60|
50 M
40 Vo
30 X
20
10-
0 10 20 30 40 50 60 70 80 90100
Recall

X student dictionaries
M MUC-4 dictionary

Precision
>
bt

Fig. 27. Recall and precision scores for the student dictionaries

To put these numbers in perspective, consider how the scores of the student
dictionaries compare with the scores of the MUC-4 participants. The best
student dictionary (disregarding Student X) achieved an f-measure of 43.82

29

on TST3, which would have placed it fifth in the MUC-4 rankings (see [27]).
Only four of the seventeen MUC-4 systems achieved higher scores. The student
dictionary that obtained the lowest score on TST3 (35.57) would have ranked
eighth in MUC-4. So all of the student dictionaries achieved TST3 scores better
than half of the MUC-4 participants. On TST4, the highest-scoring student
dictionary would have ranked seventh and the lowest-scoring dictionary would
have ranked eleventh. We conclude that most of the concept node dictionaries
produced by the students achieved scores that were better than or comparable
to many of the MUC-4 systems.

Although the scores produced by the student dictionaries were not dramati-
cally different, some dictionaries clearly performed better than others. Part of
the reason is that the size of the dictionaries varied a lot. Figure 28 shows the
number of concept node definitions accepted by each student, and the number
of the definitions in the hand-crafted MUC-4 dictionary. Discounting Student
I, who kept every definition, the dictionaries ranged in size from 304 to 645
definitions. Student F’s dictionary contained over twice as many definitions as
Student C’s dictionary.

Dictionary | # of Definitions
Student C 304
MUC-4 389
Student A 390
Student H 399
Student B 422
Student X 450
Student E 478
Student D 567
Student G 619
Student F 645
Student 1 1237

Fig. 28. Student dictionary sizes

Given the considerable variation in dictionary size, we tried to determine
whether there was any correlation between dictionary size and performance.
Figure 29 shows a scatterplot of the relationship between dictionary size and
recall. There appears to be virtually no correlation. Some of the smallest dic-
tionaries produced the highest recall, and both small and large dictionaries
produced relatively low recall. Intuitively, one might assume that larger dic-
tionaries should produce higher recall than smaller dictionaries. However, this
is not necessarily the case. The information extraction task involves extracting
relevant information and ignoring irrelevant information. Therefore, extract-
ing irrelevant information does not increase recall. Furthermore, irrelevant
information can complicate discourse analysis. When irrelevant information
is given to the discourse analyzer, it often gets confused and may hallucinate

30

events and assign relevant information to imaginary events.

X student dictionaries
M MUC-4 dictionary

1300 1300

1200 X 1200 X

,, 1100 ,, 1100
S 1000 < 1000
£ 900 Z 900
% 3 %
i 4 | REEE
o] X o) X
R £ o
S X S X
< 200 < 200

100 100

0 0
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
Recall Precision

Fig. 29. Recall and precision vs. number of definitions

Figure 29 also shows the relationship between dictionary size and precision.
Although there is not a perfect correlation, the graph suggests that smaller dic-
tionaries tend to achieve higher precision than larger dictionaries. This makes
sense if we assume that students who generated smaller dictionaries adopted
a more conservative filtering strategy and retained only the most reliable def-
initions. Students who generated larger dictionaries probably adopted a more
liberal strategy and retained definitions that may be useful in some cases but
are prone to false hits.

The MUC-4 systems were also evaluated by how well their systems could
distinguish stories that contained a relevant event from those that did not.
This is a classification problem: each text had to be labeled as “relevant” or
“irrelevant” to the domain. Roughly 53% of the texts in the MUC-4 corpus
were relevant. Figure 30 shows the recall and precision scores computed by
the MUC-4 scoring program for the student dictionaries on the classification
task. There was less variation in the performance of the dictionaries on the
classification task. Except for Student I, all of the dictionaries achieved at
least 79% recall and 75% precision, and many achieved > 85% recall with >
80% precision. Almost all of the dictionaries performed nearly as well as the
hand-crafted dictionary.

Despite the fact that the dictionaries varied a lot in size, one possible ex-
planation for the similar performance is that something like an 80/20 rule
is in effect. That is, 20% of the definitions are doing 80% of the work and
the remaining definitions do not contribute much to the final results. For the
hand-crafted dictionary, we found that 18% of the definitions accounted for
80% of the instantiated concept nodes, and 28% of the definitions accounted
for 90% of the instantiated concept nodes (when processing all 1700 MUC-4

31

100
90
807 X&M
70- X,
60-
50
401 M MUC-4 dictionary
30
20
10-
0 10 20 30 40 50 60 70 80 90100
Recall

X student dictionaries

Precision

Fig. 30. Recall and precision scores for text classification

texts). These statistics are questionable because the number of times that a
concept node fires does not necessarily indicate how much it contributed to
the final scores, but they suggest that some definitions are more important
than others, and that dictionaries produced by different people will probably
contain similar subsets of the most important definitions.

4.2 An Ezxperiment with Domain Ezxperts in the Joint Ventures Domain.

The second experiment involved two government analysts who manually fil-
tered a dictionary produced by AutoSlog for the joint ventures domain [33].
In contrast to the previous experiment, the government analysts had no back-
ground in natural language processing at all, or any experience with CIR-
CUS or the UMass/MUC-5 system. However, the analysts were considered
to be experts in the joint ventures domain because they were among those
who manually encoded the answer key templates for the MUC-5 corpus [28].
This experiment represents a more realistic example of how dictionaries would
likely be constructed for new domains. It is more realistic to expect to find
people who are experts in a particular subject, than to find people who are
experienced in natural language processing (much less CIRCUS in particular).
Furthermore, the analysts were motivated to generate good dictionaries. The
analysts were evaluating a tool that they might use in the future, while the
students were completing a homework assignment that was graded pass/fail.
Before they began filtering, we gave the analysts a 1.5 hour tutorial explaining
how AutoSlog works and how to use the interface.

AutoSlog proposed 3167 concept node definitions for the joint ventures do-
main, but the analysts were only available for two days and we did not expect
them to be able to review all 3167 definitions in this limited time. So we cre-

32

ated an “abridged” version of the dictionary by eliminating entity and prod-
uct /service definitions that were proposed infrequently by AutoSlog'?, and we
removed the morphology module from the interface. The resulting “abridged”
dictionary contained 1575 concept node definitions. Analyst A took approxi-
mately 12.0 hours to do the filtering and Analyst B took approximately 10.6
hours.

We compared the analysts’ dictionaries with the MUC-5 dictionary that was
filtered by an experienced UMass researcher. To ensure a fair comparison, we
created an abridged version of the UMass dictionary by removing all of the
definitions that were not among the 1575 given to the analysts, and remov-
ing all of the definitions spawned by the morphology module. The abridged
MUC-5 dictionary was therefore based on exactly the same definitions given
to the analysts, but was filtered by a UMass researcher. Figure 31 shows the
number of definitions proposed by AutoSlog for each information type, and
the number of definitions in each filtered dictionary.

CN Type #proposed | #kept (MUC-5 #kept #kept
by AutoSlog Abridged) (Analyst A) | (Analyst B)
entity 688 311 357 423
facility 80 20 16 55
ownership percent 174 91 117 91
person 243 119 149 52
product/service 316 76 152 44
revenue rate 19 14 12 16
revenue total 30 22 15 26
total capitalization 25 14 13 22
TOTAL 1575 667 831 729

Fig. 31. Comparative Sizes of the Analysts’ Dictionaries

To evaluate the dictionaries, we removed the original MUC-5 dictionary from
the UMass/MUC-5 system, and plugged in the analysts’ dictionaries and the
abridged MUC-5 dictionary. ' Finally, we scored each system on the Tips3
blind test set that was used for the MUC-5 evaluation. The Tips3 collection

13 This was based on the frequency counts described in Section 2.4. We removed all
entity definitions that were proposed < 2 times and all product/service definitions
that were proposed < 3 times. We eliminated entity and product/service definitions
simply because they dominated the dictionary.

4 One complication was that the UMass/MUC-5 system includes two modules,
TTG and Maytag, that used the original MUC-5 concept node dictionary for train-
ing (see [21]). Ideally, we should have retrained these components for each run
with the new dictionary. We did retrain TTG, but we did not retrain Maytag. It
is unlikely that this had a significant impact on the relative performance of the
dictionaries, but we are not certain of its exact impact.

33

contained 282 texts. Figure 32 shows the scores for each system.

TIPS3 Recall | Precision | F-measure | ERR
Abridged MUC-5 18 51 27.06 83
Analyst A 19 47 27.39 83
Analyst B 20 47 27.89 83

Fig. 32. Scores for the analysts’ dictionaries

All three dictionaries achieved similar scores. Overall, both of the analysts’
dictionaries achieved slightly higher f-measures than the MUC-5 dictionary.
The error rates (ERR) for all three dictionaries were identical (see [28] for
a description of the error rate measure), but the dictionaries filtered by the
analysts achieved slightly higher recall and lower precision than the MUC-5
dictionary. One possible explanation is that the UMass researcher was not
as knowledgeable about the domain and was therefore conservative about
accepting only the definitions that looked obviously reliable. The analysts were
much more familiar with the domain and probably kept additional patterns
that were familiar to them (but not necessarily as reliable).

Despite the fact that the composition of the dictionaries varied quite a bit, the
final scores were remarkably similar. Even though they had no background in
text processing, the analysts’ produced dictionaries that performed at least
as well as the one created by a UMass researcher. This is further evidence
that we are probably seeing something like an 80/20 rule in effect, where a
core subset of the definitions shared by most of the dictionaries do most of
the work. This result has important implications for system development: if
possible, data should be presented to users in order of expected impact. Many
systems are built in a limited time frame, and users don’t have time to review
all of the potentially useful data. With respect to AutoSlog, we could rank
the concept nodes based on frequency. The concept nodes that were proposed
most frequently by AutoSlog would be presented to the user before concept
nodes that were proposed only a few times.

5 Conclusions

We have shown that AutoSlog can produce effective dictionaries for infor-
mation extraction in multiple domains. Most information extraction systems
rely on a dictionary of extraction patterns that must be hand-coded for each
domain [12,15,1]. However, a system called PALKA [14] has also been devel-
oped to automatically acquire patterns for information extraction. The out-
put produced by PALKA is similar to the output produced by AutoSlog,
but PALKA should be distinguished from AutoSlog along several dimensions.

34

First, PALKA is given a set of generic frames and keywords for the domain
by a user. In contrast, AutoSlog discovers the trigger words for case frames
on its own. Second, PALKA relies on the semantic features associated with
words to identify the extraction patterns. AutoSlog does not use a semantic
feature dictionary at all.

Other researchers have worked on the general problem of automated dictionary
construction. FOUL-UP [10] was one of the earliest Al systems that automat-
ically learned the meanings of unknown words. The POLITICS [3] system
also contained a mechanism for learning definitions for unknown words. Both
FOUL-UP and POLITICS learned information about unknown words by ex-
amining contextual expectations derived from other words in the sentence.
RINA [13] is a language acquisition system that used multiple examples and a
variety of knowledge sources to create dictionary entries for unknown words.
All of these systems started with a “partial lexicon”, and assumed that most
of the words in the sentence were already defined. Definitions for new words
were constructed based on the definitions of other words in the sentence or
surrounding context. In contrast, AutoSlog builds new dictionary definitions
completely from scratch and depends only on a part-of-speech lexicon, which
can be readily obtained from machine-readable dictionaries or a statistical

part-of-speech tagger (e.g., POST [36]).

One exception is recent work on automatically deriving knowledge from on-line
dictionaries (see [7,25]). This research applies syntactic and lexical patterns
to the entries in an on-line dictionary to derive semantic relationships be-
tween words. Although the goals are different, this work is similar in spirit to
AutoSlog because syntactic rules are applied to text to extract semantic re-
lationships. Their results lend independent support to the idea that semantic
information can be acquired automatically without a lot of external knowl-
edge.

Since AutoSlog creates dictionary entries from scratch, it can be viewed as a
one-shot learning system. The closest points of comparison in the machine
learning community are explanation-based learning (EBL) systems [6,24].
Explanation-based learning systems produce complete concept representations
from a single training instance. This is in contrast to inductive learning tech-
niques that incrementally build a concept representation in response to mul-
tiple training instances (e.g., [8,29,35]). Inductive learning systems typically
require both positive and negative training instances to produce a target rep-
resentation.

As input, AutoSlog requires an annotated training corpus for the domain and a
few hours of manual filtering. However, NLP systems often rely on other types
of tagged corpora, such as part-of-speech tagging or phrase structure brack-
eting (e.g., the Brown Corpus [9] and the Penn Treebank [22]). Furthermore,

35

corpus tagging for AutoSlog is less demanding than other forms of tagging
because it is smaller in scope, and only the targeted information needs to be
tagged (in contrast to syntactic tagging for which every word or phrase must
be tagged). However, we are currently working on a new version of AutoSlog,
called AutoSlog-TS, that does not need detailed text annotations at all but
just a corpus of preclassified texts [34]. We have also shown that information
extraction can be used to achieve high-precision text classification [32], so the
dictionaries produced by AutoSlog are useful for other language processing
tasks as well.

We have shown that novices can use AutoSlog effectively with only minimal
training. When building systems for automated knowledge acquisition and
rapid prototyping, it is important to remember that the ultimate users of
these tools will be domain experts, not computer scientists. Tools that are
accessible only to fellow researchers will be of limited use in the real world.
Therefore we believe it is important not only to evaluate the performance of
a system when tested by researchers, but also to evaluate the performance of
a system when tested by potential users.

In summary, AutoSlog is a major contribution toward making information
extraction systems portable across domains. AutoSlog was the first system to
automate the process of dictionary construction for information extraction,
and substantially reduces the knowledge-engineering bottleneck for building
information extraction systems. AutoSlog demonstrates that some types of
domain-specific semantic knowledge can be acquired automatically using only
an appropriate training corpus. We believe that research in automated dictio-
nary construction is crucial for natural language processing systems to become
practical for real-world applications, and AutoSlog is a significant step in that
direction.

Acknowledgments

We would like to thank Wendy Lehnert for her help in setting up both of the
experiments described in Section 4, David Fisher and Jon Peterson for design-
ing and programming the AutoSlog interfaces, and Stephen Soderland and
Jon Peterson for being the humans in the loop. This research was supported
by NSF Grant no. EEC-9209623, State/Industry/University Cooperative Re-
search on Intelligent Information Retrieval and NSF Grant MIP-9023174.

References

[1] D. Ayuso, S. Boisen, H. Fox, H. Gish, R. Ingria, and R. Weischedel. BBN
PLUM: Description of the PLUM System as Used for MUC-4. In Proceedings

36

of the Fourth Message Understanding Conference (MUC-4), pages 177-185, San
Mateo, CA, 1992. Morgan Kaufmann.

[2] J. G. Carbonell. Subjective Understanding: Computer Models of Belief
Systems. PhD thesis, Research Report 150, Computer Science Department,
Yale University, 1979.

[3] J. G. Carbonell. Towards a Self-Extending Parser. In Proceedings of the 17th
Meeting of the Association for Computational Linguistics, pages 3—7, 1979.

[4] R. E. Cullingford. Seript Application: Computer Understanding of Newspaper
Stories. PhD thesis, Research Report 116, Computer Science Department, Yale
University, 1978.

[5] Gerald DeJong. An Overview of the FRUMP System. In W. Lehnert and
M. Ringle, editors, Strategies for Natural Language Processing, pages 149-177.
Lawrence Erlbaum Associates, 1982.

[6] Gerald DeJong and R. Mooney. Explanation-Based Learning: An Alternative
View. Machine Learning, 1:145-176, 1986.

[7] William Dolan, Lucy Vanderwende, and Stephen D. Richardson. Automatically
Deriving Structured Knowledge Bases from On-Line Dictionaries. In
Proceedings of the First Conference of the Pacific Association for
Computational Linguistics, pages 5—14, 1993.

[8] D. H. Fisher. Knowledge Acquisition Via Incremental Conceptual Clustering.
Machine Learning, 2:139-172, 1987.

[9] W. Francis and H. Kucera. Frequency Analysis of English Usage. Houghton
Mifflin, Boston, MA, 1982.

[10] R. H. Granger. FOUL-UP: A Program that Figures Out Meanings of Words
from Context. In Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, pages 172-178, 1977.

[11] Philip J. Hayes and Steven P. Weinstein. Construe-TIS: A System for Content-
Based Indexing of a Database of News Stories. In Proceedings of the Second
Annual Conference on Innovative Applications of Artificial Intelligence, pages
49-64. AAAI Press, 1991.

[12] Jerry R. Hobbs, Douglas Appelt, Mabry Tyson, John Bear, and David Israel.
SRI International: Description of the FASTUS System Used for MUC-4. In
Proceedings of the Fourth Message Understanding Conference (MUC-4), pages
268-275, San Mateo, CA, 1992. Morgan Kaufmann.

[13] P. Jacobs and U. Zernik. Acquiring Lexical Knowledge from Text: A Case
Study. In Proceedings of the Seventh National Conference on Artificial
Intelligence, pages 739-744, 1988.

[14] J. Kim and D. Moldovan. Acquisition of Semantic Patterns for Information
Extraction from Corpora. In Proceedings of the Ninth IEFE Conference on
Artificial Intelligence for Applications, pages 171-176, Los Alamitos, CA, 1993.
IEEE Computer Society Press.

37

[15] G. Krupka, P. Jacobs, L.. Rau, L. Childs, and 1. Sider. GE NLTOOLSET:
Description of the System as Used for MUC-4. In Proceedings of the Fourth
Message Understanding Conference (MUC-}), pages 177-185, San Mateo, CA,
1992. Morgan Kaufmann.

[16] W. Lehnert. Symbolic/Subsymbolic Sentence Analysis: Exploiting the Best of
Two Worlds. In J. Barnden and J. Pollack, editors, Advances in Connectionist
and Neural Computation Theory, Vol. 1, pages 135-164. Ablex Publishers,
Norwood, NJ, 1991.

[17] W. Lehnert, C. Cardie, D. Fisher, J. McCarthy, E. Riloff, and S. Soderland.
University of Massachusetts: Description of the CIRCUS System as Used for
MUC-4. In Proceedings of the Fourth Message Understanding Conference
(MUC-4), pages 282-288, San Mateo, CA, 1992. Morgan Kaufmann.

[18] W. Lehnert, C. Cardie, D. Fisher, J. McCarthy, E. Riloff, and S. Soderland.
University of Massachusetts: MUC-4 Test Results and Analysis. In Proceedings
of the Fourth Message Understanding Conference (MUC-4), pages 151-158, San
Mateo, CA, 1992. Morgan Kaufmann.

[19] W. Lehnert, C. Cardie, D. Fisher, E. Riloff, and R. Williams. University of
Massachusetts: Description of the CIRCUS System as Used for MUC-3. In
Proceedings of the Third Message Understanding Conference (MUC-3), pages
223-233, San Mateo, CA, 1991. Morgan Kaufmann.

[20] W. Lehnert, C. Cardie, D. Fisher, E. Riloff, and R. Williams. University of
Massachusetts: MUC-3 Test Results and Analysis. In Proceedings of the Third
Message Understanding Conference (MUC-3), pages 116-119, San Mateo, CA,
1991. Morgan Kaufmann.

[21] W. Lehnert, J. McCarthy, S. Soderland, E. Riloff, C. Cardie, J. Peterson,
F. Feng, C. Dolan, and S. Goldman. UMass/Hughes: Description of the
CIRCUS System as Used for MUC-5. In Proceedings of the Fifth Message
Understanding Conference (MUC-5), pages 277-291, San Francisco, CA, 1993.
Morgan Kaufmann.

[22] M. Marcus, B. Santorini, and M. Marcinkiewicz. Building a Large Annotated
Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313—
330, 1993.

[23] M. Mauldin. Retrieval Performance in FERRET: A Conceptual Information
Retrieval System. In Proceedings of the 14th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 347—
355, 1991.

[24] T. M. Mitchell, R. Keller, and S. Kedar-Cabelli. Explanation-Based
Generalization: A Unifying View. Machine Learning, 1:47-80, 1986.

[25] S. Montemagni and L. Vanderwende. Structural Patterns vs. String Patterns
for Extracting Semantic Information from Dictionaries. In Proceedings of the
Fourteenth International Conference on Computational Linguistics (COLING-
92), pages 546-552, 1992.

38

[26] Proceedings of the Third Message Understanding Conference (MUC-3), San
Mateo, CA, 1991. Morgan Kaufmann.

[27] Proceedings of the Fourth Message Understanding Conference (MUC-4), San
Mateo, CA, 1992. Morgan Kaufmann.

[28] Proceedings of the Fifth Message Understanding Conference (MUC-5), San
Francisco, CA, 1993. Morgan Kaufmann.

[29] J. R. Quinlan. Induction of Decision Trees. Machine Learning, 1:80-106, 1986.

[30] E. Riloff. Automatically Constructing a Dictionary for Information Extraction
Tasks. In Proceedings of the Fleventh National Conference on Artificial
Intelligence, pages 811-816. AAAT Press/The MIT Press, 1993.

[31] E. Riloff. Information FEztraction as a Basis for Portable Text Classification
Systems. PhD thesis, Department of Computer Science, University of
Massachusetts Amherst, 1994.

[32] E. Riloff and W. Lehnert. Information Extraction as a Basis for High-Precision
Text Classification. ACM Transactions on Information Systems, 12(3):296-333,
July 1994.

[33] E. Riloff and W. G. Lehnert. A Dictionary Construction Experiment with
Domain Experts. In Proceedings of the TIPSTER Text Program (Phase 1),
pages 257-259, San Francisco, CA, 1993. Morgan Kaufmann.

[34] E. Riloff and J. Shoen. Automatically Acquiring Conceptual Patterns Without
an Annotated Corpus. In Proceedings of the Third Workshop on Very Large
Corpora, pages 148-161, 1995.

[35] P. Utgoff. ID5: An Incremental ID3. In Proceedings of the Fifth International
Conference on Machine Learning, pages 107-120, 1988.

[36] R. Weischedel, M. Meteer, R. Schwartz, L. Ramshaw, and J. Palmucci.
Coping with Ambiguity and Unknown Words through Probabilistic Models.
Computational Linguistics, 19(2):359-382, 1993.

39

