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Abstract

Many algorithms extract terms from text to-
gether with some kind of taxonomic clas-
sification (is-a) link. However, the general
approaches used today, and specifically the
methods of evaluating results, exhibit serious
shortcomings. Harvesting without focusing on
a specific conceptual area may deliver large
numbers of terms, but they are scattered over
an immense concept space, making Recall
judgments impossible. Regarding Precision,
simply judging the correctness of terms and
their individual classification links may pro-
vide high scores, but this doesn’t help with the
eventual assembly of terms into a single coher-
ent taxonomy. Furthermore, since there is no
correct and complete gold standard to measure
against, most work invents some ad hoc evalu-
ation measure. We present an algorithm that is
more precise and complete than previous ones
for identifying from web text just those con-
cepts ‘below’ a given seed term. Comparing
the results to WordNet, we find that the algo-
rithm misses terms, but also that it learns many
new terms not in WordNet, and that it clas-
sifies them in ways acceptable to humans but
different from WordNet.

1 Collecting Information with Care

Over the past few years, many algorithms have been
published on automatically harvesting terms and
their conceptual types from the web and/or other
large corpora (Etzioni et al., 2005; Pasca, 2007;
Banko et al., 2007; Yi and Niblack, 2005; Snow et
al., 2005). But several basic problems limit the even-
tual utility of the results.

First, there is no standard collection of facts
against which results can be measured. As we show

in this paper, WordNet (Fellbaum, 1998), the most
obvious contender because of its size and popularity,
is deficient in various ways: it is neither complete
nor is its taxonomic structure inarguably perfect. As
a result, alternative ad hoc measures are invented
that are not comparable. Second, simply harvesting
facts about an entity without regard to its actual sub-
sequent organization inflates Recall and Precision
evaluation scores: while it is correct that ajaguar
is a animal, mammal, toy, sports-team, car-make,
andoperating-system, this information doesn’t help
to create a taxonomy that, for example, placesmam-
mal andanimal closer to one another than to some
of the others. ((Snow et al., 2005) is an exception
to this.) As a result, this work may give a mislead-
ing sense of progress. Third, entities are of differ-
ent formal types, and their taxonomic treatment is
consequently different: some are at the level of in-
stances (e.g.,Michelangelo was a painter) and some
at the level of concepts (e.g.,a painter is a human).

The goal of our research is to learn terms for en-
tities (objects) and their taxonomic organization si-
multaneously, from text. Our method is to use a
single surface-level pattern with several open posi-
tions. Filling them in different ways harvests differ-
ent kinds of information, and/or confirms this infor-
mation. We evaluate in two ways: against WordNet,
since that is a commonly available and popular re-
source, and also by asking humans to judge the re-
sults since WordNet is neither complete nor exhaus-
tively taxonomized.

In this paper, we describe experiments with two
rich and common portions of an entity taxonomy:
Animals and People. The claim of this paper is:It is
possible to learn terms automatically to populate a
targeted portion of a taxonomy (such as below An-



imals or People) both at high precision compared
to WordNet and including additional correct ones as
well. We would like to also report on Recall rela-
tive to WordNet, but given the problems described
in Section 4, this turns out to be much harder than
would seem.

First, we need to define some basic terminology:
term: An English word (for our current purposes, a
noun or a proper name).
seed term:A word we use to initiate the algorithm.
concept: An item in the classification taxonomy we
are building. A concept may correspond to several
terms (singular form, plural form, the term’s syn-
onyms, etc.).
root concept: A concept at a fairly general (high)
level in the taxonomy, to which many others are
eventually learned to be subtypes/instances of.
basic-level concept:A concept at the ‘basic level’,
corresponding approximately to the Basic Level cat-
egories defined in Prototype Theory in Psychology
(Rosch, 1978). For our purposes, a concept corre-
sponding to the (proto)typical level of generality of
its type; that is, adog, not amammalor adachshund;
asinger, not ahumanor anopera diva.
instance: An item in the classification taxonomy
that is more specific than a concept; only one exam-
ple of the instance exists in ‘the real world’ at any
time. For example,Michelangelois an instance, as
well asMazda Miata with license plate 3HCY687,
while Mazda Miatais not.
classification link: We use a single relation, that,
depending on its arguments, is eitheris a type of
(when both arguments are concepts), oris an in-
stance ofor is an example of(when the first argu-
ment is an instance/example of the second).

Section 2 describes our method for harvesting;
Section 3 discusses related work; and Section 4 de-
scribes the experiments and the results.

2 Term and Relation Extraction using the
Doubly-Anchored Pattern

Our goal is to develop a technique that automatically
‘fills in’ the concept space in the taxonomy below
any root concept, by harvesting terms through re-
peated web queries. We perform this in two alter-
nating stages.

Stage 1: Basic-level/Instance concept collec-
tion: We use the Doubly-Anchored Pattern DAP de-
veloped in (Kozareva et al., 2008):

DAP: [SeedTerm1] such as [SeedTerm2] and<X>

which learns a list of basic-level concepts or in-
stances (depending on whether SeedTerm2 ex-
presses a basic-level concept or an instance).1 DAP
is very reliable because it is instantiated with ex-
amples at both ‘ends’ of the space to be filled (the
higher-level (root) concept SeedTerm1 and a basic-
level term or instance (SeedTerm2)), which mutu-
ally disambiguate each other. For example, “pres-
idents” for SeedTerm1 can refer to the leader of a
country, corporation, or university, and “Ford” for
SeedTerm2 can refer to a car company, an automo-
bile pioneer, or a U.S. president. But when the two
terms co-occur in a text that matches the pattern
“Presidents such as Ford and<X>” , the text will
almost certainly refer to country presidents.

The first stage involves a series of repeated re-
placements of SeedTerm2 by newly-learned terms
in order to generate even more seed terms. That is,
each new basic-level concept or instance is rotated
into the pattern (becoming a new SeedTerm2) in a
bootstrapping cycle that Kozareva et al. calledreck-
less bootstrapping. This procedure is implemented
as exhaustive breadth-first search, and iterates until
no new terms are harvested. The harvested terms are
incorporated in aHyponym Pattern Linkage Graph
(HPLG) G = (V,E), where each vertexv ∈ V is
a candidate term and each edge(u, v) ∈ E indi-
cates that termv was generated by termu. A term

u is ranked byOut-Degree(u) =
P

∀(u,v)∈E w(u,v)

|V |−1 ,
which represents the weighted sum ofu’s outgoing
edges normalized by the total number of other nodes
in the graph. Intuitively, a term ranks highly if it
is frequently discovering many different terms dur-
ing the reckless bootstrapping cycle. This method is
very productive, harvesting a constant stream of new
terms for basic-level concepts or instances when the
taxonomy below the initial root concept SeedTerm1
is extensive (such as for Animals or People).

1Strictly speaking, our lowest-level concepts can be in-
stances, basic-level concepts, or concepts below the basiclevel
(e.g.,dachsund). But for the sake of simplicity we will refer to
our lowest-level terms as basic-level concepts and instances.



Stage 2: Intermediate level concept collection:
Going beyond (Kozareva et al., 2008), we next apply
the Doubly-Anchored Pattern in the ‘backward’ di-
rection (DAP−1), for any two seed terms represent-
ing basic-level concepts or instances:

DAP−1: <X> such as [SeedTerm1] and [SeedTerm2]

which harvests a set of concepts, most of them inter-
mediate between the basic level or instance and the
initial higher-level seed.

This second stage (DAP−1) has not yet been de-
scribed in the literature. It proceeds analogously.
For pairs of basic-level concepts or instances be-
low the root concept that were found during the first
stage, we instantiate DAP−1 and issue a new web
query. For example, if the term “cats” was harvested
by DAP in “Animals such as dogs and<X>” , then
the pair< dogs, cats > forms the new Web query
“ <X> such as dogs and cats”. We extract up to 2
consecutive nouns from the<X> position.

This procedure yields a large number of discov-
ered concepts, but they cannot all be used for fur-
ther bootstrapping. In addition to practical limita-
tions (such as limits on web querying), many of them
are too general–more general than the initial root
concept–and could derail the bootstrapping process
by introducing terms that stray every further away
from the initial root concept. We therefore rank the
harvested terms based on the likelihood that they
will be productive if they are expanded in the next
cycle. Ranking is based on two criteria: (1) the con-
cept should be prolific (i.e., produce many lower-
level concepts) in order to keep the bootstrapping
process energized, and (2) the concept should be
subordinate to the root concept, so that the process
stays within the targeted part of the search space.

To perform ranking, we incorporate both the har-
vested concepts and the basic-level/instance pairs
into aHypernym Relation Graph (HRG), which we
define as a bipartite graphHRG = (V,E) with two
types of vertices. One set of vertices represents the
concepts(the category vertices (Vc), and a second
set of vertices represents the basic-level/instance
pairs that produced the concepts (the member pair
vertices (Vmp)). We create an edgee(u, v) ∈ E

betweenu ∈ Vc and v ∈ Vmp when the con-
cept represented byu was harvested by the basic-
level/instance pair represented byv, with the weight

of the edge defined as the number of times that the
lower pair found the concept on the web.

We use the Hypernym Relation Graph to rank
the intermediate concepts based on each node’sIn-
Degree, which is the sum of the weights on the
node’s incoming edges. Formally,In-Degree(u) =∑

∀(u,v)∈E w(u, v). Intuitively, a concept will be
ranked highly if it was harvested by many different
combinations of basic-level/instance terms.

However, this scoring function does not deter-
mine whether a concept is more or less general than
the initial root concept. For example, when har-
vesting animal categories, the system may learn the
word “species”, which is a very common term asso-
ciated with animals, but also applies to non-animals
such as plants. To prevent the inclusion of over-
general terms and constrain the search to remain
‘below’ the root concept, we apply aConcept Posi-
tioning Test (CPT): We issue the following two web
queries:

(a)Concept such as RootConcept and<X>

(b) RootConcept such as Concept and<X>

If (b) returns more web hits than (a), then the con-
cept passes the test, otherwise it fails. The first (most
highly ranked) concept that passes CPT becomes the
new seed concept for the next bootstrapping cycle.
In principle, we could use all the concepts that pass
the CPT for bootstrapping2. However, for practical
reasons (primarily limitations on web querying), we
run the algorithm for 10 iterations.

3 Related Work

Many algorithms have been developed to automat-
ically acquire semantic class members using a va-
riety of techniques, including co-occurrence statis-
tics (Riloff and Shepherd, 1997; Roark and Char-
niak, 1998), syntactic dependencies (Pantel and
Ravichandran, 2004), and lexico-syntactic patterns
(Riloff and Jones, 1999; Fleischman and Hovy,
2002; Thelen and Riloff, 2002).

The work most closely related to ours is that of
(Hearst, 1992) who introduced the idea of apply-
ing hyponym patternsto text, which explicitly iden-
tify a hyponym relation between two terms (e.g.,

2The number of ranked concepts that pass CPT changes in
each iteration. Also, the wildcard * is important for counts, as
can be verified with a quick experiment using Google.



“such authors as<X>” ). In recent years, sev-
eral researchers have followed up on this idea using
the web as a corpus. (Pasca, 2004) applies lexico-
syntactic hyponym patterns to the Web and use the
contexts around them for learning. KnowItAll (Et-
zioni et al., 2005) applies the hyponym patterns to
extract instances from the Web and ranks them by
relevance using mutual information. (Kozareva et
al., 2008) introduced a bootstrapping scheme using
the doubly-anchored pattern (DAP) that is guided
through graph ranking. This approach reported a
significant improvement from 5% to 18% over ap-
proaches using singly-anchored patterns like those
of (Pasca, 2004) and (Etzioni et al., 2005).

(Snow et al., 2005) describe a dependency path
based approach that generates a large number of
weak hypernym patterns using pairs of noun phrases
present in WordNet. They build a classifier using
the different hypernym patterns and find among the
highest precision patterns those of (Hearst, 1992).
Snow et al. report performance of 85% precision
at 10% recall and 25% precision at 30% recall for
5300 hand-tagged noun phrase pairs. (McNamee et
al., 2008) use the technique of (Snow et al., 2005)
to harvest the hypernyms of the proper names. The
average precision on 75 automatically detected cat-
egories is 53%. The discovered hypernyms were
intergrated in a Question Answering system which
showed an improvement of 9% when evaluated on a
TREC Question Answering data set.

Recently, (Ritter et al., 2009) reported hypernym
learning using (Hearst, 1992) patterns and manually
tagged common and proper nouns. All hypernym
candidates matching the pattern are acquired, and
the candidate terms are ranked by mutual informa-
tion. However, they evaluate the performance of
their hypernym algorithm by considering only the
top 5 hypernyms given a basic-level concept or in-
stance. They report 100% precision at 18% recall,
and 66% precision at 72% recall, considering only
the top-5 list. Necessarily, using all the results re-
turned will result in lower precision scores. In con-
trast to their approach, our aim is to first acquire au-
tomatically with minimal supervision the basic-level
concepts for given root concept. Thus, we almost
entirely eliminate the need for humans to provide
hyponym seeds. Second, we evaluate the perfor-
mance of our approach not by measuring the top-

ranked 5 hypernyms given a basic-level concept, but
considering all harvested hypernyms of the concept.

Unlike (Etzioni et al., 2005), (Pasca, 2007) and
(Snow et al., 2005), we learn both instances and con-
cepts simultaneously.

Some researchers have also worked on reorga-
nizing, augmenting, or extending semantic concepts
that already exist in manually built resources such
as WordNet (Widdows and Dorow, 2002; Snow et
al., 2005) or Wikipedia (Ponzetto and Strube, 2007).
Work in automated ontology construction has cre-
ated lexical hierarchies (Caraballo, 1999; Cimiano
and Volker, 2005; Mann, 2002), and learned seman-
tic relations such as meronymy (Berland and Char-
niak, 1999; Girju et al., 2003).

4 Evaluation

The root concepts discussed in this paper are An-
imals and People, because they head large taxo-
nomic structures that are well-represented in Word-
Net. Throughout these experiments, we used as the
initial SeedTerm2lions for Animals andMadonna
for People (by specifically choosing a proper name
for People we force harvesting down to the level of
individual instances). To collect data, we submitted
the DAP patterns as web queries to Google, retrieved
the top 1000 web snippets per query, and kept only
the unique ones. In total, we collected 1.1 GB of
snippets for Animals and 1.5 GB for People. The
algorithm was allowed to run for 10 iterations.

The algorithm learns a staggering variety of terms
that is much more diverse than we had antici-
pated. In addition to many basic-level concepts or
instances, such asdog and Madonnarespectively,
and many intermediate concepts, such asmammals,
pets, andpredators, it also harvested categories that
clearly seemed useful, such aslaboratory animals,
forest dwellers, andendangered species. Many other
harvested terms were more difficult to judge, includ-
ing bait, allergens, seafood, vectors, protein, and
pests. While these terms have an obvious relation-
ship to Animals, we have to determine whether they
are legitimate and valuable subconcepts of Animals.

A second issue involves relative terms that are
hard to define in an absolute sense, such asnative
animalsandlarge mammals.
A complete evaluation should answer the following
three questions:



• Precision: What is the correctness of the har-
vested concepts? (How many of them are sim-
ply wrong, given the root concept?)

• Recall: What is the coverage of the harvested
concepts? (How many are missing, below a
given root concept?)

• How correct is the taxonomic structure
learned?

Given the number and variety of terms obtained,
we initially decided that an automatic evaluation
against existing resources (such as WordNet or
something similar) would be inadequate because
they do not contain many of our harvested terms,
even though many of these terms are clearly sensi-
ble and potentially valuable. Indeed, the whole point
of our work is to learn concepts and taxonomies that
go above and beyond what is currently available.

However, it is necessary to compare with
something, and it is important not to skirt the issue
by conducting evaluations that measure subsets of
results, or that perhaps may mislead. We therefore
decided to compare our results against WordNetand
to have human annotators judge as many results as
we could afford (to obtain a measure of Precision
and the legitimate extensions beyond WordNet).

Unfortunately, it proved impossible to measure
Recall against WordNet, because this requires as-
certaining the number of synsets in WordNet be-
tween the root and its basic-level categories. This
requires human judgment, which we could not af-
ford. We plan to address this question in future
work. Also, assessing the correctness of the learned
taxonomy structure requires the manual assessment
of each classification link proposed by the system
that is not already in WordNet, a task also beyond
our budget to complete in full. Some results—for
just basic-level terms and intermediate concepts, but
not among intermediate-level concepts–are shown in
Section 4.3.

We provide Precision scores using the following
measures, wheretermsrefers to the harvested terms:

PrWN =
#terms found in WordNet

#terms harvested by system

PrH =
#terms judged correct by human

#terms harvested by system

NotInWN = #terms judged correct by human but

not in WordNet

We conducted three sets of experiments.Ex-
periment 1 evaluates the results of using DAP to
learn basic-level concepts for Animals and instances
for People. Experiment 2 evaluates the results of
using DAP−1 to harvest intermediate concepts be-
tween each root concept and its basic-level concepts
or instances.Experiment 3 evaluates the taxonomy
structure that is produced via the links between the
instances and intermediate concepts.

4.1 Experiment 1: Basic-Level Concepts and
Instances

In this section we discuss the results of harvest-
ing the basic-level Animal concepts and People in-
stances. The bootstrapping algorithm ranks the har-
vested terms by theirOut-Degreescore and consid-
ers as correct only those withOut-Degree> 0. In
ten iterations, the bootstrapping algorithm produced
913 Animal basic-level concepts and1, 344 People
instances that passed thisOut-Degreecriterion.

4.1.1 Human Evaluation

The harvested terms were labeled by human
judges as either correct or incorrect with respect to
the root concept. Table 1 shows the Precision of the
top-rankedN terms, withN shown in increments
of 100. Overall, the Animal terms yielded 71%
(649/913) Precision and the People terms yielded
95% Precision (1,271/1,344). Figure 1 shows that
higher-ranked Animal terms are more accurate than
lower-ranked terms, which indicates that the scor-
ing function did its job. For People terms, accuracy
was very high throughout the ranked list. Overall,
these results show that the bootstrapping algorithm
generates a large number of correct instances of high
quality.

4.1.2 WordNet Evaluation

Table 1 shows a comparison of the harvested
terms against the terms present in WordNet.
Note that the Precision measured against WordNet
(PrWN ) for People is dramatically different from
the Precision based on human judgments (PrH ).
This can be explained by looking at theNotInWN
column, which shows that48 correct Animal terms
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Figure 1:Ranked Basic-Concepts and Instances.

and986 correct People instances are not present in
WordNet (primarily, for people, because WordNet
contains relatively few proper names). These results
show that there is substantial room for improvement
in WordNet’s coverage of these categories. For Ani-
mals, the precision measured against WordNet is ac-
tually higher than the precision measured by human
judges, which may indicate that the judges failed to
recognize some correct animal terms.

PrWN PrH NotInWN

Animal .79 .71 48
People .23 .95 986

Table 1:Instance Evaluation.

4.1.3 Evaluation against Prior Work

To assess how well our algorithm compares with
previous semantic class learning methods, we com-
pared our results to those of (Kozareva et al., 2008).
Our work was inspired by that approach–in fact, we
use that previous algorithm as the first step of our
bootstrapping process. The novelty of our approach
is the insertion of an additional bootstrapping stage
that iteratively learns new intermediate concepts us-
ing DAP−1 and the Concept Positioning Test, fol-
lowed by the subsequent use of the newly learned
intermediate concepts in DAP to expand the search
space beyond the original root concept. This leads
to the discovery of additional basic-level terms or in-
stances, which are then recycled in turn to discover
new intermediate concepts, and so on.

Consequently, we can compare the results pro-
duced by the first iteration of our algorithm (be-
fore intermediate concepts are learned) to those of
(Kozareva et al., 2008) for the Animal and People
categories, and then compare again after 10 boot-
strapping iterations of intermediate concept learn-
ing. Figure 2 shows the number of harvested con-
cepts for Animals and People after each bootstrap-
ping iteration. Bootstrapping with intermediate con-
cepts produces nearly 5 times as many basic-level
concepts and instances than (Kozareva et al., 2008)
obtain, while maintaining similar levels of precision.

The intermediate concepts help so much because
they steer the learning process into new (yet still cor-
rect) regions of the search space after each iteration.
For instance, in the first iteration, the pattern“ani-
mals such as lions and *”harvests about 350 basic-
level concepts, but only animals that are mentioned
in conjunction with lions are learned. Of these, an-
imals typically quite different from lions, such as
grass-eating kudu, are often not discovered.

However, in the second iteration, the intermediate
concept Herbivore is chosen for expansion. The pat-
tern “herbivore such as antelope and *”discovers
many additional animals, includingkudu, that co-
occur withantelopebut do not co-occur withlions.

Table 2 shows examples of the 10 top-ranked
basic-level concepts and instances that were learned
for 3 randomly-selected intermediate Animal and
People concepts (IConcepts) that were acquired dur-
ing bootstrapping. In the next section, we present an
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Figure 2:Learning Curves.

evaluation of the intermediate concept terms.

4.2 Experiment 2: Intermediate Concepts

In this section we discuss the results of harvesting
the intermediate-level concepts. Given the variety of
the harvested results, manual judgment of correct-
ness required an in-depth human annotation study.
We also compare our harvested results against the
concept terms in WordNet.

4.2.1 Human Evaluation

We hired 4 annotators (undergraduates at a dif-
ferent institution) to judge the correctness of the in-
termediate concepts. We created detailed annota-
tion guidelines that define 14 annotation labels for
each of the Animal and People classes, as shown
in Table 3. The labels are clustered into 4 major

PEOPLE
IConcept Instances
Dictators: Adolf Hitler, Joseph Stalin, Benito Mussolini, Lenin,

Fidel Castro, Idi Amin, Slobodan Milosevic,
Hugo Chavez, Mao Zedong, Saddam Hussein

Celebrities: Madonna, Paris Hilton, Angelina Jolie, Britney ,
Spears, Tom Cruise, Cameron Diaz, Bono,
Oprah Winfrey, Jennifer Aniston, Kate Moss

Writers : William Shakespeare, James Joyce, Charles Dickens,
Leo Tolstoy, Goethe, Ralph Waldo Emerson,
Daniel Defoe, Jane Austen, Ernest Hemingway,
Franz Kafka

ANIMAL
IConcept Basic-level Terms
Crustacean: shrimp, crabs, prawns, lobsters, crayfish, mysids,

decapods, marron, ostracods, yabbies
Primates: baboons, monkeys, chimpanzees, apes, marmosets,

chimps, orangutans, gibbons, tamarins, bonobos
Mammal: mice, whales, seals, dolphins, rats, deer, rabbits,

dogs, elephants, squirrels

Table 2:Learned People and Animals Terms.

types:Correct, Borderline, BasicConcept, and Not-
Concept. The details of our annotation guidelines,
the reasons for the intermediate labels, and the anno-
tation study can be found in (Kozareva et al., 2009).

ANIMAL
TYPE LABEL EXAMPLES
Correct GeneticAnimal reptile,mammal

BehavioralByFeeding predator, grazer
BehaviorByHabitat saltwater mammal
BehaviorSocialIndiv herding animal
BehaviorSocialGroup herd, pack
MorphologicalType cloven-hoofed animal
RoleOrFunction pet, parasite

Borderline NonRealAnimal dragons
EvaluativeTerm varmint, fox
OtherAnimal critter, fossil

BasicConcept BasicAnimal dog, hummingbird
NotConcept GeneralTerm model, catalyst

NotAnimal topic, favorite
GarbageTerm brates, mals

PEOPLE
TYPE LABEL EXAMPLES
Correct GeneticPerson Caucasian, Saxon

NonTransientEventRole stutterer, gourmand
TransientEventRole passenger, visitor
PersonState dwarf, schizophrenic
FamilyRelation aunt, mother
SocialRole fugitive, hero
NationOrTribe Bulgarian, Zulu
ReligiousAffiliation Catholic, atheist

Borderline NonRealPerson biblical figures
OtherPerson colleagues, couples

BasicConcept BasicPerson child, woman
RealPerson Barack Obama

NotConcept GeneralTerm image, figure
NotPerson books, events

Table 3:Intermediate Concept Annotation Labels

We measured pairwise inter-annotator agreement
across the four labels using the Fleiss kappa (Fleiss,
1971). Theκ scores ranged from 0.61–0.71 for
Animals (averageκ=0.66) and from 0.51–0.70 for
People (averageκ=0.60). These agreement scores
seemed good enough to warrant using these human
judgments to estimate the accuracy of the algorithm.

The bootstrapping algorithm harvested3, 549 An-
imal and4, 094 People intermediate concepts in ten
iterations. After In-Degree ranking was applied,



we chose a random sample of intermediate concepts
with frequency over 1, which was given to four hu-
man judges for annotation. Table 4 summarizes the
labels assigned by the four annotators (A1 – A4).
The top portion of Table 4 shows the results for all
the intermediate concepts (437 Animal terms and
296 People terms), and the bottom portion shows the
results only for the concepts that passed the Concept
Positioning Test (187 Animal terms and139 People
terms). Accuracy is computed in two ways:Acc1 is
the percent of intermediate concepts labeled asCor-
rect; Acc2 is the percent of intermediate concepts
labeled as eitherCorrector Borderline.

Without the CPT, accuracies range from 53–66%
for Animals and 75–85% for People. After ap-
plying the CPT, the accuracies increase to 71–84%
for animals and 82–94% for people. These results
confirm that the Concept Positioning Test is effec-
tive at removing many of the undesirable terms.
Overall, these results demonstrate that our algorithm
produced many high-quality intermediate concepts,
with good precision.

Figure 3 shows accuracy curves based on the
rankings of the intermediate concepts (based on In-
Degree scores). The CPT clearly improves accu-
racy even among the most highly ranked concepts.
For example, theAcc1curves for animals show that
nearly 90% of the top 100 intermediate concepts
were correct after applying the CPT, whereas only
70% of the top 100 intermediate concepts were cor-
rect before. However, the CPT also eliminates many
desirable terms. For People, the accuracies are still
relatively high even without the CPT, and a much
larger set of intermediate concepts is learned.

Animals People
A1 A2 A3 A4 A1 A2 A3 A4

Correct 246 243 251 230 239 231 225 221
Borderline 42 26 22 29 12 10 6 4
BasicConcept 2 8 9 2 6 2 9 10
NotConcept 147 160 155 176 39 53 56 61
Acc1 .56 .56 .57 .53 .81 .78 .76 .75
Acc2 .66 .62 .62 .59 .85 .81 .78 .76

Animals after CPT People after CPT
A1 A2 A3 A4 A1 A2 A3 A4

Correct 146 133 144 141 126 126 114 116
Borderline 11 15 9 13 6 2 2 0
BasicConcept 2 8 9 2 0 1 7 7
NotConcept 28 31 25 31 7 10 16 16
Acc1 .78 .71 .77 .75 .91 .91 .82 .83
Acc2 .84 .79 .82 .82 .95 .92 .83 .83

Table 4:Human Intermediate Concept Evaluation.
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Figure 3:Intermediate Concept Precision at Rank N.

4.2.2 WordNet Evaluation

We also compared the intermediate concepts har-
vested by the algorithm to the contents of WordNet.
The results are shown in Table 5. WordNet contains
20% of the Animal concepts and 51% of the People
concepts learned by our algorithm, which confirms
that many of these concepts were considered to be
valuable taxonomic terms by the WordNet develop-
ers. However, our human annotators judged 57%
of the Animal and 84% of the People concepts to
be correct, which suggests that our algorithm gen-
erates a substantial number of additional concepts
that could be used to enrich taxonomic structure in
WordNet.



PrWN PrH NotInWN

Animal .20 (88/437) .57 (248/437) 204
People .51 (152/296) .85 (251/296) 108

Table 5:WordNet Intermediate Concept Evaluation.

4.3 Experiment 3: Taxonomic Links

In this section we evaluate the classification (taxon-
omy) that is learned by evaluating the links between
the intermediate concepts and the basic-level con-
cept/instance terms. That is, when our algorithm
claims thatisa(X,Y), how often isX truly a subcon-
cept ofY? For example,isa(goat, herbivore)would
be correct, butisa(goat, bird)would not. Again,
since WordNet does not contain all the harvested
concepts, we conduct both a manual evaluation and
a comparison against WordNet.

4.3.1 Manual and WordNet Evaluations

Creating and evaluating the full taxonomic struc-
ture between the root and the basic-level or instance
terms is future work. Here we evaluate simply the
accuracy of the taxonomic links between basic-level
concepts/instances and intermediate concepts as har-
vested, but not between intermediate concepts. For
each pair, we extracted all harvested links and deter-
mined whether the same links appear in WordNet.
The links were also given to human judges. Table 6
shows the results.

ISA PrWN PrH NotInWN
Animal .47(912/1940) .88 (1716/1940) 804
People .23 (318/908) .94 (857/908) 539

Table 6:WordNet Taxonomic Evaluation.

The results show that WordNet lacks nearly half
of the taxonomic relations that were generated by
the algorithm: 804 Animal and 539 People links.

5 Conclusion

We describe a novel extension to the DAP approach
for discovering basic-level concepts or instances and
their superconcepts given an initial root concept. By
appropriate filling of different positions in DAP, the
algorithm alternates between ‘downward’ and ‘up-
ward’ learning. A key resulting benefit is that each
new intermediate-level term acquired restarts har-
vesting in a new region of the concept space, which
allows previously unseen concepts to be discovered
with each bootstrapping cycle.

We also introduce theConcept Positioning Test,
which serves to confirm that a harvested concept
falls into the desired part of the search space rela-
tive to either a superordinate or subordinate concept
in the growing taxonomy, before it is selected for
further harvesting using the DAP.

These algorithms can augment other term harvest-
ing algorithms recently reported. But in order to
compare different algorithms, it is important to com-
pare results to a standard. WordNet is our best can-
didate at present. But WordNet is incomplete. Our
results include a significantly large number of in-
stances of People (which WordNet does not claim
to cover), a number comparable to the results of (Et-
zioni et al., 2005; Pasca, 2007; Ritter et al., 2009).
Rather surprisingly, our results also include a large
number of basic-level and intermediate concepts for
Animals that are not present in WordNet, a category
WordNet is actually fairly complete about. These
numbers show clearly that it is important to conduct
manual evaluation of term harvesting algorithms in
addition to comparing to a standard resource.
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