In Connectionist, Statistical, and Symbolic Approaches to Learning for Natural
Language Processing, S. Wermter, E. Riloff, and G. Scheler, eds. 1996.
Springer-Verlag, Berlin. pp. 275-289

Using Learned Extraction Patterns for Text
Classification

Ellen Riloff

Department of Computer Science
University of Utah
Salt Lake City, UT 84112, USA
riloff@cs.utah.edu

Abstract. A major knowledge-engineering bottleneck for information
extraction systems is the process of constructing an appropriate dictio-
nary of extraction patterns. AutoSlog is a dictionary construction system
that has been shown to substantially reduce the time required for knowl-
edge engineering by learning extraction patterns automatically. However,
an open question was whether these extraction patterns were useful for
tasks other than information extraction. We describe a series of experi-
ments that show how the extraction patterns learned by AutoSlog can be
used for text classification. Three dictionaries produced by AutoSlog for
different domains performed well in our text classification experiments.

1 Introduction

Many researchers in natural language processing have turned their attention
recently to a problem called information extraction (IE). Information extrac-
tion is a natural language processing task that involves extracting predefined
types of information from text. Information extraction is essentially a form of
text-skimming because only the portions of a text that are relevant to a given
domain need to be understood. However, it is crucial for an IE system to have a
knowledge base of concepts that provides it with good coverage of the domain.

The challenge for information extraction researchers is to develop meth-
ods for acquiring the necessary dictionaries and knowledge bases automati-
cally. To this end, we have developed a system called AutoSlog [Riloff, 1996;
Riloff, 1993] that automatically constructs dictionaries of domain-specific extrac-
tion patterns. In the domain of Latin American terrorism, a dictionary created
by AutoSlog achieved 98% of the performance of a hand-crafted dictionary that
took approximately 1500 person-hours to build. We have also used AutoSlog
to create dictionaries of extraction patterns for a joint ventures domain and a
microelectronics domain.

One of the questions raised by the growing interest in information extraction
is whether the methods and resources developed for information extraction will

be useful for other natural language processing tasks. We decided to investigate
this issue by applying information extraction dictionaries and techniques to the
problem of text classification. In a series of experiments, we used an information
extraction system and dictionaries produced by AutoSlog to generate relevancy
signatures [Riloff and Lehnert, 1994] for automatic text classification. The heart
of the information extraction system is its dictionary of extraction patterns,
so these experiments also served to demonstrate that the AutoSlog dictionaries
were useful for making important domain discriminations.

In Section 2, we overview information extraction and the CIRCUS sentence
analyzer that was used in these experiments. In Section 3, we describe the Au-
toSlog dictionary construction system that automatically creates dictionaries of
extraction patterns using an annotated training corpus. In Section 4, we describe
the relevancy signatures algorithm for text classification and present the results
of the text classification experiments. Finally, we discuss related work in machine
learning and automated dictionary construction and draw some conclusions.

2 A Brief Introduction to Information Extraction

Information extraction is a natural language processing task that involves au-
tomatically extracting predefined types of information from text. In contrast to
in-depth understanding, information extraction systems focus only on portions
of text that are relevant to a specific domain (e.g., see [Jacobs and Rau, 1990;
Lehnert and Sundheim, 1991]). For example, an information extraction system
designed for a terrorism domain might extract the names of perpetrators, vic-
tims, physical targets, and weapons involved in a terrorist attack. Or an infor-
mation extraction system designed for a joint ventures domain might extract
the names of companies involved in a joint venture and products, facilities, or
people associated with those companies.

CIRCUS [Lehnert, 1991] is a conceptual sentence analyzer that performs in-
formation extraction. CIRCUS uses a dictionary of concept nodes to recognize
domain-specific patterns and expressions and to extract relevant information. A
concept node is essentially a case frame that is activated by specific linguistic
expressions and extracts information from the surrounding context. To illus-
trate, Figure 1 shows a simple sentence and the resulting instantiated concept
node produced by CIRCUS. The concept node $murder-passive$ is activated
by passive forms of the verb “murdered”, such as “were murdered” in the sam-
ple sentence. It then extracts the subject of the verb as the murder victim and
the object of the preposition “by” as the perpetrator. In Figure 1, the “three
peasants” are extracted as murder victims, and the “guerrillas” are extracted as
perpetrators. A similar concept node called $murder-active$ is triggered by ac-
tive forms of the verb “murdered”’, and extracts the subject as the perpetrator
and the direct object as the victim.

A sentence may activate multiple concept nodes if more than one relevant
expression 1s found, or a sentence may not activate any concept nodes if no
relevant expressions are found. All of the information extraction happens through

Sentence:
Three peasants were murdered by guerrillas.

$murder-passive$
victim = “three peasants”
perpetrator = “guerrillas”

Fig. 1. An instantiated concept node

concept nodes, so it is essential for CIRCUS to have a concept node dictionary
that provides good coverage of the domain.

3 AutoSlog: Learning Extraction Patterns

CIRCUS was the central component of the UMass/MUC-3' system [Lehnert et
al., 1991] developed at the University of Massachusetts. The concept node dictio-
nary used by the UMass/MUC-3 system was built by hand. The dictionary per-
formed well?, but took approximately 1500 person-hours to build [Lehnert et al.,
1992]. The dictionary construction process was a major knowledge-engineering
bottleneck that limited the scalability and portability of the system.

Subsequently, we developed a system called AutoSlog [Riloff, 1996; Riloff,
1993] that learns domain-specific extraction patterns from an annotated training
corpus. As input, AutoSlog needs a text and a set of tagged noun phrases that
represent the information that should have been extracted from the text. Each
noun phrase needs to be tagged with its semantic type and the event type with
which it 1s associated. Figure 2 shows a sample sentence and annotated noun
phrases.

For each tagged noun phrase, AutoSlog proposes a linguistic pattern that
is capable of extracting the noun phrase in an appropriate context. Intuitively,
AutoSlog tries to find a pattern that identifies the role of the noun phrase in a
relevant event or context. For example, consider the sentence:

(a) John Smith was murdered by armed men.

Suppose “John Smith” is tagged as a murder victim and the phrase “armed
men” is tagged as the perpetrator of a murder. AutoSlog will propose that the
pattern “<X> was murdered” identifies X as the victim of a murder and should
therefore be used to extract John Smith. Since the pattern itself is general, it can
be used to extract the names of other murder victims in future texts. Similarly,
AutoSlog will propose that the pattern “was murdered by <Y>” identifies Y as
a perpetrator and should therefore be used to extract the armed men. Again, the
pattern is general so it can be used to extract new perpetrators in the future.

! The MUCs refer to the message understanding conferences, which are competitive
performance evaluations of information extractions systems.

2 The UMass/MUC-3 system earned the highest combined recall and precision scores
of the 15 sites that participated in MUC-3 [MUC-3 Proceedings, 1991].

I'T WAS OFFI Cl ALLY REPORTED THAT A POLI CEMAN WAS WOUNDED TCDAY VWHEN

{

injury
victim

URBAN GUERRI LLAS ATTACKED THE GUARDS AT A PONER SUBSTATI ON LOCATED

\ v

attack attack
perpetrator victim

I'N DOMNTOAN SAN SALVADOR.

'

attack
location

Fig. 2. Example text annotations for AutoSlog

The core of AutoSlog is a simple set of linguistic rules that generate the
extraction patterns. Each rule depends solely on the syntactic location of the
targeted noun phrase and the surrounding context. The original set of AutoSlog
rules® is shown in Figure 3. The rules are divided into three sets, depending
upon whether the targeted noun phrase was the subject, direct object, or prepo-
sitional phrase of a clause. If the noun phrase was the subject, then AutoSlog
hypothesizes that the verb determines the role of the noun phrase and should
be used as the basis for the pattern. The exact form of the pattern mirrors the
syntactic context surrounding the noun phrase.

For example, in sentence (a) AutoSlog determines that “John Smith” is the
subject of the sentence so the <subject> rules are activated. Since “murdered”
is in the passive voice, the <subject> passive-verb rule matches the sur-
rounding context. The rule fires and instantiates its general pattern with the
specific verb found in the sentence. The resulting extraction pattern represents
expressions such as “X was murdered”, “X and Y were murdered”, and “X has
been murdered.” The process is similar for the other two categories of rules. If
CIRCUS determines that the targeted noun phrase is a direct object, then those
rules are activated. In most cases, the verb is used as the basis for the pattern
because the verb usually identifies the conceptual role of the noun phrase. If
CIRCUS determines that the targeted noun phrase is in a prepositional phrase,
then a simple pp-attachment algorithm is used to attach it to a preceding verb
or noun. That verb or noun is then used to create a new extraction pattern.

Figure 4 shows the flow of control in the AutoSlog system. As input, AutoSlog
needs texts and tagged noun phrases. For the experiments described here, we
used the MUC answer keys as input. It is important to note that the answer
keys contain a lot of additional information that AutoSlog does not need and
did not use. We used the MUC answer keys because they were readily available,

3 A slightly different set of rules was used in the joint ventures and microelectronics
domains. See [Riloff, 1996] for details.

Linguistic Pattern Example

<subject> active-verb <perpetrator> bombed
<subject> passive-verb <victim> was murdered
<subject> verb infinitive <perpetrator> attempted to kill
<subject> auxiliary noun <victim> was victim
active-verb <direct-object> bombed <target>
passive-verb <direct-object> killed <victim>

infinitive <direct-object> to kill <victim>

verb infinitive <direct-object> threatened to attack <target>
gerund <direct-object> killing <victim>

noun auxiliary <direct-object> fatality was <victim>

noun preposition <noun-phrase> bomb against <target>
active-verb preposition <noun-phrase> |killed with <instrument>
passive-verb preposition <noun-phrase>|was aimed at <target>

Fig. 3. AutoSlog rules and examples in the terrorism domain

but an annotated corpus would have been sufficient.

annotated
Ccorpus or

answer Keys vuri d Trade MEWS| The world Trade Center
Cent er was bonbed by terrorists.”

_—
Sentence Analyzer
Conceptual
CONCEPT NODE[] Anchor St Wrld Trade Center

DEFINITION: O -—

i <+—— V: was bonbed
<x> was bonbed Point

" PP: i
Heuristics by terrorists

Fig. 4. AutoSlog flowchart

Given the annotated corpus (or answer keys), AutoSlog processes one noun
phrase at a time. Given a tagged noun phrase, AutoSlog first finds the sentence
from which the noun phrase originated. If there is no pointer from the noun
phrase back to the original source text, then AutoSlog uses the first sentence in
the text that contains the noun phrase. The sentence is then pushed through
CIRCUS, which breaks it up into clauses and identifies the major syntactic con-
stituents of each clause (subject, verb, direct object, and prepositional phrases).
The appropriate AutoSlog rules are activated depending upon the syntactic lo-
cation of the noun phrase. The rules are evaluated in order, and the first rule to
recognize its pattern will generate the extraction pattern for the noun phrase.

Figure 5 shows an example of a concept node generated by AutoSlog for
the terrorism domain. The targeted noun phrase is “guerrillas”, which is tagged
as a perpetrator. AutoSlog searches for the first sentence containing the word
“guerrillas”, shown at the top of Figure 5, and sends it through CIRCUS. CIR-
CUS determines that the guerrillas are the subject of the first clause in the
sentence so AutoSlog’s <subject> rules are activated. The <subject> verb
infinitive rule recognizes its pattern in the sentence and instantiates itself as
<subject> threatened to murder. The resulting extraction pattern repre-
sents the expression “threatened to murder” and will extract the subject of the
verb “threatened” as a perpetrator.

Text Id: DEV-MUC4-0071 Targeted Noun Phrase: “guerrillas”
Sentence: The Salvadoran guerrillas today threatened to murder
individuals involved in 19 March presidential elections if they do not resign
from their posts.

CONCEPT NODE

Name: perpetrator-subject-verb-infinitive-threatened-to-murder

Trigger: murder

Variable Slots: (perpetrator (*SUBJECT* 1))

Constraints: ((class PERPETRATOR *SUBJECT™)
Constant Slots: (type perpetrator)

Enabling Conditions: ((active) (trigger-preceded-by ’threatened ’to))

Fig. 5. Concept node for “<perpetrator> threatened to murder”

Although many of the concept nodes produced by AutoSlog represent rele-
vant expressions, some of them represent expressions that are too general or do
not make much sense (for example, this frequently happens when the sentence
analyzer makes a mistake or when the pp-attachment algorithm chooses a bad
attachment point). Therefore, we introduced a human in the loop to review all
of the concept nodes created by AutoSlog. Using a simple interface, the user can
quickly scan each of the extraction patterns (e.g., “<perpetrator> threat-
ened to murder”) and determine whether it should be accepted for the final
dictionary or rejected and thrown away.

We have applied AutoSlog to three domains: terrorism, joint ventures, and
microelectronics. Since we did not have hand-crafted dictionaries for the joint
ventures and microelectronics domains, it was difficult to evaluate the effective-
ness of the AutoSlog dictionaries. The experiments described in the next section
were done partly to address this issue. Our primary goal was to demonstrate
that information extraction systems and resources are useful for natural lan-
guage processing tasks besides straight information extraction. Our secondary
goal was to show that the dictionaries created by AutoSlog are effective at mak-
ing important domain discriminations. In the next section, we describe the text
classification algorithm used in our experiments and present the results.

4 Text Classification Experiments

4.1 The Relevancy Signatures Algorithm

Text classification involves assigning category labels to texts. In these experi-
ments, we focused on a binary classification problem: each text had to be labeled
as either relevant or irrelevant to a given domain. The relevancy signatures al-
gorithm [Riloff and Lehnert, 1994] was used for this task. Relevancy signatures
were motivated by the observation that a single phrase is often enough to clas-
sify a text accurately. For example, the phrase “X was bombed” almost always
describes a bombing, “X was kidnapped” almost always describes a kidnapping,
and “assassination of X" almost always describes a murder. When processing
texts in a limited domain, some expressions are reliable enough by themselves
to warrant a relevant classification.

The relevancy signatures algorithm represents phrases as signatures, which
are derived automatically from the concept nodes produced by CIRCUS. A sig-
nature is a word paired with a concept node. Together, this pair represents a
unique set of linguistic expressions.* For example, the word “murdered” can be
paired with the $murder-passive$ concept node to recognize passive forms of
the verb “murdered”, such as "X was murdered”, “X and Y were murdered”, and
“X has been murdered.” Similarly, the word “murdered” can be paired with the
$murder-active$ concept node to recognize active forms of the verb "murdered”,
such as “X murdered Y or "X has murdered Y."

The first step of the algorithm is to collect signatures by applying CIRCUS
to a training corpus of preclassified texts. A set of relevancy signatures is then
separated out using conditional probabilities. For each signature, we estimate
the conditional probability that a text is relevant given that it generates the
signature (that is, the number of occurrences of the signature in relevant texts
divided by the total number of occurrences). Two thresholds are applied to iden-
tify the signatures that have the highest conditional probabilities: a relevancy
threshold R and a frequency threshold M. A signature is deemed a relevancy sig-
nature is its conditional probability is > R and its frequency is > M. Intuitively,
the relevancy signatures are a subset of signatures that were most highly corre-
lated with relevant texts during training. Presumably, if a new text generates a
relevancy signature then the text is likely to be relevant.

Although signatures represent only slightly more linguistic information than
keywords, we have found that similar signatures can produce dramatically dif-
ferent classification results. Figure 6 shows several signatures, their estimated
conditional probabilities (based on a training corpus of 1500 texts from the
MUC-4 corpus [MUC-4 Proceedings, 1992]), and example sentences containing
phrases represented by each signature. Figure 6 shows that 84% of texts con-
taining the word “assassination” were relevant but only 49% of texts containing
the word “assassinations” were relevant. In the MUC-4 terrorism domain, a text

* Pairing a word with a concept node is not necessary for AutoSlog’s concept nodes
because they already represent specific expressions. However, the hand-crafted dic-
tionary contains more general concept nodes so this pairing is necessary.

is relevant only if it describes a specific terrorist incident. The singular noun,
“assassination” , usually refers to a specific assassination of a person or group of
people, while the plural noun, “assassinations”, often refers to assassinations in
general (e.g., “The FMLN has claimed responsibility for many assassinations”).

Signature Prob.|Examples
<assassination, $murder$> .84 |the assassination of Hector Oqueli
<assassinations, $murder$> .49 |there were 50 assassinations in 1988

<bombed, $bombing-passive$>| .80 |public buildings were bombed
<bombed, Sbombing-active$> | .51 |terrorists bombed two facilities

<casualties, $no-injury$> .81 |the attack resulted in no casualties
<casualties, $injury$> .41 |the officer reported 17 casualties
<dead, $found-dead-passive$> | 1.00 |the mayor was found dead

<dead, $left-dead$ > .61 [the attack left 9 people dead
<dead, $number-dead$ > .47 |the army sustained 9 dead

Fig. 6. Sample signatures and conditional probabilities

Figure 6 also shows that the passive form of “bombed” is more highly corre-
lated with relevant texts than the active form. In the MUC-4 corpus, the active
verb form is often used to describe military events but the passive verb form is
more commonly used to describe terrorist events. One possible explanation for
this phenomenon is that the perpetrator is often unknown in terrorist attacks.
The passive verb form may also reflect a sense of victimization being conveyed by
the reporters. One advantage of this approach is that these distinctions are iden-
tified automatically using statistics generated from a training corpus. It would
be difficult, if not impossible, for a person to anticipate these differences.

To classify a new text, CIRCUS processes the text and the concept nodes
instantiated during sentence processing are transformed into signatures. If any
of the signatures is in the list of relevancy signatures for the domain, then the
text is classified as relevant. If not, then the text is classified as irrelevant. We
applied the relevancy signatures algorithm to three domains using concept node
dictionaries created by AutoSlog. The results for these experiments are presented
in the next three sections.

4.2 Results in the Terrorism Domain

Before testing AutoSlog’s terrorism dictionary, we first trained the relevancy sig-
natures algorithm using the hand-crafted MUC-3 concept node dictionary. The
hand-crafted dictionary serves as a baseline for how well the relevancy signa-
tures algorithm can perform using a manually encoded dictionary. 1500 texts
(51% were relevant) from the MUC-4 corpus were used as training input for the
relevancy signatures algorithm. After training was completed, testing was done
on two blind sets of 100 texts each: TST3 and TST4. We ran the algorithm
multiple times using a variety of different threshold settings: R was varied from

70 to 95 in increments of 5, and M was varied from 0 to 20 in increments of 1.
Figure 7 shows the scatterplot generated from these runs.

TST3 TST4
100-—eK; | 100
90 "% w 90 %
X X X
80 "ﬁH 80 XA e
70 70 Y
5 60 5 60
‘D ‘D
2 50 5 50
3 3
5 40 5 40
30 30
20 20
10 10
0 0
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
recall recall

Fig. 7. Terrorism Results for the Hand-crafted Dictionary

Each data point represents a recall/precision pair for one set of threshold
values. Recall is calculated as the number of texts correctly classified as relevant
by the algorithm divided by the number of texts that should have been classified
as relevant. Precision i1s defined as the number of texts correctly classified as
relevant by the algorithm divided by the total number of texts classified as
relevant by the algorithm. Recall and precision are metrics commonly used in
the information retrieval community. There is almost always a tradeoff between
recall and precision: achieving high recall usually means sacrificing precision and
achieving high precision usually means sacrificing recall. Since there are some
applications that demand high recall and others that demand high precision, we
find it useful to show the spectrum of recall/precision levels that the algorithm
can achieve.

Figure 7 shows that the relevancy signatures performed well in the terrorism
domain using the hand-crafted dictionary. The relevancy signatures algorithm
was designed with high-precision applications in mind, so the data points at the
high precision end of the spectrum are the most interesting. If we look closely at
a few of these data points, we see that the algorithm could achieve high precision
with non-trivial levels of recall on both test sets. On TST3, the algorithm was
able to achieve 100% precision with 30% recall and 94% precision with 67% recall.
On TST4, the algorithm was able to obtain 93% precision with 24% recall, and
84% precision with 58% recall. In general, the relevancy signatures algorithm
performed better on TST3 than TST4 but was able to achieve high precision on
both test sets.

At the high recall end of the spectrum, we see one data point with 91% recall
and 79% precision on TST3 and another data point with 94% recall and 63%

precision. These numbers should be interpreted with respect to the total number
of relevant texts in each test set. TST3 contains 69 relevant texts and TST4
contains 55 relevant texts. So we could easily achieve 69% precision on TST3 and
55% precision on TST4 simply by classifying every text as relevant! Therefore
it 1s worth noting that the relevancy signatures algorithm shows improvement

over this baseline.

Next, we performed the same experiment but replaced the hand-crafted dic-
tionary with the terrorism dictionary produced by AutoSlog. The MUC-4 corpus
included 772 relevant terrorism texts and corresponding answer keys which were
used as input to AutoSlog. AutoSlog produced 1237 unique concept node def-
initions, which were then filtered by a person. The person took about 5 hours
to do the filtering and accepted 450 of the concept nodes for the final AutoSlog
dictionary. The relevancy signatures algorithm was trained on the same set of
1500 texts.

Figure 8 shows the scatterplots for this experiment. There are two important
observations to be made. (1) The scatterplots for the hand-crafted dictionary
show more regular curves than the scatterplots for the AutoSlog dictionary.
This is to be expected because the hand-crafted dictionary was built by a person
who presumably created only relevant concept nodes. The AutoSlog dictionary,
however, was constructed automatically and therefore may contain irrelevant
concept nodes. Although the AutoSlog dictionary was manually filtered by a
person, it is often difficult for a person to look quickly at an extraction pattern
and accurately judge whether it will be useful for the domain. When a person
goes to the trouble of defining a pattern by hand, however, presumably the person
is motivated to do so because they have reason to believe that i1t is important.

TST3 TST4
100 XXX 100 —%—X%—X%%
X X X
XL X XXX)N&(
90)jx;fﬁ]‘)0!,(X 90 XX
80 80 ¥ X
o o S
5§ 60 5§ 60
‘B ‘B
2 50 5 50
8 8
5 40 s 40
30 30
20 20
10 10
0 0
0 10 20 30 40 50 60 70 80 90100 0 10 20 30 40 50 60 70 80 90100
recall recall

Fig. 8. Terrorism Results for the AutoSlog Dictionary

The second observation (2) is that the AutoSlog dictionary performed at
least as well as the hand-crafted dictionary on TST3 and considerably better

on TST4. Many of the data points in Figure 7 are paralleled in Figure 8, and
improved in several cases. The most notable improvement was on TST4. While
the hand-crafted dictionary did not obtain 100% precision at any recall level, the
AutoSlog dictionary produced several data points with 100% precision, includ-
ing one with 35% recall. The AutoSlog dictionary also produced a data point
with 93% precision and 51% recall. On TST3, the dictionaries showed similar
performance. For example, the Autoslog dictionary also achieved 100% precision
but with slightly lower recall of 25%. But it was able to achieve 98% precision
with 67% recall which is better than the 94% precision with 67% recall produced
by the hand-crafted dictionary.

Overall, the AutoSlog dictionary performed at least as well as the hand-
crafted dictionary in the terrorism domain. This result suggests that the Au-
toSlog dictionary can duplicate most if not all of the functionality of the hand-
crafted dictionary (with respect to the problem of text classification). And since
the AutoSlog dictionary outperformed the hand-crafted dictionary in some cases,
AutoSlog seems to have generated some extraction patterns that were useful for
the domain but were not encoded in our hand-crafted dictionary.

4.3 Results in the Joint Ventures Domain

The joint ventures domain was based on the MUC-5 information extraction task,
so we used the MUC-5 text corpora and answer keys for our experiments [MUC-
5 Proceedings, 1993]. The MUC-5 joint ventures corpus contained 924 relevant
texts plus corresponding answer keys, which were used as input to AutoSlog.
AutoSlog generated 3167 concept nodes for the joint ventures domain; 944 of
these were accepted for the final dictionary after manual filtering. We also auto-
matically generated morphological variants for these concept nodes so the final
joint ventures dictionary contained 2515 concept node definitions: the original
944 definitions plus morphological variants (see [Riloff, 1996] for details of this
process).

For the text classification task, a text was generally considered to be relevant
if it described a joint venture between two or more named entities (companies,
governments, or people).” We used a corpus of 1200 preclassified texts (54%
relevant®) to train the relevancy signatures algorithm. However, we did not have
separate blind test sets for this domain, so we used a 10-fold cross validation
design to evaluate the performance of the algorithm. We also used an empirical
method analogous to cross-validation to determine the best threshold values for
7 different recall/precision settings. (The details of this procedure are beyond
the scope of this paper but have been discussed elsewhere [Riloff and Lehnert,
1994].) Figure 9 shows the result of this experiment. Each data point represents
one of the 7 recall /precision results achieved by the algorithm for the empirically
derived threshold values.

5 The official guidelines for relevance are explained in the MUC-5 proceedings [MUC-5
Proceedings, 1993].

6 Most of the irrelevant texts were drawn from the Tipster detection corpus [Tipster
Proceedings, 1993].

100
90
80
70

Xy

3

precision
8883

20
10

0
0 10 20 30 40 50 60 70 80 90100
recall

Fig. 9. Joint Venture Results

Figure 9 shows that the relevancy signatures algorithm performed very well
in the joint ventures domain using the AutoSlog dictionary. At the high precision
end of the spectrum, we see one data point that represents 94% precision with
56% recall and another that represents 92% precision with 60% recall. It is
important to keep in mind that these results are based on 1200 texts (using the
10-fold cross-validation design), whereas the terrorism experiments were based
on test sets containing a total of 200 texts. Therefore, these results provide strong
evidence that AutoSlog produced an effective joint ventures dictionary for the
text classification task.

4.4 Results in the Microelectronics Domain

The third text classification experiment involved the MUC-5 microelectronics
domain. The MUC-5 microelectronics corpus contained 787 relevant microelec-
tronics texts plus corresponding answer keys that were used as input to AutoSlog.
Using this corpus, AutoSlog generated 2952 concept nodes for the microelectron-
ics domain. We manually filtered only some of the concept nodes produced by
AutoSlog for this domain (see [Riloff, 1996] for details about this process). After
selective filtering and generating morphological variants (as per the joint ven-
tures domain), the final microelectronics dictionary contained 4220 concept node
definitions.

In the MUC-5 microelectronics domain, a text was generally defined to be
relevant if it mentioned a microelectronics process linked to a specific company
or research group. We used 500 texts from the MUC-5 corpus (57% relevant) to
train the relevancy signatures algorithm. We then used the same cross-validation
design used for the joint ventures domain to evaluate the performance of the
dictionary.

Figure 10 shows the results of the microelectronics experiment. The text clas-
sification results for this domain were considerably weaker than they were for
the other two domains. However, the AutoSlog microelectronics dictionary did

100
90
801X
70 X
60
50

x

precision

30
20
10

0
0 10 20 30 40 50 60 70 80 90100
recall

Fig. 10. Microelectronics Results

achieve respectable performance. In particular, we see one data point that repre-
sents 82% precision with 8% recall and another data point that represents 73%
precision with 22% recall. Since the training corpus contained only 57% relevant
texts, these precision results represent a non-trivial improvement over the base-
line. Furthermore, the text classification training corpus for the microelectronics
domain was much smaller than the corpora used for the terrorism and joint ven-
tures domains (500 microelectronics texts, compared with 1500 terrorism texts
and 1200 joint venture texts). Since the relevancy signatures algorithm is based
on probability estimates, we expect its performance to be highly dependent on
the size of the training corpus.

5 Related Work and Discussion

AutoSlog learns concept node definitions automatically using an annotated train-
ing corpus. However, it does not fall neatly into any of the common machine
learning pigeonholes. AutoSlog is a one-shot learning system because it gener-
ates a complete extraction pattern from a single training instance. Therefore,
in one sense, the closest points of comparison in the machine learning commu-
nity are explanation-based learning (EBL) systems [DeJong and Mooney, 1986;
Mitchell et al., 1986] since EBL systems are able to produce complete con-
cept representations from a single training instance. This is in contrast to in-
ductive learning techniques that incrementally build a concept representation
in response to multiple training instances (e.g., [Fisher, 1987; Quinlan, 1986;
Utgoff, 1988]). AutoSlog does not rely on an explicit domain theory like most
EBL systems, but it does use a set of domain-independent rules based on general
syntactic properties of natural language. One important feature of AutoSlog is
that its input (text and tagged noun phrases) is of a completely different form
than its output (extraction patterns).

The one-shot learning aspect of AutoSlog distinguishes it from most other lex-
ical acquisition systems, which build new definitions based on known definitions

of other words in the sentence or surrounding context (e.g., [Carbonell, 1979;
Granger, 1977; Jacobs and Zernik, 1988]). In contrast, AutoSlog builds new dic-
tionary definitions completely from scratch and depends only on a part-of-speech
lexicon, which can be readily obtained from machine-readable dictionaries. Au-
toSlog is closely related to the PALKA system [Kim and Moldovan, 1993], which
also learns structures for information extraction. However, PALKA uses a set of
predefined keywords and frame definitions for the domain as a starting point and
depends on semantic features associated with words for learning. The CRYS-
TAL system ([Soderland et al., 1995] and Soderland et al., this volume) and
LIEP (Huffman, this volume) also rely on semantic features to learn extraction
patterns. AutoSlog discovers the trigger words for case frames on its own and
does not require semantic features. Furthermore, a recent extension of AutoSlog,
called AutoSlog-TS [Riloff and Shoen, 1995], eliminates the need for detailed text
annotations from a user and requires only a training corpus of preclassified texts.
AutoSlog’s ability to learn dictionaries of extraction patterns can substan-
tially reduce the time required to build an information extraction system for a
new domain. We have also demonstrated that dictionaries created by AutoSlog
can be useful for other natural language processing tasks as well. These results
suggest that the patterns learned by AutoSlog represent important domain con-
cepts that may be applicable to many different problems, and that information
extraction technology may be useful for a variety of language processing tasks.

Acknowledgements

This research was funded by NSF Grant no. EEC-9209623, supporting the Center
for Intelligent Information Retrieval at the University of Massachusetts, NSF
grant MIP-9023174, and NSF grant IRI-9509820.

References

Carbonell, J. G. 1979. Towards a Self-Extending Parser. In Proceedings of the 17th
Meeting of the Association for Computational Linguistics. 3-7.

DelJong, Gerald and Mooney, R. 1986. Explanation-Based Learning: An Alternative
View. Machine Learning 1:145-176.

Fisher, D. H. 1987. Knowledge Acquisition Via Incremental Conceptual Clustering.
Machine Learning 2:139-172.

Granger, R. H. 1977. FOUL-UP: A Program that Figures Out Meanings of Words
from Context. In Proceedings of the Fifth International Joint Conference on Artificial
Intelligence. 172-178.

Jacobs, Paul and Rau, Lisa 1990. SCISOR: Extracting Information from On-Line
News. Communications of the ACM 33(11):88-97.

Jacobs, P. and Zernik, U. 1988. Acquiring Lexical Knowledge from Text: A Case
Study. In Proceedings of the Seventh National Conference on Artificial Intelligence.
739-744.

Kim, J. and Moldovan, D. 1993. Acquisition of Semantic Patterns for Information
Extraction from Corpora. In Proceedings of the Ninth IEEE Conference on Artificial

Intelligence for Applications, Los Alamitos, CA. IEEE Computer Society Press. 171—
176.

Lehnert, W. G. and Sundheim, B. 1991. A Performance Evaluation of Text Analysis
Technologies. AI Magazine 12(3):81-94.

Lehnert, W.; Cardie, C.; Fisher, D.; Riloff, E.; and Williams, R. 1991. University of
Massachusetts: Description of the CIRCUS System as Used for MUC-3. In Proceedings
of the Third Message Understanding Conference (MUC-3), San Mateo, CA. Morgan
Kaufmann. 223-233.

Lehnert, W.; Cardie, C.; Fisher, D.; McCarthy, J.; Riloff, E.; and Soderland, S. 1992.
University of Massachusetts: MUC-4 Test Results and Analysis. In Proceedings of
the Fourth Message Understanding Conference (MUC-4), San Mateo, CA. Morgan
Kaufmann. 151-158.

Lehnert, W. 1991. Symbolic/Subsymbolic Sentence Analysis: Exploiting the Best of
Two Worlds. In Barnden, J. and Pollack, J., editors 1991, Advances in Connectionist
and Neural Computation Theory, Vol. 1. Ablex Publishers, Norwood, NJ. 135-164.
Mitchell, T. M.; Keller, R.; and Kedar-Cabelli, S. 1986. Explanation-Based General-
ization: A Unifying View. Machine Learning 1:47-80.

Proceedings of the Third Message Understanding Conference (MUC-3), San Mateo,
CA. Morgan Kaufmann.

Proceedings of the Fourth Message Understanding Conference (MUC-4), San Mateo,
CA. Morgan Kaufmann.

Proceedings of the Fifth Message Understanding Conference (MUC-5), San Francisco,
CA. Morgan Kaufmann.

Quinlan, J. R. 1986. Induction of Decision Trees. Machine Learning 1:80-106.
Riloff, E. and Lehnert, W. 1994. Information Extraction as a Basis for High-Precision
Text Classification. ACM Transactions on Information Systems 12(3):296-333.
Riloff, E. and Shoen, J. 1995. Automatically Acquiring Conceptual Patterns Without
an Annotated Corpus. In Proceedings of the Third Workshop on Very Large Corpora.
148-161.

Riloff, E. 1993. Automatically Constructing a Dictionary for Information Extraction
Tasks. In Proceedings of the Fleventh National Conference on Artificial Intelligence.
AAAT Press/The MIT Press. 811-816.

Riloff, E. 1996. An Empirical Study of Automated Dictionary Construction for In-
formation Extraction in Three Domains. Artificial Intelligence. To appear.
Soderland, S.; Fisher, D.; Aseltine, J.; and Lehnert, W. 1995. CRYSTAL: Inducing a
conceptual dictionary. In Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence. 1314-1319.

Proceedings of the TIPSTER Text Program (Phase I), San Francisco, CA. Morgan
Kaufmann.

Utgoff, P. 1988. 1D5: An Incremental ID3. In Proceedings of the Fifth International
Conference on Machine Learning. 107-120.

