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Simulataneous map visualization

Compare two or more
maps obtained using
different similarity
metrics.

Dynamic Map Layout

Dynamic clustering
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Dynamic Map Layout

two graphs with very similar
topology can have very
different drawings

compute node positions to
preserve mental map

Approach :

initialize the node
positions
apply multidimensional
scaling (MDS) layout
Procrustes transform the
coordinates of the nodes
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Procrustes transformation

find the best alignment of two input layouts

Apply rotation, translation, and scaling

Mathematically

Node positions from first layout, yi , i = 1, 2, . . . , |V |
Node positions from second layout xi , i = 1, 2, . . . , |V |
find a translation vector b, scaling value ρ and rotation
matrix T that minimize

|V |∑
i=1

‖yi − (ρTxi + b)‖2. (1)
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Dynamic clustering

cluster stability ⇒ preserve
the clustering structure

Modularity ⇒ cluster
quality measure

Modularity based
clustering by Blondel et
al.

Heuristic to combine the
two objectives - modularity
and cluster stability

Dynamic variation of
Blondel’s clustering
algorithm

Clustering of one map is
used as pre-clustering.
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same color for similar
countries

similar countries ⇒ more
nodes in common.

can be modeled with
maximum weighted
matching (MWM) of a
bipartite graph.
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maximum weighted matching

Nodes - clusters(countries)
in the two maps

Edge weight - number of
objects that are common
between clusters

Hungarian algorithm

Running time -
O(mn + n2 log n)
m - edges, n - nodes
m = O(n)
O(n2 log n)
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Dynamic map visualization

dynamic relational data

Research collaboration
last fm
social network



Dynamic map visualization

how to combine different similarity metrics.

compute a good distance measure from multiple similarity
metrics

assign weights to each metric and take a weighted sum

w be a weight in the range from 0 to 100

M1 and M2 be the two input matrices.

compute the weighted matrix

Mw = (w×M1)+((100−w)×M2)
100 .

Use slider to find the ”optimum” weight.
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Two input similarity matrices with distance measured using
PCA analysis.

Y chromosome (NRY)
mitochondrial DNA (mtDNA)

Number of nodes = 45

DEMO
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Layout Stability

Trajectories of randomly selected nodes

Compared the average distance travelled by one node in one
iteration.

independent layout - 21.41 pixels.
layout initialized with positions from the previous frame -
13.19 pixels
Procrustes transformation - 8.43 pixels.



Cluster Stability

Rand → measure of cluster similarity

C and C
′ → two clusterings of a graph G

S11 → the set of pairs clustered together

S00 the set of pairs in different clusters

rand(C ,C
′
) = 1− 2(|S11|+ |S00|)

n(n − 1)
(2)

0 if the two clusterings are identical

1 if one clustering is a singleton clusters and the other one
with all nodes in the same cluster.
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Cluster Stability

Rand measure between each pair of successive iterations
and averaged these values over all successive pairs.

Without our heuristic, value = 0.0631

With the heuristic, value = 0.0252.

improvement of a little more than 60% with the heuristic.
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Conclusion

a practical approach for visualizing

dynamic relational data
multiple relationships on the same data

dynamic cluster stability - Modified modularity clustering
algorithm

color stability using MWM

layout stability using affine transformations.
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formal evaluation of the effectiveness of our method

combine more than 2 similarity metrics,

deploy the system in a generic dynamic data setting.
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