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The	  holy	  grail	  of	  large-‐scale	  system	  design:	  achieve	  scien>fic	  
progress	  with	  high	  throughput,	  high	  u>liza>on,	  and	  low	  cost	  
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Power	  constraints	  make	  it	  very	  challenging	  to	  balance	  	  
throughput,	  u>liza>on,	  and	  cost	  
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Design	  choices:	  conserva>ve	  or	  liberal?	  	  
Worst-‐case	  power	  provisioning	  and	  hardware	  overprovisioning	  
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The	  case	  for	  hardware	  overprovisioning:	  a	  simple	  example	  

•  Intel Sandy Bridge cluster of 32 nodes  
•  2 sockets, 8 cores per socket, 2 DRAM modules 

 

•  NAS SP-MZ, CFD solver kernel, malleable 
 

•  350 configurations  
•  Nodes: 14 to 32, cores per node (scatter): 4 to 16  
•  Processor power caps (W): 51, 65, 80, 95, 115  

•  Peak system power 
•  32 x 2 x (115cpu + 25dram), or ~9000 W 

 

Assumed Budget: 4500 W 
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>2x speedup 
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Figure 3.6: Example of SP-MZ at 4500 W

the application’s configuration (nodes, cores, processor power cap), and two of which

are output dimensions (performance in seconds, and application power consumption

as average watts). The origin (zero) is at the center of this radar chart. To improve

performance and to utilize power e↵ectively, we want to “pull-in” toward the center for

the performance dimension.

The packed-max and the best configuration under 4500 W for SP-MZ have been

highlighted in red and blue, respectively. As can be clearly observed, the best

configuration uses more nodes, less power per node, and fewer cores per node; and

improves execution time by more than 2x. Additionally, it utilizes the allocated power

better.

Considerations: 
 

•  Application’s time to solution 
•  Energy = Power * Time 
•  Underutilizing power is bad for performance 

as well as energy  

Config: (n x c, p) Time (s)  Power* (W) 

WC: (24 x 16, 115)  7.16 3806 

OVP: (30 x 14, 80) 2.94 4459 

*Actual Consumption of power across n nodes  

The	  case	  for	  hardware	  overprovisioning:	  we	  gain	  performance	  
with	  intelligent	  power	  distribu>on,	  memory	  tuning	  and	  scaling	  

+ 

Bound: 4500W 
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Overprovisioning	  improves	  throughput	  and	  u>liza>on,	  but	  
introduces	  opera>onal	  safety	  and	  infrastructure	  cost	  concerns	  

•  Dynamic power management techniques require application models, 
which may be error prone  

•  We can cap node and memory power, but we cannot guarantee 
network, I/O and other power through software 

•  How many extra nodes should we add before we lose the benefit 
and flip this into a problem of underutilized, idle nodes? 

•  More hardware implies added costs à focus of this paper 
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Given	  a	  fixed	  power	  budget	  and	  cost	  budget,	  can	  we	  build	  an	  
overprovisioned	  system	  that	  results	  in	  a	  net	  performance	  benefit?	  	  

•  Key intuition: server processors that are a generation older offer 
features similar to current generation at a much lower price  

Feature Intel Ivy Bridge, 22nm Intel Sandy Bridge, 32nm 
List Price (USD) $3300 $1700 

PassMark Performance* 17,812 (27% faster*) 13,895 

Processors (Cores) 2 (24) 2 (16) 

Clock Speed (Turbo)  2.7 (3.5) GHz 2.6 (3.3) GHz 

TDP 130 W 115 W 

*On a single node, all cores considered 
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Let	  us	  build	  a	  high-‐end	  HPC	  system	  and	  a	  older-‐genera>on	  
overprovisioned	  HPC	  system	  with	  fixed	  cost	  and	  power	  budgets	  

Input Parameters Description 
Power Bound*, Psys Power budget allocated to the computational components 

Maximum Node 
Power, Pn_max 

Maximum possible node power for the high-end node based on its 
overall TDP  

Minimum Node 
Power, Pn_min 

Minimum possible node power for the older-generation node based 
on its idle power  

Cost Ratio*, rc Ratio of the effective per-node cost of the high-end node to that of 
the older-generation node (>1.0) 

Performance, rp Percentage the high-end node is faster by on a single-node (>0%)   

*These can incorporate rack and interconnect information. 
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A	  workload	  scalability	  model	  to	  predict	  mul>-‐node	  	  
performance	  at	  scale	  is	  also	  needed	  

•  Predict performance of workload on the high-end system at a different 
node count based on multi-node data from older-generation system 

•  HPC systems are typically designed with a purpose and target workload 
•  RFPs come with specific benchmarks and hardware options 

 
•  Orthogonal problem 

•  Assume a linear model valid over a limited node range for simplicity 
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Let	  us	  now	  design	  our	  two	  HPC	  systems	  based	  on	  the	  power	  
constraint	  Psys,	  and	  the	  derived	  cost	  constraint,	  cwc 

•  Determine maximum WC nodes based on power budget, derive cost budget 
 
 

nwc = Psys/Pn_max 
cwc = nwc x rc 

•  Determine maximum possible OVP nodes. Note that cost of older-generation 
node is 1 based on how we defined rc 
 
 

nlim = Psys / Pn_min 
novp = min(nlim, cwc) 

 

 Represents OVP nodes à 
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Simple	  performance	  predic>on	  based	  on	  the	  workload	  
scalability	  linear	  model	  (slope,	  intercept)	  	  

•  For the OVP system, performance on novp nodes is: 
 

tovp = m x novp + b 

•  For the WC system, performance on nwc nodes is: 
 
 

twc = (m x nwc + b) (1 – (rp/100)) 
 

•  For overprovisioning to be beneficial, speedup, sovp, should be greater than 1 
 

 sovp = twc/tovp 
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Two	  examples	  of	  workload	  scaling	  models	  with	  the	  best	  
configura>on	  selected	  at	  each	  node	  count	  

of nodes, number of cores per node, and the socket power
cap. We run each configuration at least three times to mitigate
noise.
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Fig. 1. Benefits of Adding More Nodes

We then develop linear models for each application and
each system power bound by choosing the best performing
configuration at each valid node count. This also enables us to
understand the impact of the degree of overprovisioning. This
is important because of the law of diminishing returns—adding
more nodes beyond a certain limit while keeping the system
power bound constant will not result in performance benefits.

As an example, Figure 1 shows the four applications at 3500
W. The y-axis in each subgraph is the raw execution time of
the application, and the x-axis represents a node count. For
each node count, the best valid configuration (one that does
not exceed the specified power bound) has been plotted (black
empty triangle). The best performing configuration under the
power bound has been marked with a blue triangle. The linear
model has been shown with the dashed gray line. We use the
slope and intercept of this fitted line as the inputs to our model.

In our data, the coefficients of the linear model (slope and
intercept) were similar across all six system power bounds
under consideration for a given application (less than 2%
difference). Thus, we assume that for a given application, the
input parameters m and b are identical across different power
bounds. Our median prediction error across all applications is
under 7%.

The application-specific worst-case configuration, or
packed-max, has been marked with a red triangle. Here,
we use as many nodes as possible under the power bound
while using all cores and power on a node with Turbo Boost
enabled. The actual power consumed by the application

is used to determine this worst-case configuration. It is
important to note that for a procurement, we have to
follow the absolute worst-case configuration instead of the
application-specific, packed-max configuration. The absolute
worst-case configuration can be derived by dividing the
system-level power bound by the maximum possible power
for the node. In the example in Figure 1, the absolute
worst-case node count is 12 nodes for 3500 W. This has
been derived by calculating the maximum possible power on
each node, assuming that each socket takes 115 W and each
memory unit takes 30 W.

Depending on the application, the benefits of adding
more nodes under the same power bound (degree of
overprovisioning) vary. For example, the benefits for an
application such as BT-MZ are limited. On the other hand,
adding more nodes is beneficial for applications such as SPhot
and LU-MZ.

V. EVALUATION RESULTS

We use the ratio s
ovp

derived in Section III-C to determine
situations where overprovisioning has a net benefit (s

ovp

> 1).
We illustrate this with an example by choosing default input
parameters based on real data for our model and designing
a worst-case provisioned and an overprovisioned system.
We then analyze the impact of each individual parameter
(while keeping others constant) on the performance of the
two systems. These default input parameters are specified in
Table IV and have been derived based on the node data from
Section II-B. The values for the node power for the high-end
and the older-generation node include the CPU, memory and
base power. We use application-specific scalability models; an
overview of these models was provided in Section IV.

TABLE IV
EXAMPLE: DEFAULT INPUT PARAMETERS

Variable Value
Effective cost ratio, r

c

1.7
Performance Parameter, r

p

27%
System Power Budget, P

sys

7000 W
Maximum Node Power, P

n max

380 W
Minimum Node Power, P

n min

180 W

TABLE V
EXAMPLE: WORKLOAD SCALABILITY MODEL

Application Parameters
{m, c}

SPhot {�1.114, 73.07}
SP-MZ {�0.112, 7.00}
BT-MZ {�0.069, 8.50}
LU-MZ {�0.542, 25.93}

Table V specifies the workload scalability model parameters
for the four applications, and Table VI shows the intermediate
values as well as the predicted s

ovp

values for our example.
Because we use a simple linear workload scalability model,
we need to enforce a limit on the maximum number of nodes
for the validity of this linear behavior. For our applications in
this example, we assume that this limit is 48 nodes.

Flatter slope  Steeper slope  
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Evalua>on	  Example:	  we	  benefit	  if	  sovp	  is	  greater	  than	  1	  

Input Parameters Values 
Psys 7000 W 

Pn_max 380 W 

Pn_min 180 

Cost Ratio, rc 1.7 

Performance, rp 27% 

LU-MZ model, (m,b) (-0.542, 25.93) 

BT-MZ model, (m,b) (-0.069, 8.50) 

Workload  Nwc Novp Sovp 

LU-MZ 18 30 1.22 
BT-MZ 18 30 0.83 

•  LU-MZ represents workloads that 
scale well, BT-MZ otherwise 
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Significant	  benefit	  for	  workloads	  such	  as	  LU-‐MZ	  
(Cost	  Ra>o:	  beTer	  when	  the	  crossover	  is	  toward	  the	  leU)	  	  

TABLE VI
EXAMPLE: INTERMEDIATE AND OUTPUT VALUES

Application n
wc

n
lim

c
wc

n
ovp

t
ovp

(s) t
wc

(s) s
ovp

SPhot 18 50 30.6 30 39.64 38.70 0.98
SP-MZ 18 50 30.6 30 3.51 3.61 1.02
BT-MZ 18 50 30.6 30 6.41 5.29 0.83
LU-MZ 18 50 30.6 30 9.66 11.80 1.22

We present results for our four applications because they
exhibit distinct scalability characteristics. As can be observed
from Table VI, for workloads that scale well, such as the ones
with characteristics similar to LU-MZ (refer to Figure 1), it is
possible to achieve better performance with overprovisioning
(s

ovp

of 1.22). Similarly, for workloads with characteristics
similar to SP-MZ and SPhot, a break-even point can be
determined. On the other hand, for applications that do not
scale well, such as BT-MZ, worst-case provisioning leads to
better performance. This can be observed from the s

ovp

value
of 0.83 for BT-MZ.
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Fig. 2. LU-MZ Analysis

We now present some detailed graphs to better understand
the scenarios where overprovisioning leads to a net benefit
and to understand the impact of the input parameters on s

ovp

.
For each graph, the y-axis is the derived ratio, s

ovp

. The
x-axis varies based on the input parameter under consideration.
For each input parameter that is being varied, all other
input parameters are held constant and have values given by
Table IV. For readability, the graphs are not centered at the
origin. The break even points have been marked by drawing a
dashed red line. Anything above this line is a scenario where
overprovisioning does better.

We conduct this analysis to explore the scenarios that
may occur during the procurement of a real HPC system.
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Fig. 3. SPhot Analysis

For example, the effective cost ratio may vary based on the
negotiation with the vendor. Similarly, the performance across
two nodes may differ based on which micro-architectures are
being considered.

Figure 2 shows results for the LU-MZ application. In this
figure, there are three sub-graphs. The first one depicts the
impact of varying the effective cost ratio, r

c

, on s
ovp

. The
effective cost ratio affects the degree of overprovisioning
directly. When the effective cost ratio is high, it is possible
to buy many more cheaper, older-generation nodes than when
the effective cost ratio is low. A cost ratio of 1 indicates
that the high-end node and the older-generation node have
the same price. This is not a realistic scenario and it is
expected that the high-end node will be more expensive than
the older-generation node. The higher the effective cost ratio,
the easier it is to overprovision by a larger degree. For LU-MZ,
overprovisioning leads to a net benefit when the effective cost
ratio is about 1.5.

The second sub-graph shows the impact of varying the
system power bound, P

sys

on s
ovp

. We observe that a
higher system power bound results in almost super-linear
improvement in s

ovp

for LU-MZ. This can be attributed to
the fact that a higher system power bound has the potential to

Limited by power here 
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No	  win	  with	  workloads	  such	  as	  BT-‐MZ	  
(Cost	  ra>o:	  beTer	  when	  the	  crossover	  is	  toward	  the	  leU)	  	  
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Fig. 4. BT-MZ Analysis

increase the degree of overprovisioning. With a higher degree
of overprovisioning, it is possible for an application to scale
to more nodes. However, this is dependent on the scalability
characteristics of the workload under consideration, which
is good for LU-MZ. As a result of this, s

ovp

is impacted
significantly when the system power bound is varied. This
will not always be the case.

The third sub-graph in Figure 2 analyzes the impact of
the performance parameter, r

p

on s
ovp

. This parameter is
determined by benchmarking the high-end node and the
older-generation node using a standard single-node test. A high
value of r

p

indicates that the high-end node is significantly
faster. When r

p

is 0%, it means that both nodes have the
same performance. A value of 0% for r

p

is unrealistic though,
because the high-end node will always perform better than the
older-generation node. For LU-MZ, we observe that even when
the high-end node is 40% faster, the overprovisioned system
results in a net benefit.

Figure 3 shows the results for SPhot. SP-MZ produces
nearly identical results and so is omitted. As discussed
previously, the scalability characteristics of the application
affect s

ovp

significantly. With SPhot as well as SP-MZ, the
overprovisioned system results in a net benefit when the
effective cost ratio of the high-end node to the older-generation
node is around two. Also, increasing the effective cost ratio
further does not result in proportional improvements. One
might expect that a higher cost ratio means that the degree
of overprovisioning will be high, and that this will result
in performance improvements. However, this is not the case,
since the degree of overprovisioning is also constrained by
the power budget, which determines n

lim

. Workloads with
scaling characteristics similar to SPhot and SP-MZ are also
less sensitive to changes in the system power budget, unlike

LU-MZ.
Let us now analyze BT-MZ, which has poor scaling

characteristics when compared to the other three applications
(refer to Figure 1). As a result, for BT-MZ, the worst-case
provisioned system is almost always superior to the
overprovisioned system, as can be observed from Figure 4.
While increasing the effective cost ratio and the system power
budget improves the performance of the overprovisioned
system, these improvements are not sufficient to reach a break
even point. The only scenario in which the overprovisioned
system does better than the worst-case provisioned system is
when r

p

is in the range of 10-20%. It is thus critical to consider
the characteristics of the workload carefully when designing
overprovisioned systems.

VI. CONCLUSIONS

In this paper, we developed a model for understanding the
economic viability of hardware overprovisioned systems in
power-constrained high-performance computing. We showed
that it is possible to design overprovisioned systems that lead
to significant performance benefits without exceeding a given
infrastructure cost budget. Future work involves conducting
a similar analysis for sets of applications and extending the
scalability models to include metrics, such as job turnaround
times and throughput.
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Significant	  benefit	  for	  workloads	  such	  as	  LU-‐MZ	  
(Node	  performance:	  beTer	  when	  the	  crossover	  is	  toward	  the	  right)	  	  	  

TABLE VI
EXAMPLE: INTERMEDIATE AND OUTPUT VALUES

Application n
wc

n
lim

c
wc

n
ovp

t
ovp

(s) t
wc

(s) s
ovp

SPhot 18 50 30.6 30 39.64 38.70 0.98
SP-MZ 18 50 30.6 30 3.51 3.61 1.02
BT-MZ 18 50 30.6 30 6.41 5.29 0.83
LU-MZ 18 50 30.6 30 9.66 11.80 1.22

We present results for our four applications because they
exhibit distinct scalability characteristics. As can be observed
from Table VI, for workloads that scale well, such as the ones
with characteristics similar to LU-MZ (refer to Figure 1), it is
possible to achieve better performance with overprovisioning
(s

ovp

of 1.22). Similarly, for workloads with characteristics
similar to SP-MZ and SPhot, a break-even point can be
determined. On the other hand, for applications that do not
scale well, such as BT-MZ, worst-case provisioning leads to
better performance. This can be observed from the s

ovp

value
of 0.83 for BT-MZ.
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We now present some detailed graphs to better understand
the scenarios where overprovisioning leads to a net benefit
and to understand the impact of the input parameters on s

ovp

.
For each graph, the y-axis is the derived ratio, s

ovp

. The
x-axis varies based on the input parameter under consideration.
For each input parameter that is being varied, all other
input parameters are held constant and have values given by
Table IV. For readability, the graphs are not centered at the
origin. The break even points have been marked by drawing a
dashed red line. Anything above this line is a scenario where
overprovisioning does better.

We conduct this analysis to explore the scenarios that
may occur during the procurement of a real HPC system.
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Fig. 3. SPhot Analysis

For example, the effective cost ratio may vary based on the
negotiation with the vendor. Similarly, the performance across
two nodes may differ based on which micro-architectures are
being considered.

Figure 2 shows results for the LU-MZ application. In this
figure, there are three sub-graphs. The first one depicts the
impact of varying the effective cost ratio, r

c

, on s
ovp

. The
effective cost ratio affects the degree of overprovisioning
directly. When the effective cost ratio is high, it is possible
to buy many more cheaper, older-generation nodes than when
the effective cost ratio is low. A cost ratio of 1 indicates
that the high-end node and the older-generation node have
the same price. This is not a realistic scenario and it is
expected that the high-end node will be more expensive than
the older-generation node. The higher the effective cost ratio,
the easier it is to overprovision by a larger degree. For LU-MZ,
overprovisioning leads to a net benefit when the effective cost
ratio is about 1.5.

The second sub-graph shows the impact of varying the
system power bound, P

sys

on s
ovp

. We observe that a
higher system power bound results in almost super-linear
improvement in s

ovp

for LU-MZ. This can be attributed to
the fact that a higher system power bound has the potential to
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increase the degree of overprovisioning. With a higher degree
of overprovisioning, it is possible for an application to scale
to more nodes. However, this is dependent on the scalability
characteristics of the workload under consideration, which
is good for LU-MZ. As a result of this, s

ovp

is impacted
significantly when the system power bound is varied. This
will not always be the case.

The third sub-graph in Figure 2 analyzes the impact of
the performance parameter, r

p

on s
ovp

. This parameter is
determined by benchmarking the high-end node and the
older-generation node using a standard single-node test. A high
value of r

p

indicates that the high-end node is significantly
faster. When r

p

is 0%, it means that both nodes have the
same performance. A value of 0% for r

p

is unrealistic though,
because the high-end node will always perform better than the
older-generation node. For LU-MZ, we observe that even when
the high-end node is 40% faster, the overprovisioned system
results in a net benefit.

Figure 3 shows the results for SPhot. SP-MZ produces
nearly identical results and so is omitted. As discussed
previously, the scalability characteristics of the application
affect s

ovp

significantly. With SPhot as well as SP-MZ, the
overprovisioned system results in a net benefit when the
effective cost ratio of the high-end node to the older-generation
node is around two. Also, increasing the effective cost ratio
further does not result in proportional improvements. One
might expect that a higher cost ratio means that the degree
of overprovisioning will be high, and that this will result
in performance improvements. However, this is not the case,
since the degree of overprovisioning is also constrained by
the power budget, which determines n

lim

. Workloads with
scaling characteristics similar to SPhot and SP-MZ are also
less sensitive to changes in the system power budget, unlike

LU-MZ.
Let us now analyze BT-MZ, which has poor scaling

characteristics when compared to the other three applications
(refer to Figure 1). As a result, for BT-MZ, the worst-case
provisioned system is almost always superior to the
overprovisioned system, as can be observed from Figure 4.
While increasing the effective cost ratio and the system power
budget improves the performance of the overprovisioned
system, these improvements are not sufficient to reach a break
even point. The only scenario in which the overprovisioned
system does better than the worst-case provisioned system is
when r

p

is in the range of 10-20%. It is thus critical to consider
the characteristics of the workload carefully when designing
overprovisioned systems.

VI. CONCLUSIONS

In this paper, we developed a model for understanding the
economic viability of hardware overprovisioned systems in
power-constrained high-performance computing. We showed
that it is possible to design overprovisioned systems that lead
to significant performance benefits without exceeding a given
infrastructure cost budget. Future work involves conducting
a similar analysis for sets of applications and extending the
scalability models to include metrics, such as job turnaround
times and throughput.
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TABLE VI
EXAMPLE: INTERMEDIATE AND OUTPUT VALUES

Application n
wc

n
lim

c
wc

n
ovp

t
ovp

(s) t
wc

(s) s
ovp

SPhot 18 50 30.6 30 39.64 38.70 0.98
SP-MZ 18 50 30.6 30 3.51 3.61 1.02
BT-MZ 18 50 30.6 30 6.41 5.29 0.83
LU-MZ 18 50 30.6 30 9.66 11.80 1.22

We present results for our four applications because they
exhibit distinct scalability characteristics. As can be observed
from Table VI, for workloads that scale well, such as the ones
with characteristics similar to LU-MZ (refer to Figure 1), it is
possible to achieve better performance with overprovisioning
(s

ovp

of 1.22). Similarly, for workloads with characteristics
similar to SP-MZ and SPhot, a break-even point can be
determined. On the other hand, for applications that do not
scale well, such as BT-MZ, worst-case provisioning leads to
better performance. This can be observed from the s

ovp

value
of 0.83 for BT-MZ.
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We now present some detailed graphs to better understand
the scenarios where overprovisioning leads to a net benefit
and to understand the impact of the input parameters on s

ovp

.
For each graph, the y-axis is the derived ratio, s

ovp

. The
x-axis varies based on the input parameter under consideration.
For each input parameter that is being varied, all other
input parameters are held constant and have values given by
Table IV. For readability, the graphs are not centered at the
origin. The break even points have been marked by drawing a
dashed red line. Anything above this line is a scenario where
overprovisioning does better.

We conduct this analysis to explore the scenarios that
may occur during the procurement of a real HPC system.
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For example, the effective cost ratio may vary based on the
negotiation with the vendor. Similarly, the performance across
two nodes may differ based on which micro-architectures are
being considered.

Figure 2 shows results for the LU-MZ application. In this
figure, there are three sub-graphs. The first one depicts the
impact of varying the effective cost ratio, r

c

, on s
ovp

. The
effective cost ratio affects the degree of overprovisioning
directly. When the effective cost ratio is high, it is possible
to buy many more cheaper, older-generation nodes than when
the effective cost ratio is low. A cost ratio of 1 indicates
that the high-end node and the older-generation node have
the same price. This is not a realistic scenario and it is
expected that the high-end node will be more expensive than
the older-generation node. The higher the effective cost ratio,
the easier it is to overprovision by a larger degree. For LU-MZ,
overprovisioning leads to a net benefit when the effective cost
ratio is about 1.5.

The second sub-graph shows the impact of varying the
system power bound, P

sys

on s
ovp

. We observe that a
higher system power bound results in almost super-linear
improvement in s

ovp

for LU-MZ. This can be attributed to
the fact that a higher system power bound has the potential to
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increase the degree of overprovisioning. With a higher degree
of overprovisioning, it is possible for an application to scale
to more nodes. However, this is dependent on the scalability
characteristics of the workload under consideration, which
is good for LU-MZ. As a result of this, s

ovp

is impacted
significantly when the system power bound is varied. This
will not always be the case.

The third sub-graph in Figure 2 analyzes the impact of
the performance parameter, r

p

on s
ovp

. This parameter is
determined by benchmarking the high-end node and the
older-generation node using a standard single-node test. A high
value of r

p

indicates that the high-end node is significantly
faster. When r

p

is 0%, it means that both nodes have the
same performance. A value of 0% for r

p

is unrealistic though,
because the high-end node will always perform better than the
older-generation node. For LU-MZ, we observe that even when
the high-end node is 40% faster, the overprovisioned system
results in a net benefit.

Figure 3 shows the results for SPhot. SP-MZ produces
nearly identical results and so is omitted. As discussed
previously, the scalability characteristics of the application
affect s

ovp

significantly. With SPhot as well as SP-MZ, the
overprovisioned system results in a net benefit when the
effective cost ratio of the high-end node to the older-generation
node is around two. Also, increasing the effective cost ratio
further does not result in proportional improvements. One
might expect that a higher cost ratio means that the degree
of overprovisioning will be high, and that this will result
in performance improvements. However, this is not the case,
since the degree of overprovisioning is also constrained by
the power budget, which determines n

lim

. Workloads with
scaling characteristics similar to SPhot and SP-MZ are also
less sensitive to changes in the system power budget, unlike

LU-MZ.
Let us now analyze BT-MZ, which has poor scaling

characteristics when compared to the other three applications
(refer to Figure 1). As a result, for BT-MZ, the worst-case
provisioned system is almost always superior to the
overprovisioned system, as can be observed from Figure 4.
While increasing the effective cost ratio and the system power
budget improves the performance of the overprovisioned
system, these improvements are not sufficient to reach a break
even point. The only scenario in which the overprovisioned
system does better than the worst-case provisioned system is
when r

p

is in the range of 10-20%. It is thus critical to consider
the characteristics of the workload carefully when designing
overprovisioned systems.

VI. CONCLUSIONS

In this paper, we developed a model for understanding the
economic viability of hardware overprovisioned systems in
power-constrained high-performance computing. We showed
that it is possible to design overprovisioned systems that lead
to significant performance benefits without exceeding a given
infrastructure cost budget. Future work involves conducting
a similar analysis for sets of applications and extending the
scalability models to include metrics, such as job turnaround
times and throughput.
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Summary	  	  

•  Design choices: worst-case and hardware overprovisioning  
•  Careful cost-benefit analysis is necessary for large-scale design 

•  An overprovisioned system can be built without additional cost using 
older-generation nodes with similar features 

•  Net benefit depends on several factors 
•  Relative cost  
•  Relative single-node performance 
•  Expected workload characteristics 

•  More research is needed for throughput and utilization analysis 




