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Node Power 

Node Power 
— Package: processor die (cores + on-chip caches) 
— DRAM   
— Uncore: Off-chip caches, Quick Path Interconnect 
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Worst-case provisioning 

64 node cluster 
Node power: Peak (300 W) 
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Why limit power? 

• Tianhe-2: 31 petaflops today; 54 petaflops in 2015 at 17 MW 
• Projected power needed for one exaflop: 0.5 GW 
• Typical power plant generates 1 GW of power, provides for a 

million homes 
• Cost: $1M per MW per year 
• May have physical limitations on power that can be brought 

into a machine room 
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Enforcing a power bound 

Node power: Peak (300 W) 
 
Worst-case provisioned 
nodes: 48 
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Hardware Overprovisioning 

Node power: Low (150 W) 
 
Nodes with 
overprovisioning: 96 
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Reconfiguring an Overprovisioned Cluster 

Node power: Med (225 W) 
 
Nodes (reconfigured): 64 

• Reconfigure based on application characteristics 
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• Objective: Study the impact 
of overprovisioning on 
application performance 
given a power-constrained 
cluster 

• Found a performance 
improvement of over 62% as 
compared to worst-case 
provisioning 

Reconfiguring an Overprovisioned Cluster 
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Outline 

• Hardware Overprovisioning  
• Experimental and Application Details 
• Baseline Power Results (single-node) 
• Multiple-node Results 
• Summary 
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Power-constrained supercomputing 

• DoE’s goal: one exaflop by 2020 with 20 MW 
• Worst-case provisioning 

–Guarantee full power to a restricted number of nodes 
• Overprovisioning 

–Limit power to a larger number of nodes 
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Why overprovision? 

• Has been successful in the architecture community and 
in data centers 
– Intel TurboBoost, AMD TurboCORE 

• Better performance under a power bound 
–One size doesn’t fit all 

• Can reconfigure based on application characteristics 
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Why reconfigure? 
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Number of cores per node 

Memory-bound  

• More nodes at 
lower power 
per node 

• Fewer nodes at 
higher power 
per node 

• Fewer cores per 
node to avoid 
contention 
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Intel’s Running Average Power Limit 
(RAPL) 

• Sandy Bridge: on-board power measurement and 
capping  

• Domains: 
• Package (PKG) 

• Power Plane 0 (PP0) 

• Power Plane 1 (PP1) 

• DRAM 
• Models: 

• Client (062A): PKG, PP0 
and PP1 

• Server (062D): PKG, PP0 
and DRAM 
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Intel’s Running Average Power Limit 
(RAPL) 

Power capping 
–Specify a power bound and a time window 
–Hardware ensures that the average power over the 

time window does not exceed the specified bound 
– Implemented using MSRs 
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librapl 

• Safely access MSRs from user-space 
• Gather power and CPU frequency data per process for 

MPI applications 
–Use MPI Profiling layer  

• librapl is currently in use at UA, LLNL, Purdue, UIUC, 
NCSU, Virginia Tech, and Marquette U. 

• https://github.com/tpatki/librapl 
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Experimental and Application Details 

• Sandy Bridge Server cluster, 32 nodes 
• 2 sockets, 8 cores per socket, 2.6 GHz / 3.3 GHz (Turbo)   
• Emulated overprovisioning using RAPL PKG capping 
• Hybrid: MPI + OpenMP 
• Thermal limit: 115 W, Minimum power cap: 51 W (PKG) 
• 8 to 32 nodes, 4 to 16 cores per node, increments of 2 
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Experimental and Application Details 

• HPC Applications 
–SPhot   
–NAS-MZ (BT-MZ, SP-MZ and LU-MZ) 

• Synthetic Benchmarks 
–CPU-bound and memory-bound; scalable and not-

scalable 
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Baseline Results: Intel Turbo Boost 

• Turbo frequency 
depends on the number 
of active cores 
 

• All nodes engage in 
Turbo mode in a similar 
manner 
— uniform applications and 

consistent room 
temperature 
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Turbo Boost on a Single Node 
Benchmark: Synthetic, CPU-bound 
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Baseline Results: Power Profile (Turbo mode) 

• Some applications are 
more memory 
intensive than others 
 

• Some applications 
don’t use all the 
allocated power 
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Multiple-node Results: Configurations 

• Configuration: Number of nodes, number of cores per node, 
PKG power cap per socket ,(n x c, p) 

• Special Configurations 
–Packed: Use all cores on  a node before adding another node 
–Spread: Use 4 cores on a node, spread evenly across available 

set of nodes 
–Max/Min: To denote 115 W / 51 W of PKG power, based on 

thermal specifications 
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Multiple-node Results: Overprovisioning 

• Compare packed-max to optimal under a power bound 
• Maximum improvement: 62%; Average: 32% 
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Multiple-node Results: Comparing Configurations 

• Some applications 
prefer packed over 
spread 
 

• Significant performance 
difference between 
packed and spread, 
max and min 

Packed 

Spread 
Packed 
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• Best configuration is not 
always one of the 
canonical ones 
 

• Depends on application 
characteristics 

Optimal 

Multiple-node Results: Comparing Configurations 
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Multiple-node Results: Comparing Configurations 

• Optimal configuration 
depends on the global 
power bound 

(28 x 6, 51) (32 x 8, 95) 

(32 x 8, 115) 
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SPhot 
Configuration  
(n x c, p) 

Time  (s) 

P-Max (12 x 16, 115)  74.27 
P-Min (22 x 16, 51) 57.24 
S-Max (24 x 4, 115)  99.18 
S-Min (32 x4, 51) 94.19 
Opt (22 x 16, 51) 57.24 

Configuration 
 (n x c, p) 

Time (s) 

P-Max (12 x 16, 115)  13.88 
P-Min (20 x 16, 51) 11.16 
S-Max (22 x 4, 115)  6.40 
S-Min (28 x4, 51) 6.34 
Opt (22 x 8, 80) 5.19 

SP-MZ 
Global Power Bound: 2500 W 

• Maximum improvement of 42.2% for SPhot, 62.6% for SP-MZ 
• Fewer total cores at lower power can give better performance (192 vs 

176 cores for SP-MZ) 

Multiple-node Results: Comparing Configurations 
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Global Bound (W) Optimal Configuration 
(n x c, p) 

Time  (s) 

2500 W (22 x 8, 80) 5.19 
3500 W (26 x 12, 80) 3.65 
Unlimited (32 x 14, 115) 2.63 

Bmark: SP-MZ 

• Optimal configuration depends on the global power bound 

Multiple-node Results: Comparing Configurations 
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Multiple-node Results: Take-away 
• Significant time difference between packed and spread; 
max and min configurations 

• Optimal configuration: 
—Not always one of the canonical configurations 
—Depends on application characteristics  

• CPU-bound applications prefer packed configurations 
• Memory-bound applications prefer fewer cores per node  
• Applications that scale well prefer lower power per node and more nodes 

—Depends on the global power bound enforced 
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Summary 
Hardware Overprovisioning  

– Limit power to a larger number of nodes 
– Reconfigure based on application characteristics 
– Performance improvement of up to 62% on real applications  

Future work  
– Software and tools to automatically achieve good 

performance on hardware overprovisioned systems 
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Thank You! 
 

Questions? 
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