Exploring Hardware Overprovisioning in Power-Constrained, High Performance Computing

Tapasya Patki 1David Lowenthal 1Barry Rountree 2Martin Schulz 2Bronis de Supinski 2

¹The University of Arizona ²Lawrence Livermore National Laboratory

Node Power

Node Power

- Package: processor die (cores + on-chip caches)
- DRAM
- Uncore: Off-chip caches, Quick Path Interconnect

Worst-case provisioning

64 node cluster

Node power: Peak (300 W)

Why limit power?

- <u>Tianhe-2</u>: 31 petaflops today; 54 petaflops in 2015 at 17 MW
- Projected power needed for one exaflop: 0.5 GW
- Typical power plant generates 1 GW of power, provides for a million homes
- <u>Cost</u>: \$1M per MW per year
- May have physical limitations on power that can be brought into a machine room

Enforcing a power bound

Hardware Overprovisioning

Reconfiguring an Overprovisioned Cluster

• Reconfigure based on application characteristics

Reconfiguring an Overprovisioned Cluster

- Objective: Study the impact of overprovisioning on application performance given a power-constrained cluster
- Found a performance improvement of over 62% as compared to worst-case provisioning

Outline

- Hardware Overprovisioning
- Experimental and Application Details
- Baseline Power Results (single-node)
- Multiple-node Results
- Summary

Power-constrained supercomputing

- <u>DoE's goal</u>: one exaflop by 2020 with 20 MW
- Worst-case provisioning
 - -Guarantee full power to a restricted number of nodes
- Overprovisioning
 - -Limit power to a larger number of nodes

Why overprovision?

- Has been successful in the architecture community and in data centers
 - -Intel TurboBoost, AMD TurboCORE
- Better performance under a power bound
 - -One size doesn't fit all
- Can reconfigure based on application characteristics

Why reconfigure?

- More nodes at lower power
 per node
- Fewer nodes at higher power
 per node

 Fewer cores per node to avoid contention

Intel's Running Average Power Limit (RAPL)

- Sandy Bridge: on-board power measurement and capping
- Domains:
 - Package (PKG)
 - Power Plane 0 (PP0)
- <u>Models:</u>
 - Client (062A): PKG, PP0 and PP1

- Power Plane 1 (PP1)
- DRAM

• Server (062D): PKG, PP0 and DRAM

Intel's Running Average Power Limit (RAPL)

Power capping

- -Specify a power bound and a time window
- -Hardware ensures that the average power over the time window does not exceed the specified bound
- -Implemented using MSRs

librapl

- Safely access MSRs from user-space
- Gather power and CPU frequency data per process for MPI applications
 - -Use MPI Profiling layer
- librapl is currently in use at UA, LLNL, Purdue, UIUC, NCSU, Virginia Tech, and Marquette U.
- https://github.com/tpatki/librapl

Experimental and Application Details

- Sandy Bridge Server cluster, 32 nodes
- 2 sockets, 8 cores per socket, 2.6 GHz / 3.3 GHz (Turbo)
- Emulated overprovisioning using RAPL PKG capping
- Hybrid: MPI + OpenMP
- <u>Thermal limit</u>: 115 W, <u>Minimum power cap</u>: 51 W (PKG)
- 8 to 32 nodes, 4 to 16 cores per node, increments of 2

Experimental and Application Details

- HPC Applications
 - -SPhot
 - -NAS-MZ (BT-MZ, SP-MZ and LU-MZ)
- Synthetic Benchmarks
 - -CPU-bound and memory-bound; scalable and notscalable

Baseline Results: Intel Turbo Boost

- Turbo frequency depends on the number of active cores
- All nodes engage in Turbo mode in a similar manner
 - uniform applications and consistent room temperature

Baseline Results: Power Profile (Turbo mode)

- Some applications are more memory intensive than others
- Some applications don't use all the allocated power

Multiple-node Results: Configurations

- <u>Configuration</u>: Number of nodes, number of cores per node, PKG power cap per socket, (n x c, p)
- Special Configurations
 - -<u>Packed</u>: Use all cores on a node before adding another node
 - –<u>Spread</u>: Use 4 cores on a node, spread evenly across available set of nodes
 - —<u>Max/Min</u>: To denote 115 W / 51 W of PKG power, based on thermal specifications

Multiple-node Results: Overprovisioning

- Compare packed-max to optimal under a power bound
- Maximum improvement: 62%; Average: 32%

- Some applications prefer packed over spread
- Significant performance difference between
 packed and spread,
 max and min

- Best configuration is not always one of the canonical ones
- Depends on application characteristics

 Optimal configuration depends on the global power bound

Global Power Bound: 2500 W

SPhot

SP-MZ

	Configuration (n x c, p)	Time (s)
P-Max	(12 x 16, 115)	74.27
P-Min	(22 x 16, 51)	57.24
S-Max	(24 x 4, 115)	99.18
S-Min	(32 x4, 51)	94.19
Opt	(22 x 16, 51)	57.24

- Maximum improvement of 42.2% for SPhot, 62.6% for SP-MZ
- Fewer total cores at lower power can give better performance (192 vs 176 cores for SP-MZ)

Bmark: SP-MZ

Global Bound (W)	Optimal Configuration (n x c, p)	Time (s)
2500 W	(22 x 8, 80)	5.19
3500 W	(26 x 12, 80)	3.65
Unlimited	(32 x 14, 115)	2.63

• Optimal configuration depends on the global power bound

Multiple-node Results: Take-away

- Significant time difference between packed and spread; max and min configurations
- Optimal configuration:
 - -Not always one of the canonical configurations
 - —Depends on application characteristics
 - CPU-bound applications prefer packed configurations
 - Memory-bound applications prefer fewer cores per node
 - Applications that scale well prefer lower power per node and more nodes
 - -Depends on the global power bound enforced

Summary

Hardware Overprovisioning

- -Limit power to a larger number of nodes
- Reconfigure based on application characteristics
- Performance improvement of up to 62% on real applications

Future work

 Software and tools to automatically achieve good performance on hardware overprovisioned systems

Acknowledgments

We would like to extend our thanks to:

- -Livermore Computing and their support staff for providing us with the appropriate permissions required to access the MSRs.
- —Lawrence Livermore National Laboratory, Department of Energy
- -National Science Foundation

Thank You!

Questions?

THE UNIVERSITY OF ARIZONA