Supercomputing Centers and Electricity Service Providers: A Geographically Distributed Perspective on Demand Management in Europe and the United States

ISC High Performance Conference, Frankfurt, Germany

<u>Tapasya Patki</u>, Natalie Bates, Girish Ghatikar, Anders Clausen, Sonja Klingert, Ghaleb Abdulla, Mehdi Sheikhalishahi

(EE HPC WG, Demand Response Group)

LLNL-PRES-695291

June 21, 2016

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

HPC system high power

Processor

Intel Xeon

Intel Xeon

Intel Xeon

E5-2670 Intel Xeon

E5330

A2

IBM PowerPC

Juno (ASC)

Max (ASC)

Muir (ASC)

Sequoia (ASC) **

Zin (ASC)

Intel Xeon

E5530

E5-2667 v3

E5530

Architecture

System

RZ

RZCereal

RZHasGPU

RZSLIC ***

RZuSeq

RZZeus

(M&IC)

(ASC) ****

RZMerl (ASC/

(M&IC)

M&IC)

(Program)

ems have a			System (Program)	Processor Architecture	Nodes	Cores	Peak (TFLOP/s)		
er draw					cz				
				_	Ansel (M&IC)	Intel Xeon EP X5660	324	3,888	43.5
N	odes	Cores	Peak (TFLOP/	s)	Aztec (M&IC)	Intel Xeon EP X5660	96	1,152	12.9
	21	169	1.6		Catalyst (ASC/M&IC)	Intel Xeon E5-2695 v2	324	7,776	149.3
	21	320	8.2		<mark>Cab</mark> (ASC/ M&IC)	Intel Xeon E5-2670	1,296	20,736	431.3
	²⁰ 320 8.2 Stats					256	1.6		
	3 Max: 98,304 nodes in one system (Sequoia)								
⁵²² 25 systems across open and closed zones				13,216	112.7				
2	267				40	-			
:)	AMD 8354 ~40MW of total power onsite					23,328	261.3		
)	Intel) E5-26 Intel) X5660				2,592	53.9			
	_	PowerPC	98,304	1,572,864	20,132	ntel Xeon 5-2670	324	5,056	107.8
		Xeon 670	2,916	46,656	970.4	3M PowerPC	24,576	393,216	5,033

Relationships between Electricity Service Providers and SC Centers are unidirectional at present

Power Generation, Transmission and Distribution

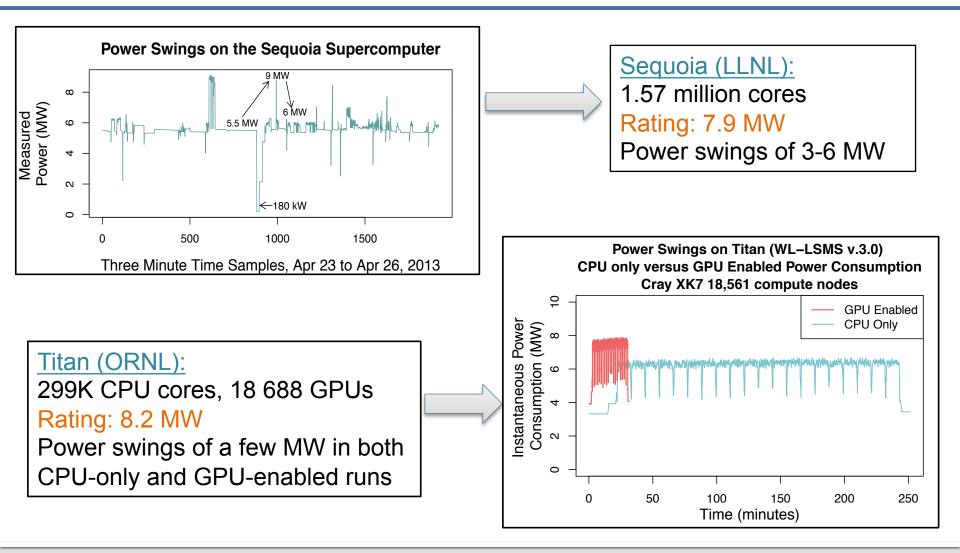
High-performance Computing

<u>Demand Management:</u> Actions taken to establish multi-directional relationships between SCs and ESPs to ensure energy efficiency and grid reliability

Demand Management: Europe versus United States

Prior Work:

- Study DM in the US
- Surveyed 11 SC sites 4 of these had HPC workloads of 10 MW or more
- None of the SCs were actively communicating with their ESPs
- <u>Conclusion</u>: Interest in tighter integration, but business case not demonstrated



Focus for this paper: understand geographical differences in DM

- Extend study to 9 EU SC sites
- EU has more renewables, thus more variability
- Electricity prices in EU are higher, involve different taxes and peak costs
- Initial Expectation: EU might have a tighter integration between SCs and ESPs

The Need for Demand Management: Power swings may not be predictable

Demand Management Overview: Strategies, Programs, Methods, Forecasting

Strategies:

- Used by SCs to manage power and provide load flexibility
- May or may not improve energy efficiency
- Example: job scheduling, power capping

Programs:

- Incentives offered by ESPs to SCs to motivate them to balance the grid and perform power management
- Example: peak shedding, peak shifting, and dynamic pricing

Methods:

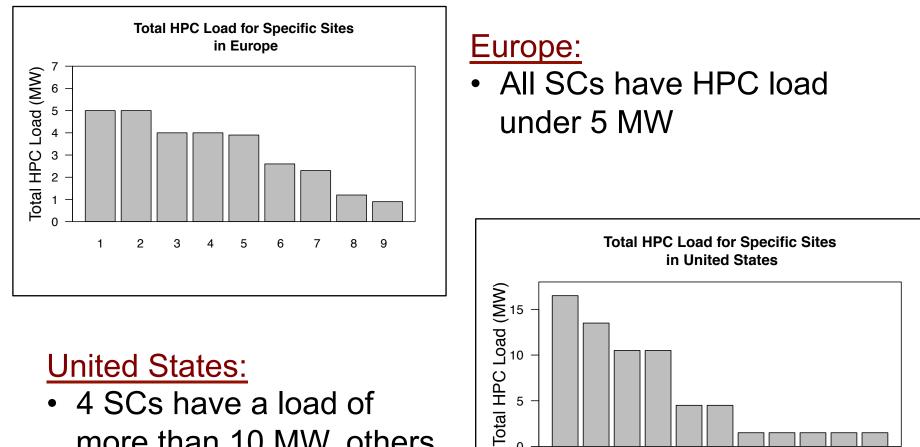
- Used by ESPs to balance the grid in transmission and distribution phases
- Example: grid scale storage

Forecasting:

• Predicting the amount of power required by an SC for a certain period of time

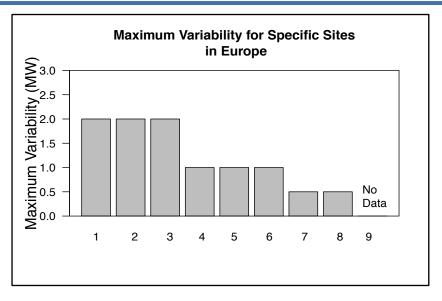
Quantitative and Qualitative Analysis

Quantitative Survey:


- 11 US SCs, 9 EU SCs
- 31 Survey Questions,
 - Examples include facility energy, PUE, HPC load details; variability details and usage of strategies, programs and methods

Qualitative Analysis:

- Three sites: ORNL, LLNL, LRZ
- Understand the details of the electricity pricing structure

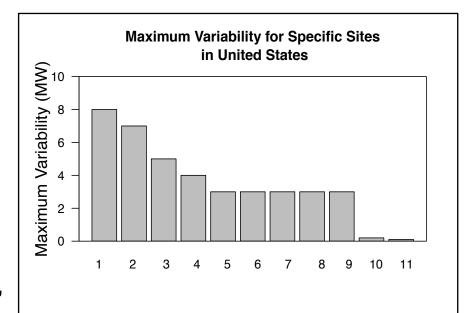


Quantitative Study: HPC Load Results

 4 SCs have a load of more than 10 MW, others under 5 MW

Quantitative Study: Maximum Variability Results

Europe:


Variability of 0.5 to 2 MW

United States:

- 3 sites had variability of more than 5 MW
- Minimal option was "less than 3 MW"

All Sites:

- Typically, variability is due to maintenance
- Can be scheduled *day-ahead*

Quantitative Study: Motivation for stronger relationship with your ESP

Ques: Please evaluate as high, medium or low the following
motivations for your site's interest in pursuing a stronger
relationship with your electricity service provider

	Low	Medium	High	Rating Count
Economically justified	14.3% (1)	28.6% (2)	57.1% (4)	7
Good citizen	14.3% (1)	71.4% (5)	14.3% (1)	7
Adverse consequences	66.7% (4)	16.7% (1)	16.7% (1)	6
Government regulation	71.4% (5)	28.6% (2)	0.0%~(0)	7

 Key motivation for a stronger relationship with ESP is to be a *good citizen*

Quantitative Study: Strategies and Programs

Program	Europe	United States
Peak Shedding	1	6
Peak Shifting	0	4
Dynamic Pricing	0	5

Strategies:

- Most SCs in the US were moderately interested in coarse-grained power management, fine-grained power management and temperature control
- SCs in EU had low interest

Programs:

- No SCs were actively engaged in programs
- SCs in US have communicated, as opposed to SCs in EU
- More interest in peak shedding and dynamic pricing
- More interest in discussion about renewables

Quantitative Study: Comments

- All SCs use demand forecasting to notify ESPs about maintenance cycles
- SCs in US showed more interest overall for ESP programs
- SCs in EU had little knowledge about ESP programs

"There are not so many related options and features offered by providers. We are open to further and pro-active efforts as long as providers have other kinds of programs to propose"

"With many of your questions I am wondering about the kind of contracts other centers might have and about the quality of some electricity providers."

Qualitative Analysis: Key Questions

- Responsibility for negotiating the contract between SC and ESP
- Details of electricity pricing structure
- Future relationship with ESP

<u>Goal:</u> Understand the details that were not captured in the quantitative survey

Qualitative Analysis

Site	Negotiation	Provider/Pricing
ORNL	DOE negotiates with TVA (Tennessee Valley Authority) (35 MW – 75 MW)	Demand charge: based on the peak power usage for the month Energy charge: based on actual power consumption
LLNL	DOE negotiates with Exeter (100 MW)	No demand charge Energy charge: 4.5 cents per kWh
LRZ	Stadtwerke Munchen (4 – 6 MW)	Charges for power grid, renewable energy, concession levy and other taxes. Depends on season, peak usage, etc. 16 euro-cents per kWh

Qualitative Analysis: Similarities and Differences

Similarities:

- Power purchase negotiations were done by a third party annually
- Peak power capacity was negotiated
- In LRZ and ORNL, a lower power bound was also negotiated
- These were site-level negotiations, not just HPC center negotiations

Differences:

- Pricing structure was very different
 - LLNL: flat rate
 - ORNL: variable rate, but less sensitive to pricing
 - LRZ: high and variable rate, sensitive to pricing and power swings
- In US, reliability was not a major concern (LLNL and ORNL)
- US mostly thermal generation, EU mostly renewable

Conclusions and Future Work

- Demand management is critical for energy efficiency in the future
- SCs in EU and US are not actively engaged, need for tighter integration
- Higher interest, and more awareness in US than EU
- SEDC (Smart Energy Demand Coalition) in EU drew similar conclusions
- What about China/Japan?

https://eehpcwg.llnl.gov/

