
A Unified Platform for Exploring Power
Management Strategies

Daniel Ellsworth∗†, Tapasya Patki†, Martin Schulz†, Barry Rountree†, Allen D. Malony∗
∗University of Oregon, Eugene, Oregon, USA

†Lawrence Livermore National Laboratory Livermore, California, USA
{dellswor,malony}@cs.uoregon.edu, {patki1,schulzm,rountree4}@llnl.gov

Abstract—Power is quickly becoming a first class resource
management concern in HPC. Upcoming HPC systems will
likely be hardware over-provisioned, which will require enhanced
power management subsystems to prevent service interruption.
To advance the state of the art in HPC power management
research, we are implementing SLURM plugins to explore a
range of power-aware scheduling strategies. Our goal is to
develop a coherent platform that allows for a direct comparison
of various power-aware approaches on research as well as
production clusters.

I. INTRODUCTION

HPC systems deployed by the United States Department
of Energy (DOE) are currently capable of just under 20
petaFLOPS1 while using about 10 megawatts of power [1].
The DOE has articulated a goal for delivering a first generation
exascale system2 within a 20 megawatt power budget [2], [3].
Significant advances in energy efficiency will be needed in
both hardware and software in order to meet this goal.

HPC systems are typically operated in the interests of
advancing underlying scientific goals, which makes it difficult
to measure their performance quantitatively. Common metrics
for such performance comparison include job throughput (or,
the number of jobs completed per unit time), node utilization
(or, the percentage of total nodes in the cluster allocated to
executing jobs over a period of time), and FLOPS.

Energy efficiency relates to the energy cost to complete a
computation; energy efficient solutions use less energy to com-
plete the same computation. Improving the energy efficiency
of applications often results in variation of power consumption
over time because of the instruction mix and associated
data movements. In energy-constrained environments, such as
mobile computing, the aforementioned power variability is a
good trade-off for extending battery life and reducing costs.
Many of the innovations from the mobile space are directly
applicable to the energy efficiency challenges faced by the
HPC community.

Future HPC systems, however, are expected to be power-
constrained instead of being energy-constrained. In the past,
HPC systems have provisioned sufficient power to be able to
operate all components at their theoretical peak consumption.
Power grid infrastructure, electricity provider, and operational

1FLOPS: floating point operations per seconds
2System capable of 1018 FLOPS, or 1000 petaFLOPS.

cost limitations place a hard limit on the rate at which
electricity can be delivered to a system. As a result, HPC
systems now have to operate under a finite power envelope and
realize no direct benefit for utilizing less than the provisioned
power.

Hardware over-provisioning is a physical HPC system
design that allows additional work to be performed within
the same power envelope. In an over-provisioned system,
more computing hardware is available than can be powered
simultaneously at peak consumption. Power savings in one
part of the system can be redirected to the extra hardware
and used there for computation. The availability of additional
hardware supports executing more applications as well as
improving the performance of some applications by scaling
them out, thus improving throughput and utilization. Based
on published consumption traces from three high-end DOE
HPC systems, namely Vulcan, Sequoia, and Titan [4], [5],
opportunities exist to utilize roughly 25% more hardware and
remain safely within the power budget most of the time, while
the remaining short times are peaks that can be controlled by
actively enforcing power caps.

For hardware over-provisioned systems to be practical,
enforcement of such system wide power caps must occur with
sufficient temporal resolution to avoid damaging overloads
to the power distribution infrastructure. Technologies such as
Intel’s running average power limit (RAPL), which provide a
hardware mechanism that can enforce component level power
caps with fine temporal resolution, will need to be available.

Another practical barrier to the deployment of hardware
over-provisioned systems is resolving how power should be
scheduled across the cluster. Recently, it has been suggested
that power should be treated as a schedulable resource. Esti-
mating the power and performance of HPC applications can
thus be used for efficient scheduling. While simple static
approaches that set a uniform power cap across nodes in a
job are safe for overprovisioned systems, they often result
in limited throughput. This is because HPC applications can
exhibit distinct runtime behavior resulting in phases with low
and high power consumption. Thus, runtime systems with
the capability to dynamically modify power allocations while
jobs are executing have also been proposed. More research is
needed to directly compare and better understand the trade-off
space for power scheduling strategies. A general platform for
conducting such research is currently missing.E2SC2016; Salt Lake City, Utah, USA; November 2016

978-1-5090-3856-5/16/$31.00 c©2016 IEEE

Job

Scheduler

job submission

job
output

P
o
w
e
r

S
c
h
e
d
u
le
r

job
output

measured
power

allocated
power

job
execution

Fig. 1. Model of a hardware over-provisioned system with the job and power
schedulers.

In this paper, we present the design and implementation of
such a platform for exploration of power scheduling strategies.
Our platform is based on SLURM, and, while not production
ready, is suitable for large-scale experiments on research
clusters. Using a common platform to analyze the power-aware
scheduling space allows for direct comparison of different
approaches using the same metrics. Section II presents back-
ground and related work. Sections III to V discuss the design
concerns, evaluation parameters and implementation details of
our SLURM extensions. We conclude in Section VI.

II. BACKGROUND

We present a high-level system model for a hardware over-
provisioned HPC system in Figure 1, highlighting the power
scheduler and the job scheduler. The power and job scheduling
roles are separated in the model in order to simplify reasoning
about whether the system is guaranteed to adhere to a power
bound and to simplify the verification of correctness of the
power management approach. The power scheduler’s primary
objective is to maintain the system power bound, with all
other objectives being secondary. The job scheduler’s primary
objective is to efficiently execute work in an order that aligns
with organizational objectives, which is a complex multi-
objective optimization problem. While the job and power
schedulers should coordinate to efficiently execute work within
the system power bound, the power scheduler must always be
empowered to arbitrarily degrade performance if needed to
protect the system.

The current state of the practice for over-provisioned sys-
tems is to statically allocate the same amount of power to
every node within the cluster and never change the allocation.
Unfortunately, static power caps often result in poor power uti-
lization and throughput. Better power management strategies
involve application awareness, where power allocations are
set based on an application’s anticipated power consumption,
and dynamic power redistribution, where power allocations are
shifted between components.

SLURM [6] is production resource manager that is currently
distributed with two power management systems. On platforms

supporting the correct model specific registers (MSRs), a
dynamic voltage and frequency scaling (DVFS) based solution
is provided [7]. The DVFS solution does not redistribute power
and cannot guarantee safe operation. On Cray systems, a
plugin can be configured to dynamically redistribute power [8]
using RAPL. Use of the Cray plugin is limited to Cray systems
and has a low temporal resolution.

Common themes for power scheduling research include
energy efficiency, performance optimization, and throughput
optimization. Energy efficiency studies analyze applications
and often involve slowing non-critical path computations
via DVFS. Research on performance optimization strives to
achieve the least execution time for an application given a
power cap or an energy saving goal [9], [10]. Throughput
optimization looks at minimizing the average turnaround time
of jobs [4], [11]. Our SLURM extensions support studies
focusing job throughput optimizations.

Sarood [11] applies an integer linear programming approach
to schedule power and moldable jobs within a data center. This
strategy (PARM) uses DVFS and has a goal of maximizing
throughput. Its scalability, however, limited: authors report that
15 seconds were required for making decisions on a queue
with 200 jobs.

Work by Patki, et al. [4] (RMAP) assumes jobs are moldable
and that a model for estimating application performance is
available. It introduces power-aware backfilling and is im-
plemented in a SLURM simulator. The best proposed policy
in RMAP improves power utilization by 17% and system
throughput by 32%.

Ellsworth, et al. [12] present PowSched, which uses the
difference between power consumption measurements and
power allocation to shift power across an HPC cluster without
awareness of jobs. Emulation experiments indicate very good
scaling and experimental results have shown a significant
improvement over naive strategies when high and low con-
sumption phases are favorably aligned.

Savoie, et al. [13] make a distinction between shifting
and scheduling algorithms. Shifting algorithms redistribute
a resource across concurrently active work; an activity this
paper will refer to as power scheduling. Scheduling algorithms
control when work starts; an activity this paper will refer to
as job scheduling.

Cao, et al. [14] present a demand aware power scheduler
with some job scheduler integration. Dynamic power balanc-
ing and the ability to launch jobs that would otherwise be
denied can increase job throughput.

Hierarchical power scheduling has been recently suggested
to address future scaling challenges. Ellsworth, et al. [15]
describe the hierarchical power scheduling approach in the
Argo ExaOS/R project. Gholkar, et al. [16] report on a two-
level power scheduler that addresses processor performance
variations. PPartition allocates power across jobs and PTune
allocates power across nodes within a job.

III. DESIGN CONCERNS

In this section, we highlight the need for a common evalu-
ation platform and the considerations that led to our extension
of a production scheduler.

A. Comparability

In general, comparison between published scheduling tech-
niques is difficult due to differences in the evaluation en-
vironments. Consider some of the power schedulers from
the related work, PARM [11], RMAP [4], PowSched [12],
and PPartition [16]. Each of them uses different workloads,
has different job queue capabilities, compares against differ-
ent baseline power strategies, and are evaluated on different
platforms with different node counts. Ellsworth, et al. [12]
show that performance is strongly impacted by workload mix;
the lack of a uniform workload makes reported improvement
numbers non-comparable. PPartition and RMAP both leverage
backfilling by the scheduler to get performance gains but
use different backfilling techniques. In contrast, PowSched is
experimentally evaluated with only static job schedules. It is
not clear if PARM’s baseline includes power cap maintenance,
which is explicitly in the baseline for RMAP, PowSched, and
PPartition. Published research work is thus insufficient to fairly
evaluate solutions for production systems.

Comparison of published solutions via installation on a
single testbed is also challenging. RMAP was only evalu-
ated in simulation and code for experimental evaluation on
real hardware is not available. Since each solution has a
different job scheduler, there would be no uniform way to
package and launch equivalent workloads for each solution.
Even if the workloads could be described uniformly for
launch, the default job scheduler features differ significantly
between the solutions. Comparing a statically scheduled queue
from PowSched with a backfilling scheduler, like PParition
or RMAP, is an invalid comparison. Solving the workload
description and queue features problems would still leave mea-
surement collection as an open issue. Implementing several
power management strategies within a single platform should
avoid these complexities by standardizing the inputs, outputs,
and overheads used across compared techniques.

B. Production Support

Simulation studies are useful to get a sense of a system’s
anticipated behavior. However, simulation cannot take into
account the complex low-level interactions between com-
ponents or quantify interface overheads. Under the best of
circumstances, distributed applications suffer from variability
due to minor time differences and shared subsystems, such
as the network. The introduction of component level power
capping increases variability further [17]. The inability of
models to fully capture the complex interrelated behavior make
empirical experiments necessary.

Implementation of the power management strategies on
a research scheduler is tempting. Working within a sim-
ple scheduler codebase should reduce development time and
support better focus on algorithmic details. However, such

research codes exhibit missing feature richness and barriers to
adoption, including the need for re-implementation in order to
move to production. Minimizing the distance between research
and practice is an important practical objective for our work.

An additional benefit of building on top of a production
scheduler codebase is the ability to leverage the depth of
existing scheduling work. Reimplementation of features such
as backfilling, resource accounting, and priority policies would
require significant effort. Implementing reliability and scaling
features would also involve significant engineering effort out-
side of the power management research focus.

IV. EVALUATION PARAMETERS

In this section, we highlight some of parameter space we
plan to explore and evaluate using our platform.

A. Decision Time

Understanding when power allocation decisions are made
provides a coarse grain parameter for classifying and com-
paring different approaches. Three granularities of time are of
primary interest for binning approaches: machine lifetime, job
lifetime, and arbitrary intervals.

Machine lifetime Node power allocations are set just once
when the machine is deployed and never changed. Exist-
ing systems effectively use this strategy since all compo-
nents may safely consume up to the thermal design power
(TDP).

Job lifetime At the time a job is scheduled, the power allo-
cation for the participating nodes is set and not changed
while the job runs. Research systems like RMAP use this
strategy.

Arbitrary intervals Power allocations may be changed on
any node at any time. Research systems like PowSched
use this strategy.

While machine lifetime approaches are inherently static and
have been shown to underperform[12], approaches based on
job lifetime and arbitrary intervals are interesting to study.
Power scheduling at job boundaries is a natural fit for existing
batch resource scheduling techniques. Arbitrary intervals move
power scheduling in the direction of runtime system research.
Adjusting power during an application’s execution allows
phase behavior to be leveraged to improve performance.

B. Fairness

A common concern for the resource scheduling community
is understanding the fairness guarantees provided by a schedul-
ing algorithm. Our platform should permit different notions of
fairness to be explored. Two possible fairness considerations
we plan to explore are power fairness and node fairness.

Power fairness A job requesting resources receives a fair
allocation of power based on the node count of the
resource request. Optimizations and savings occur by
adjusting other attributes, such as job node count and
work placement.

Node fairness A job requesting node resources receives the
requested node count and placement, but may suffer per-
formance degradations due to systemwide power bounds.

Fundamentally, hardware over-provisioning relies on unfair
power allocations across nodes to improve throughput. To
provide power fairness, the node count must mutable. Sim-
ilarly, providing node fairness requires the power allocation
be mutable.

While understanding scheduler behavior in terms of fairness
can be informative, deploying organizations are much more
likely to care about work priority and throughput. Fairness in
execution order is unlikely to be the primary objective. For
example, highly desirable scheduling optimizations such as
backfilling can increase system utilization but erode execution
order fairness. Increasing utilization and job throughput is
likely realized only by taking advantage of imbalances rather
than enforcing fairness.

C. Job Awareness

A major research interest motivating the platform is un-
derstanding how different levels of job awareness impact
the quality of the generated allocations. Our existing work,
RMAP [4] and PowSched [12], can be seen as existing on
opposite ends of a spectrum of job awareness. For RMAP,
most of the job properties are known and assumed to be
well modeled before jobs are executed, requiring substantial
resources for model generation. The detailed a priori knowl-
edge allows RMAP to achieve improved turnaround time by
changing a job’s configuration at launch time based on power
and other resource constraints. PowSched, on the other hand,
achieves good performance to evict all concurrent work with
no awareness of jobs, nodes, or time beyond the most recent
scheduling interval. We hypothesize that a more job aware
PowSched could make better decisions and an RMAP could
still make good decisions with weaker models.

Also related to job awareness is the level and direction
of scheduler communication. Recall from the system model
(Figure 1) that the job and power schedulers are logically
separated to aid in verification. If job awareness is useful
for power scheduling, a power scheduler should receive job
information from the job scheduler. Some exploration of
what job information is useful and how the information can
be used to produce better power schedules is needed. Job
schedulers should also receive power information from the
power scheduler to get feedback on the power utilization of the
existing schedule for use in generating later job schedules. Of
particular interest is how intervals of power oversubscription
might be handled when power and job schedulers coordinate
action.

V. ARCHITECTURE

Due to its wide spread popularity and our prior RMAP
work, we selected SLURM as the base production job sched-
uler to build on. Its plugin infrastructure was a good fit
for our needs. Much of the resource scheduling work is
handled in SLURM with the help of node select plugins that

slurmd

powd

slurmd

powd

slurmctld

RMAP select plugin

PowSched plugin

powschedd

slurmd

powd

slurmdbd MySQL
RMAP

Model Data

App/Machine
Parameter

Sweep

Fig. 2. Design of our proposed SLURM extensions for RMAP and PowSched

can be changed through configuration files. A power plugin
interface is also available in the codebase. However, the only
implemented power plugin is limited to Cray systems.

A. High-level Architecture

The core architectural design of SLURM has remained
largely intact over more than a decade of development [6].
The centralized control daemon, slurmctld, communicates
with a daemon on each node, slurmd. Slurmctld directs
slurmd instances to start and stop work on nodes, and
the slurmd instances report node configuration and status.
Plugins are used to tailor SLURM for different environments.

SLURM user utilities, such as srun and squeue, interact
with slurmctld to change and interrogate the job and re-
source queues. A database daemon, slurmdbd, is included to
securely manage accounting information stored in a relational
database.

Our design goals can be met primarily through the imple-
mentation of two plugins. A Select plugin determines which
nodes and node resources are to be given to a job. RMAP
can be implemented almost completely as a Select plugin.
Additional minor extensions are needed to slurmdbd, srun,
and SLURM’s RPC protocol to support the power model
information required for RMAP. A power plugin allows power
bounds to be set on nodes participating in a job. The power
plugin interface can be used to generate a bridge between
SLURM and an external power scheduler like PowSched.
Some changes are needed to the existing power plugin API
to make the API more generic. Figure 2 presents this design.

Existing data structures within SLURM are used to commu-
nicate between the select and power plugins. During normal
operation, SLURM select and power plugins receive node
records and job records. These records are implemented as
structs and include pointers to opaque plugin specific
structures. Hints regarding node power constraints, as deter-
mined by the power plugin, can be included in the node
records received by the select plugin. Hints regarding a job’s
power needs, as determined by the select plugin, can be
included in the job record received by the power plugin. These
plugins are discussed in detail below.

B. RMAP as a Select Plugin

Select plugins in SLURM, such as cons_res, linear,
and bluegene, are responsible for selecting the specific re-
sources a job should use at runtime and to indicate if sufficient
resources exist to launch a candidate job. When determin-
ing if a job can be scheduled, SLURM provides the Select
plugin with a job description via a job record struct
pointer, and the available resources via a bitmask
pointer. If the available resources are insufficient to launch
the job, the Select plugin returns an error code. The Select
plugin will update the bitmask to indicate the selected nodes
and the job record will be updated with fine grain resource
assignments (for example, specific cores).

RMAP achieves performance improvements by optimizing
the job configuration and molding the job to the available
resources. Using an application specific model, RMAP se-
lects the most efficient resource configurations for a job.
When the available resources are insufficient for the most
efficient configuration, RMAP will consider scheduling the
job with slightly reduced resources. If RMAP determines
that the performance degradation from reduced resources is
not within user-specified acceptable limits, it will inform the
scheduler that the job can not be run and should be requeued.
The Select plugin is architecturally good location for RMAP
implementation.

RMAP was originally implemented as a Select plugin on the
BCS SLURM simulator [4], but the simulation implementation
could not be moved directly over to production. Simulation
RMAP used Job ID for application-specific model lookups
with the help of an internal mapping, which is clearly un-
reasonable for a live system. It also directly accessed a model
database that assumed that the SLURM database is co-resident
with the slurmctld, which violates the SLURM security
model. SLURM’s RPC protocol and slurmdbd have now
been extended to support the RMAP model lookups. The data
structures handled by the Select plugin have been augmented
to provide suggested power configurations to the power plugin.

1) Job Model Flag: Power consumption and performance
properties of a job depend on the application, resource con-
figuration, and data. Rather than attempt to analyze the job
record for hints regarding the correct model, the RMAP im-
plementation expects the user or another interfacing software
system to identify the correct model at job submission time.
A switch has been added to srun, –model, to pass the job
model identifier. srun packs the identifier into the job record
sent to the slurmctld. If no job model is given, the RMAP
Select plugin does not attempt to mold the job when selecting
resources. When a job model is given, the RMAP Select plugin
queries the model database, via slurmdbd, and configures the
job based on the returned resource configuration.

For implementation, the option parser was extended to be
aware of the new flag, requiring changes to libsrun. The
Select plugin API allows plugin specific key value pairs to be
added to the job record. This feature is used by our modified
libsrun to include the model identifier with the rest of the

job attributes. Our srun modifications are safe to use with
non-RMAP select plugins since the underlying SLURM data
structures have not been altered.

2) Model Database: An RMAP job model is given as a set
of tuples. The tuples are specific to the machine, application,
and data used for the job. Each tuple contains the execution
time, power, node count, and core count associated with a job.
To determine if a job can be run, the RMAP select plugin must
query the job model for a tuple that fits within the available
power and node count constraints. If a job can be run, the
plugin should mold the selected job resources to match the
values returned by the model. The query requirements make a
relational database a good fit for model storage and SLURM
has existing support for MySQL.

At many sites, MySQL is used by SLURM to store ac-
counting information. Slurmdbd provides controlled access
to the database and prevents tampering. Components other
than the slurmdbd load the slurmdbd accounting storage
plugin, which then handles the RPC calls with the slurmdbd
daemon.

Adding access to the RMAP model was the most invasive
of our extensions. The actual database logic was placed in the
mysql accounting storage plugin since most other database
accesses occur here. Accounting storage extension required
adding a new call to the accounting storage plugin API and
implementing functions in the accounting storage plugin. RPC
extension involved adding additional message types, structs,
data marshaling and unmarshaling logic, and some minor
message handling code.

3) Resource Molding: Job molding follows directly from
the configuration returned by the model query. The select
plugin includes the Model ID and resource constraints when
making the RPC call to the model database. Return values
from the RPC call include the detailed resource configuration
for the job. The select plugin ignores the requested resources
in the job record and selects job resources to match the
configuration returned from the model query.

4) Model Generation: To select efficient application con-
figurations, detailed models of application performance are
required. These are generated by first gathering application
profile data and then developing linear models for performance
prediction. Profiling the application includes gathering execu-
tion time and maximum power consumption at a few selected
node and core counts while varying node-level power caps
and turbo boost options. Application-specific linear models to
predict both execution time and overall power consumption
can then be developed based on this data. Such models have
been shown to have reasonable accuracy, with median errors in
the range of 5-10% [4]. Developing a general model to predict
performance for a set of applications with varying parameters
is an orthogonal research problem.

C. PowSched as a Power Plugin

The power plugin is primarily an interface between the
power and the job scheduler. Using the power plugin as
a gateway between separate systems echoes SLURMs early

approach to separating job and resource scheduling. Our
initial power plugin only relays job information to the power
scheduler. However, later iterations will allow the power
scheduler to request behavior from the resource manager. A
functionality of particular interest is the ability to request the
resource scheduler to suspend active jobs when power is over
subscribed.

Logically, PowSched is comprised of three major func-
tional components: a power monitor, a power scheduler,
and a power actuator. The power monitor must run on all
managed components and periodically provides consumption
measurements to the power scheduler component. The power
scheduler uses the consumption measured at runtime and other
available information to generate new power allocations. The
power actuator must run on all managed components and
periodically applies new allocations from the scheduler. Tight
coupling between the components is not required. Our job
aware PowSched implementation uses UDP communication
between the daemons running on the cluster nodes and the
power scheduler running on the head node.

1) Node Daemon: The node daemon is responsible for both
the monitor and actuator functionality. At regular intervals,
node daemons transmit node power consumption to the power
scheduler over a UDP socket. A UDP socket to receive new
node power caps is also maintained by the daemon. Node
daemons use libmsr to access power counters and set power
caps. To avoid the insecurity of such daemons with root
permissions, node daemons can be run with regular user
permissions after configuring msr-safe [18] on the nodes.

Node daemons utilize Intel RAPL for power cap enforce-
ment. Technologies such as DVFS are more broadly available
and can impact power consumption, but software controlled
DVFS cannot guarantee power caps are met with high tempo-
ral resolution. Intel RAPL is limited in scope to tracking and
bounding power for processors and their connected DRAM.
Due to the limited scope of Intel’s RAPL and lack of other
components with similar power control interfaces, the current
node daemon implementation only takes processor and DRAM
power into account.

2) Central Scheduler: The central scheduler is responsible
for interfacing with the job scheduler and dividing the system
power cap across the managed nodes. At power scheduling
time, the central scheduler determines new node power al-
locations and messages the node daemons to apply the new
allocations. Most of the parameters we would like to explore
with our power management platform involve changes to how
and when power allocation is done within the central sched-
uler. The power scheduling decision may involve information
received from the node daemons or the job scheduler, and the
power scheduler may call back to the job scheduler via the
power plugin.

For simplicity in communicating with the job scheduler, the
central power scheduler is currently launched by the power
plugin as a thread in the slurmctld instance. Keeping the
power scheduler inside of the job scheduler’s process space
greatly simplifies access to the job record and node record

data structures. Being in the slurmctld process space makes
calling SLURM functions simple function calls within the
power scheduler, avoiding the upfront cost of identifying the
desired SLURM functionality and building RPC mechanisms
to wrap them. The tight integration of the power scheduler and
job scheduler is not ideal. Future power scheduler iterations
are expected to have the power scheduler in a separate process
and use SLURM’s RPC protocol, sockets, or some other IPC
mechanism.

Central power scheduling is done in three phases. The first
phase uses recent power measurements and other available
data to determine what the updated power allocations should
be across the cluster. The second phase saves power by setting
the allocation on all nodes having their power reduced. The
third phase spends power by setting the allocation of all nodes
having their power increased. Attempting to apply all power
allocation simultaneously may result in the power bound being
exceeded due to messaging latencies [12].

3) Protocol: A simple messaging protocol was introduced
to communicate between the node daemons and central sched-
uler. Several options for reusing existing network protocols
were considered and rejected before implementing on UDP.
Our protocol is tolerant of some packet loss but assumes the
network is high speed and generally reliable. The protocol
permits power measurements to be silently dropped, however
power allocations must be acknowledged.

SLURM’s RPC mechanism was considered early in plan-
ning but was rejected in large part due to the node daemons
being external processes and the level of effort to extend the
RPC interface. REST and other web-service based protocols
were rejected due to overheads in processing and network
bandwidth. Implementation on TCP was considered, however
the reliability and in order guarantees of TCP were not worth
the overhead cost for PowSched. Ultimately, we elected to
implement our own protocol over UDP.

There is no strong reason to make power measurement mes-
sages reliable for power scheduling. If the lost measurement
is close to the previously received measurement, which is ex-
pected during application phases, then there is little difference
between using the lost and previous measurements. If the lost
measurement indicates lower power consumption then the new
schedule will likely overestimate a node’s power need. If the
lost measurement indicates higher power consumption then
the new scheduler will likely underestimate a node’s power
need. In all cases the power allocations produced are still safe,
though likely less optimal.

Messages used to set power caps, on the other hand, must be
acknowledged. Unlike power measurements, unreceived power
allocation changes can result in exceeding the system wide
power cap. When an allocation is received by the client, the
allocation is applied before sending an acknowledgement back
to the power scheduler. Setting the cap prior to sending the ac-
knowledgement guarantees that all acknowledged allocations
have actually been set. The server sends power allocations
in waves with a time out. Each received acknowledgement
flips the corresponding nodes ack bit in the wave. Unac-

knowledged allocations are resent if the wave time out occurs.
Until an acknowledgement is received, a node is assumed to
have the highest power allocation sent since the previously
acknowledged allocation.

VI. CONCLUSIONS

Implementation work is ongoing. As of the time of this
writing, preliminary RMAP and PowSched plugins have been
implemented. The communication mechanisms between the
node selection and power plugins are in place and the current
development focus is on policies to explore a spectrum of
research questions surrounding job awareness.

SLURM is an open source product with a BSD license. Our
extensions leverage the existing plugin architecture and will
hopefully be accepted into the main distribution at some point
in the future. We are currently working through the release
process with our funding organization so that the work can be
published to github and made available for general use by the
research community.

We have implemented power aware SLURM plugins for
experimentally exploring a range of power management strate-
gies for hardware over-provisioned HPC systems. Our work
enables the direct comparison of power management strategies
using existing hardware platforms. Additionally, our work
builds on a robust existing scheduling platform, reducing
the distance between state of the art and state of practice
solutions.

ACKNOWLEDGMENT

Part of this work was performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344 (LLNL-
CONF-701437).

REFERENCES

[1] Top 500, 2016 (accessed August 19, 2016),
https://www.top500.org/lists/2016/06/.

[2] S. Ashby, P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford,
J. Dongarra, D. Kothe, R. Lusk, P. Messina et al., “The opportunities
and challenges of exascale computing–summary report of the advanced
scientific computing advisory committee (ascac) subcommittee,” US
Department of Energy Office of Science, 2010.

[3] R. Lucas, J. Ang, K. Bergman, S. Borkar, W. Carlson, L. Carrington,
G. Chiu, R. Colwell, W. Dally, J. Dongarra et al., “Top ten exascale
research challenges,” DOE ASCAC Subcommittee Report, 2014.

[4] T. Patki, D. K. Lowenthal, A. Sasidharan, M. Maiterth, B. L.
Rountree, M. Schulz, and B. R. de Supinski, “Practical Resource
Management in Power-Constrained, High Performance Computing,”
in Proceedings of the 24th International Symposium on High-
Performance Parallel and Distributed Computing, ser. HPDC ’15.
New York, NY, USA: ACM, 2015, pp. 121–132. [Online]. Available:
http://doi.acm.org/10.1145/2749246.2749262

[5] T. Patki, N. Bates, G. Ghatikar, A. Clausen, S. Klingert, G. Abdulla,
and M. Sheikhalishahi, “Supercomputing Centers and Electricity Service
Providers: A Geographically Distributed Perspective on Demand Man-
agement in Europe and the United States,” in International Conference
on High Performance Computing. Springer, 2016, pp. 243–260.

[6] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple Linux Utility
for Resource Management,” in Workshop on Job Scheduling Strategies
for Parallel Processing. Springer, 2003, pp. 44–60.

[7] Y. Georgiou, D. Glesser, and D. Trystram, “Adaptive Resource and
Job Management for Limited Power Consumption,” in Parallel and
Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE
International. IEEE, 2015, pp. 863–870.

[8] Slurm Power Management Guide, 2015 (accessed August 31, 2016),
http://slurm.schedmd.com/power mgmt.html.

[9] B. Rountree, D. K. Lownenthal, B. R. De Supinski, M. Schulz, V. W.
Freeh, and T. Bletsch, “Adagio: Making DVS Practical for Complex
HPC Applications,” in Proceedings of the 23rd international conference
on Supercomputing. ACM, 2009, pp. 460–469.

[10] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and B. R. De Supin-
ski, “Exploring Hardware Overprovisioning in Power-Constrained, High
Performance Computing,” in Proceedings of the 27th international ACM
conference on International conference on supercomputing. ACM,
2013, pp. 173–182.

[11] O. Sarood, A. Langer, A. Gupta, and L. Kale, “Maximizing Throughput
of Overprovisioned HPC Data Centers Under a Strict Power Budget,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE Press, 2014, pp.
807–818.

[12] D. A. Ellsworth, A. D. Malony, B. Rountree, and M. Schulz,
“POW: System-wide Dynamic Reallocation of Limited Power in
HPC,” in Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Computing, ser. HPDC ’15.
New York, NY, USA: ACM, 2015, pp. 145–148. [Online]. Available:
http://doi.acm.org/10.1145/2749246.2749277

[13] L. Savoie, D. K. Lowenthal, B. R. d. Supinski, T. Islam, K. Mohror,
B. Rountree, and M. Schulz, “I/O Aware Power Shifting,” in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
May 2016, pp. 740–749.

[14] T. Cao, Y. He, and M. Kondo, “Demand-Aware Power Management
for Power-Constrained HPC Systems,” in 2016 16th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid).
IEEE, 2016, pp. 21–31.

[15] D. Ellsworth, T. Patki, S. Perarnau, S. Seo, A. Amer, J. Zounmevo,
R. Gupta, K. Yoshii, H. Hoffman, A. Malony, M. Schulz, and P. Beck-
man, “Systemwide Power Management with Argo,” in 2016 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), May 2016, pp. 1118–1121.

[16] N. Gholkar, F. Mueller, and B. Rountree, “Power Tuning HPC Jobs on
Power-Constrained Systems,” in International Conference on Parallel
Architectures and Compilation (PACT), 2016. ACM, 2016.

[17] Y. Inadomi, T. Patki, K. Inoue, M. Aoyagi, B. Rountree, M. Schulz,
D. Lowenthal, Y. Wada, K. Fukazawa, M. Ueda et al., “Analyzing
and Mitigating the Impact of Manufacturing Variability in Power-
Constrained Supercomputing,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis. ACM, 2015, p. 78.

[18] K. Shoga, B. Rountree, M. Schulz, and J. Shafer, “Whitelisting MSRs
with msr-safe,” in 3rd Workshop on Exascale Systems Programming
Tools, in conjunction with SC14, 2014.

