
Economic Viability of Hardware Overprovisioning
in Power-Constrained High Performance Computing

Tapasya Patki†, David K. Lowenthal†, Barry L. Rountree⇤, Martin Schulz⇤, Bronis R. de Supinski⇤
⇤Lawrence Livermore National Laboratory

†Department of Computer Science, The University of Arizona

Abstract—Recent research has established that hardware
overprovisioning can improve system power utilization as well
as job throughput in power-constrained, high-performance
computing environments significantly. These benefits, however,
may be associated with an additional infrastructure cost, making
hardware overprovisioned systems less viable economically. It is
thus important to conduct a detailed cost-benefit analysis before
investing in such systems at a large-scale. In this paper, we
develop a model to conduct this analysis and show that for
a given, fixed infrastructure cost budget and a system power
budget, it is possible for hardware overprovisioned systems to
lead to a net performance benefit when compared to traditional,
worst-case provisioned HPC systems.

I. INTRODUCTION

Maximizing system throughput under a limited power
budget is one of the main challenges for the next generation
of supercomputers. At present, supercomputers are designed
to be worst-case provisioned with respect to power. While
this enables them to simultaneously operate all components
at peak power, such worst-case provisioning often leads
to under-utilization of power, higher capital costs, and
wasted system capacity [18], [15], [16], [7]. Recent research
has established that the aforementioned concerns can be
addressed by designing future supercomputers to be hardware
overprovisioned (or, overprovisioned, for short) with respect
to power [14], [8]. In such systems, it will no longer
be possible to fully power all components at the same
time as they will support more capacity (nodes) under a
limited power budget. It has been shown that reconfiguring
based on workload characteristics on overprovisioned systems
can improve individual application performance under a
power bound by up to 62% [14]. Furthermore, power-aware
scheduling on overprovisioned systems can improve both
system throughput and utilization significantly [15], [16], [7].
While the benefits of overprovisioned systems are manifold,
one of the key concerns with the deployment of such systems
is the infrastructure cost involved. It is essential to conduct a
thorough cost-benefit analysis before investing in a large-scale
overprovisioned system.

In this paper, we develop a model for comparing the costs
and the benefits of a traditional worst-case provisioned system
with that of an overprovisioned system. The investment cost
of an overprovisioned system depends on several factors,
such as the underlying processor architecture or the chosen
interconnection network. The benefits, on the other hand, are
strongly correlated with the nature of the workload that the

system is being tailored for. We note that a given hardware
cost budget provides a choice between purchasing fewer,
high-end processors that result in a worst-case provisioned
system, or more low-cost, previous generation processors that
can be overprovisioned. Based on this premise, we develop
an analytical tool that enables future HPC system designers
to determine whether overprovisioning is a viable option for
their site. By analyzing workload characteristics, we show
that it is indeed possible to achieve better performance with
overprovisioning while keeping the system acquisition cost
and the system power budget constant.

The rest of the paper is organized as follows. Section II
presents background and related work, and Section III
explains the details of our model. In Sections IV and V,
we present our results and identify the scenarios in which
overprovisioning leads to a net benefit when compared to
worst-case provisioning. Section VI concludes this paper.

II. BACKGROUND

A system is overprovisioned with respect to power if all
its components (especially nodes) cannot operate at their
peak power simultaneously. The performance benefits of
overprovisioning can be attributed to the observation that most
HPC applications do not utilize the peak power on each
node, and therefore power can be redistributed to exploit their
scalability characteristics. Thus, reconfiguring dynamically
based on application characteristics and choosing an ideal,
application-specific configuration (number of nodes, cores per
node and power per node) can lead to significant performance
improvements under a power constraint [14]. Recent research
has focused on understanding these configurations [17], [2],
[3] and developing runtime systems and schedulers [13], [15],
[8], [7], [18], [5] for overprovisioned systems. However, the
economic viability of such systems has not been studied.

A. Understanding System Procurement

The process for procuring a supercomputing system
involves releasing a public Request For Proposals (RFP),
which requests details of both the hardware and associated
system software from each competing vendor along with a
price quote. The hardware components include the nodes
(processors, memory and accelerators), the interconnection
network, and the I/O subsystem. Typically, a benchmark suite
with representative applications is made available by the
purchaser. This is used by the vendors to provide performance



results on the proposed hardware and system software. An
example of a recent RFP for the CORAL systems can be found
at https://asc.llnl.gov/CORAL/.

B. Node Cost

In general, most server processors that are a generation
older offer fairly similar features at a significantly lower
unit price. Therefore, one could buy a supercomputer
using more inefficient, older-generation processors, which
enables overprovisioning. It is important to note that the
older-generation processors can be less power efficient than
the high-end processors. However, intelligently reconfiguring
multiple such processors in an HPC system under a global
power constraint while exploiting workload characteristics can
lead to better overall performance and system power efficiency.

As an example, let us compare the Intel Xeon E5 2697 v2
(Ivy Bridge, 22nm) processor with the Intel Xeon E5-2670
(Sandy Bridge, 32nm) processor. The former is a high-end,
dodeca-core processor operating at 2.7 GHz priced at about
$3300 (as of June 15, 2015 on Amazon, Inc.). The latter is
an older-generation octa-core processor operating at 2.6 GHz,
priced at about $1700 (as of June 15, 2015 on Amazon, Inc.).
These list prices include DDR3 memory and are reported in
USD. We used PassMark scores to compare the performance
of these two processors [1]. Table I shows the details of these
two server processors.

TABLE I
COMPARING 32NM AND 22NM PROCESSORS

Features Intel Xeon Intel Xeon
E5 2697 v2 E5-2690

Manufacturing Ivy Bridge Sandy Bridge
Technology 22nm 32nm
Processors Per Node 2 2
Cores Per Processor 12 8
(Threads) (24) (16)
L2 Cache 3 GB 2 GB
L3 Cache 30 GB 20 GB
Maximum Memory 786,432 MB 393,216 MB
Clock Speed 2.7 GHz 2.6 GHz
(Turbo) (3.5 GHz) (3.3 GHz)
PassMark Performance 17,812 13,985
Test Result
TDP 130 W 115 W
List Price (USD) $3300 $1700

Based on the PassMark score, it is expected that a system
designed with the Intel Xeon E5 2697 processor will be about
27% faster on most single-node, computational workloads, but
will require more per-node peak power. However, most HPC
applications do not utilize peak node power [14], [17], which
implies that workloads executed on a system designed with
the former, high-end processor, will result in significant power
being wasted and performance being limited significantly, as
the applications cannot scale to more nodes or utilize allocated
power. For a given processor cost budget, it is possible to
buy 94% more nodes of the latter Sandy Bridge processor
and design an overprovisioned system. Based on this intuitive
analysis, we propose a model in the next section to determine

when overprovisioning can be beneficial. The key parameters
for the model include node price, node performance, node
power, system power, and workload scalability characteristics.

III. COST MODEL

The main goal of our model is to determine whether it is
possible to use overprovisioning to improve performance under
a fixed power budget without added infrastructure cost.

We design a worst-case provisioned system using high-end
nodes and an overprovisioned system using older-generation
nodes, both under the same cost and computational power
constraints. We then predict performance on these two systems
in order to conduct a cost-benefit analysis.

As shown in Section II-B, it is possible to buy
more older-generation nodes with similar performance
characteristics for a given processor cost budget. While
compute servers contribute to a significant portion of the total
hardware cost, it is important to consider the cost of other
components such as the interconnect and the I/O subsystem.
For example, a worst-case provisioned system might need
fewer total racks than an overprovisioned system. We translate
these other costs to the node level in order to correctly estimate
their influence. This allows our model to adjust for the total
hardware cost budget.

It is important to analyze the performance difference
between the high-end and the older-generation nodes. In the
example in Section II-B, we observed that the high-end node is
expected to be 27% faster for the single-node case. However,
performance at a different node count greatly depends on the
workload. In order to accommodate this, we also create a
model to predict performance (execution time) on the two
architectures based on representative HPC workloads. The
input parameters for our model are summarized in in Table II;
the details of the model are presented in Section III-C.

A. Power Budget and Node-Level Values

The main input parameter when designing a worst-case
provisioned or an overprovisioned system is the global power
budget. In our model, we limit this to the power associated
with computation (P

sys

) consumed by compute nodes and
other components on the rack. The total site-wide power
budget, of course, will include power from other components,
such as cooling. It is important to note that while such base
power is required for successful operation, it does not directly
affect workload performance. Therefore, we do not consider it
in our model, since we focus on the impact of dynamic power
on performance.

In order to ensure that the computational power budget is
always met, we need to account for the maximum or peak
power on each node for a worst-case provisioned system.
Similarly, for an overprovisioned system, we need to account
for the minimum power required for each node’s operation
(idle power). We thus need two input parameters, P

n max

and P
n min

, which correspond to the maximum node power
for the high-end node, and the minimum node power for
the older-generation node. The node power is determined



TABLE II
MODEL INPUT PARAMETERS

Parameter Variable Description
Power P

sys

Power budget allocated to the
Bound computational components of the system.
Maximum P

n max

Maximum possible node power for the
Node Power high-end node based on its overall TDP.
Minimum P

n min

Minimum possible node power for the
Node Power older-generation node based on its idle power.
Effective r

c

Ratio of the effective per-node cost of the high-
Cost Ratio end node to that of the older-generation node.
Performance r

p

Percentage by which the high-end node is
faster than the older-generation node

Workload {m, b} The slope and intercept of the linear performance
Scalability model based on workload scalability characteristics
Model (obtained on the older-generation node)

based on the thermal design point (TDP) of the processor
and memory, as well as the associated rack and interconnect
power (translated to a per-node value). These values help us
determine the maximum number of nodes that we can power
up safely.

We define the effective cost ratio (r
c

) as the ratio of
the per-node costs of the high-end and the older-generation
node. In our model, r

c

takes into account the last rack being
underutilized because the number of racks does not evenly
divide the number of nodes. However, this can typically be
ignored because a real HPC system has several dozens of
racks, which minimizes the effect of the last rack.

B. Performance and Scalability Models

The difference in single-node performance of the two node
choices is captured as a percentage value, r

p

. This represents
the percentage amount by which the high-end node is faster
than the older-generation node, and can be obtained by using
standardized benchmarking tests or vendor specified values.

We also need a scalability model for the workloads under
consideration to predict performance on multiple nodes at
scale. In our case, we obtain this scalability model on
the system with older-generation nodes, and project the
performance using r

p

. We assume that workloads will scale
similarly. This is a fair assumption when the nodes under
consideration are separated by one or two generations and
have similar features (such as clock rates, vector units and
cache sizes).

The scalability model should accurately represent the
workload characteristics on the older-generation nodes.
Developing estimation models and extracting their
characteristics is an orthogonal problem to our work,
and several application-specific as well as general models are
being studied [4], [9], [12]. We assume a linear scalability
model and require two inputs, the slope and intercept (m
and b). These inputs are determined by gathering data for the
representative applications at several node counts at various
power caps. We explain this process in Section IV.

C. Model Formulation
We now describe the formulation of our model. The input

parameters are listed in Table II. The goal is to compute
s
ovp

, which is the ratio of the performance of the high-end,
worst-case provisioned system to that of the overprovisioned
system.

A summary of variables used to compute s
ovp

is
provided in Table III. We design two systems, one with
worst-case provisioning using high-end nodes and another with
overprovisioning using older-generation nodes. In both cases
we assume the same cost budget and ensure that the power
budget is met. We then predict workload performance on both
systems to understand scenarios that result in a net benefit.

A key constraint is to ensure that the power budget, P
sys

,
is honored. When designing the worst-case system, P

sys

constrains the maximum number of nodes we can run at
full power. Similarly, for the overprovisioned system, this
constrains the maximum number of nodes that we can run
at idle power.

The worst-case provisioned node count is determined by
the maximum power on the high-end node (P

n max

), and
the node limit for the overprovisioned system is determined
by the minimum power on the cheaper node (P

n min

). Both
the node-level power values are calculated by considering the
power consumption of the processor, memory and associated
interconnect. We derive the maximum number of nodes for
both the systems as shown in Equations 1-2.

n
wc

=
P
sys

P
n max

(1)

n
lim

=
P
sys

P
n min

(2)

We derive a fixed cost constraint (c
wc

) for both systems. We
use the effective cost ratio, r

c

, and the number of worst-case
provisioned nodes for this (Equation 1). Using r

c

allows us
to assume cost for the older-generation node to be 1. We can
thus analyze the impact of the cost difference between the two
types of nodes clearly. This step is shown in Equation 3.

c
wc

= n
wc

⇥ r
c

(3)



TABLE III
COMPUTED (INTERMEDIATE) VALUES IN MODEL

Parameter Variable Description
Worst-case n

wc

Maximum number of nodes for worst-case
Nodes provisioning based on the power budget
Node Limit n

lim

Maximum possible number of nodes for
overprovisioning based on the power budget

Overprovisioned n
ovp

Actual number of nodes used for overprovisioning
Nodes based on the computational cost constraint

as well as the power budget
Worst-case c

wc

Computational cost constraint derived from
Cost Constraint the worst-case provisioning system. The

overprovisioned system has the same constraint.
Worst-case Time t

wc

Predicted workload execution time for the
high-end, worst-case provisioned system

Overprovisioned Time t
ovp

Predicted workload execution time for the
overprovisioned system with same cost constraint

Given the power and the derived cost constraints, we now
determine the maximum number of overprovisioned nodes
(n

ovp

) that we can buy. The cost for the older generation node
is assumed to be 1, so the number of nodes that we can buy
within the cost constraint is bc

wc

c. If this exceeds the number
of nodes that are supported by the power budget (n

lim

), we
will end up buying a cheaper overprovisioned machine and
will have money left over. The ratio of n

ovp

to n
wc

can also
be referred to as the degree of overprovisioning.

n
ovp

= min(n
lim

, bc
wc

c) (4)

Finally, we predict workload performance on both
the systems. We use the performance parameter, r

p

,
and the parameters {m, b} (slope, intercept) from the
workload-specific scalability model to accomplish this. If the
execution time taken on a single older-generation node is 1,
and the high-end node is faster by r

p

percent, the execution
time for the high-end node is 1� r

p

.
We determine the ratio s

ovp

, which represents the speedup
due to overprovisioning and is defined as the ratio of the
workload’s execution time on the worst-case provisioned
system to that of the overprovisioned system. Note that
the workload scalability model applies in a specified node
range where linearity holds. As a result, the slope and
intercept values can be directly used to determine performance.
Equations 5-7 depict these steps. For overprovisioning to have
a net benefit, s

ovp

should be greater than one.

t
ovp

= m⇥ n
ovp

+ c (5)
t
wc

= (m⇥ n
wc

+ c)⇥ (1� r
p

) (6)

s
ovp

=
t
wc

t
ovp

(7)

IV. EXPERIMENTAL SETUP

In order to efficiently understand our cost model, we restrict
the workload scalability models to individual applications
instead of a set of applications. We use execution time under a
power bound as a metric for our analysis. A linear model can

be extended to include a set of jobs by considering scheduling
policies that minimize the overall turnaround time under a
power bound.

We consider the hybrid (MPI + OpenMP) versions of the
SPhot [11] benchmark and the NAS-MZ [6] suite. SPhot is a
2D photon transport code that uses a Monte Carlo approach to
understand the behavior of photons in different materials. The
NAS Multi-zone parallel benchmarks (NAS-MZ) are derived
from Computational Fluid Dynamics (CFD) applications,
and include three benchmarks: Block Tri-diagonal solver,
or BT-MZ; Scalar Penta-diagonal solver, or SP-MZ; and
Lower-Upper Gauss-Seidel solver, or LU-MZ. We use the
class C inputs.

We conduct our experiments on the rzmerl cluster at
LLNL, which is a 162-node Sandy Bridge cluster. Each node
is an Intel Xeon E5-2690 with support for RAPL power
capping [10], with two sockets and 8 cores per socket. The
memory per node is 32GB. The clock speed is 2.6 GHz, and
the maximum Turbo Boost frequency is 3.3 GHz. The socket
TDP is 115 W, and the minimum recommended power cap is
51 W.

The cluster has a 32-node per job limit, so our study is
limited to 32-nodes. We use MVAPICH2 version 1.7 and
compile all codes with the Intel compiler version 12.1.5.
OpenMP threads are scheduled using the scatter policy. We
run all experiments with power capping on the PKG domain
with a single capping window and the shortest possible time
window (0.000977 seconds).

We choose six system level power bounds: 2500 W, 3500 W,
4500 W, 5500 W, 6500 W and unlimited (which is 7360 W for
32 nodes based on a TDP of 115 W). We use four socket-level
PKG power caps with Turbo Boost disabled: 51 W; 65 W;
80 W; and 95 W. We also run at the TDP power of 115 W
with Turbo Boost enabled. We run each application from 8 to
32 nodes, and 4 to 16 cores on each node (both in increments
of 2), thus amounting to a total of 2730 configurations, where
each configuration is defined as a set of three values: number



of nodes, number of cores per node, and the socket power
cap. We run each configuration at least three times to mitigate
noise.

Sphot at 3500 W

Nodes

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

14 18 22 26 30
0

15

30

45

60

SP−MZ at 3500 W

Nodes

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

14 18 22 26 30
0

5

10

BT−MZ at 3500 W

Nodes

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

14 18 22 26 30
0

5

10

LU−MZ at 3500 W

Nodes

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

14 18 22 26 30
0

10

20

Packed−max Best at Node Count Best for Power Bound

Fig. 1. Benefits of Adding More Nodes

We then develop linear models for each application and
each system power bound by choosing the best performing
configuration at each valid node count. This also enables us to
understand the impact of the degree of overprovisioning. This
is important because of the law of diminishing returns—adding
more nodes beyond a certain limit while keeping the system
power bound constant will not result in performance benefits.

As an example, Figure 1 shows the four applications at 3500
W. The y-axis in each subgraph is the raw execution time of
the application, and the x-axis represents a node count. For
each node count, the best valid configuration (one that does
not exceed the specified power bound) has been plotted (black
empty triangle). The best performing configuration under the
power bound has been marked with a blue triangle. The linear
model has been shown with the dashed gray line. We use the
slope and intercept of this fitted line as the inputs to our model.

In our data, the coefficients of the linear model (slope and
intercept) were similar across all six system power bounds
under consideration for a given application (less than 2%
difference). Thus, we assume that for a given application, the
input parameters m and b are identical across different power
bounds. Our median prediction error across all applications is
under 7%.

The application-specific worst-case configuration, or
packed-max, has been marked with a red triangle. Here,
we use as many nodes as possible under the power bound
while using all cores and power on a node with Turbo Boost
enabled. The actual power consumed by the application

is used to determine this worst-case configuration. It is
important to note that for a procurement, we have to
follow the absolute worst-case configuration instead of the
application-specific, packed-max configuration. The absolute
worst-case configuration can be derived by dividing the
system-level power bound by the maximum possible power
for the node. In the example in Figure 1, the absolute
worst-case node count is 12 nodes for 3500 W. This has
been derived by calculating the maximum possible power on
each node, assuming that each socket takes 115 W and each
memory unit takes 30 W.

Depending on the application, the benefits of adding
more nodes under the same power bound (degree of
overprovisioning) vary. For example, the benefits for an
application such as BT-MZ are limited. On the other hand,
adding more nodes is beneficial for applications such as SPhot
and LU-MZ.

V. EVALUATION RESULTS

We use the ratio s
ovp

derived in Section III-C to determine
situations where overprovisioning has a net benefit (s

ovp

> 1).
We illustrate this with an example by choosing default input
parameters based on real data for our model and designing
a worst-case provisioned and an overprovisioned system.
We then analyze the impact of each individual parameter
(while keeping others constant) on the performance of the
two systems. These default input parameters are specified in
Table IV and have been derived based on the node data from
Section II-B. The values for the node power for the high-end
and the older-generation node include the CPU, memory and
base power. We use application-specific scalability models; an
overview of these models was provided in Section IV.

TABLE IV
EXAMPLE: DEFAULT INPUT PARAMETERS

Variable Value
Effective cost ratio, r

c

1.7
Performance Parameter, r

p

27%
System Power Budget, P

sys

7000 W
Maximum Node Power, P

n max

380 W
Minimum Node Power, P

n min

180 W

TABLE V
EXAMPLE: WORKLOAD SCALABILITY MODEL

Application Parameters
{m, c}

SPhot {�1.114, 73.07}
SP-MZ {�0.112, 7.00}
BT-MZ {�0.069, 8.50}
LU-MZ {�0.542, 25.93}

Table V specifies the workload scalability model parameters
for the four applications, and Table VI shows the intermediate
values as well as the predicted s

ovp

values for our example.
Because we use a simple linear workload scalability model,
we need to enforce a limit on the maximum number of nodes
for the validity of this linear behavior. For our applications in
this example, we assume that this limit is 48 nodes.



TABLE VI
EXAMPLE: INTERMEDIATE AND OUTPUT VALUES

Application n
wc

n
lim

c
wc

n
ovp

t
ovp

(s) t
wc

(s) s
ovp

SPhot 18 50 30.6 30 39.64 38.70 0.98
SP-MZ 18 50 30.6 30 3.51 3.61 1.02
BT-MZ 18 50 30.6 30 6.41 5.29 0.83
LU-MZ 18 50 30.6 30 9.66 11.80 1.22

We present results for our four applications because they
exhibit distinct scalability characteristics. As can be observed
from Table VI, for workloads that scale well, such as the ones
with characteristics similar to LU-MZ (refer to Figure 1), it is
possible to achieve better performance with overprovisioning
(s

ovp

of 1.22). Similarly, for workloads with characteristics
similar to SP-MZ and SPhot, a break-even point can be
determined. On the other hand, for applications that do not
scale well, such as BT-MZ, worst-case provisioning leads to
better performance. This can be observed from the s

ovp

value
of 0.83 for BT-MZ.

1.0 1.5 2.0 2.5 3.0

1.
0

2.
0

Impact of the Effective Cost Ratio, LU−MZ at 7000 W

Effective Cost Ratio

S o
vp

5000 6000 7000 8000 9000

1.
0

1.
5

2.
0

Impact of the Computational Power Bound, LU−MZ

Computational Power Budget

S o
vp

1.0 1.1 1.2 1.3 1.4 1.5

0.
4

1.
0

1.
6

Impact of Performance Difference, LU−MZ at 7000 W

Relative High−End Node Performance

S o
vp

Fig. 2. LU-MZ Analysis

We now present some detailed graphs to better understand
the scenarios where overprovisioning leads to a net benefit
and to understand the impact of the input parameters on s

ovp

.
For each graph, the y-axis is the derived ratio, s

ovp

. The
x-axis varies based on the input parameter under consideration.
For each input parameter that is being varied, all other
input parameters are held constant and have values given by
Table IV. For readability, the graphs are not centered at the
origin. The break even points have been marked by drawing a
dashed red line. Anything above this line is a scenario where
overprovisioning does better.

We conduct this analysis to explore the scenarios that
may occur during the procurement of a real HPC system.

1.0 1.5 2.0 2.5 3.0

0.
6

1.
0

1.
4

Impact of the Effective Cost Ratio, SPhot at 7000 W

Effective Cost Ratio

S o
vp

5000 6000 7000 8000 9000

0.
6

1.
0

1.
4

Impact of the Computational Power Bound, SPhot

Computational Power Budget

S o
vp

1.0 1.1 1.2 1.3 1.4 1.5

0.
4

0.
8

1.
2

1.
6

Impact of Performance Difference, SPhot at 7000 W

Relative High−End Node Performance

S o
vp

Fig. 3. SPhot Analysis

For example, the effective cost ratio may vary based on the
negotiation with the vendor. Similarly, the performance across
two nodes may differ based on which micro-architectures are
being considered.

Figure 2 shows results for the LU-MZ application. In this
figure, there are three sub-graphs. The first one depicts the
impact of varying the effective cost ratio, r

c

, on s
ovp

. The
effective cost ratio affects the degree of overprovisioning
directly. When the effective cost ratio is high, it is possible
to buy many more cheaper, older-generation nodes than when
the effective cost ratio is low. A cost ratio of 1 indicates
that the high-end node and the older-generation node have
the same price. This is not a realistic scenario and it is
expected that the high-end node will be more expensive than
the older-generation node. The higher the effective cost ratio,
the easier it is to overprovision by a larger degree. For LU-MZ,
overprovisioning leads to a net benefit when the effective cost
ratio is about 1.5.

The second sub-graph shows the impact of varying the
system power bound, P

sys

on s
ovp

. We observe that a
higher system power bound results in almost super-linear
improvement in s

ovp

for LU-MZ. This can be attributed to
the fact that a higher system power bound has the potential to



1.0 1.5 2.0 2.5 3.0

0.
6

1.
0

1.
4

Impact of the Effective Cost Ratio, BT−MZ at 7000 W

Effective Cost Ratio

S o
vp

5000 6000 7000 8000 9000

0.
6

1.
0

1.
4

Impact of the Computational Power Bound, BT−MZ

Computational Power Budget

S o
vp

1.0 1.1 1.2 1.3 1.4 1.5

0.
4

0.
8

1.
2

1.
6

Impact of Performance Difference, BT−MZ at 7000 W

Relative High−End Node Performance

S o
vp

Fig. 4. BT-MZ Analysis

increase the degree of overprovisioning. With a higher degree
of overprovisioning, it is possible for an application to scale
to more nodes. However, this is dependent on the scalability
characteristics of the workload under consideration, which
is good for LU-MZ. As a result of this, s

ovp

is impacted
significantly when the system power bound is varied. This
will not always be the case.

The third sub-graph in Figure 2 analyzes the impact of
the performance parameter, r

p

on s
ovp

. This parameter is
determined by benchmarking the high-end node and the
older-generation node using a standard single-node test. A high
value of r

p

indicates that the high-end node is significantly
faster. When r

p

is 0%, it means that both nodes have the
same performance. A value of 0% for r

p

is unrealistic though,
because the high-end node will always perform better than the
older-generation node. For LU-MZ, we observe that even when
the high-end node is 40% faster, the overprovisioned system
results in a net benefit.

Figure 3 shows the results for SPhot. SP-MZ produces
nearly identical results and so is omitted. As discussed
previously, the scalability characteristics of the application
affect s

ovp

significantly. With SPhot as well as SP-MZ, the
overprovisioned system results in a net benefit when the
effective cost ratio of the high-end node to the older-generation
node is around two. Also, increasing the effective cost ratio
further does not result in proportional improvements. One
might expect that a higher cost ratio means that the degree
of overprovisioning will be high, and that this will result
in performance improvements. However, this is not the case,
since the degree of overprovisioning is also constrained by
the power budget, which determines n

lim

. Workloads with
scaling characteristics similar to SPhot and SP-MZ are also
less sensitive to changes in the system power budget, unlike

LU-MZ.
Let us now analyze BT-MZ, which has poor scaling

characteristics when compared to the other three applications
(refer to Figure 1). As a result, for BT-MZ, the worst-case
provisioned system is almost always superior to the
overprovisioned system, as can be observed from Figure 4.
While increasing the effective cost ratio and the system power
budget improves the performance of the overprovisioned
system, these improvements are not sufficient to reach a break
even point. The only scenario in which the overprovisioned
system does better than the worst-case provisioned system is
when r

p

is in the range of 10-20%. It is thus critical to consider
the characteristics of the workload carefully when designing
overprovisioned systems.

VI. CONCLUSIONS

In this paper, we developed a model for understanding the
economic viability of hardware overprovisioned systems in
power-constrained high-performance computing. We showed
that it is possible to design overprovisioned systems that lead
to significant performance benefits without exceeding a given
infrastructure cost budget. Future work involves conducting
a similar analysis for sets of applications and extending the
scalability models to include metrics, such as job turnaround
times and throughput.

VII. ACKNOWLEDGMENTS

Part of this work was performed under the auspices of
the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344
(LLNL-CONF-692100).

REFERENCES

[1] PassMark Software, Pty Limited, 2016. https://www.cpubenchmark.net/.
[2] P. Bailey, D. Lowenthal, V. Ravi, B. Rountree, M. Schulz, and

B. de Supinski. Adaptive Configuration Selection for Power-Constrained
Heterogeneous Systems. In International Conference on Parallel
Processing, ICPP ’14, 2014.

[3] P. Bailey, A. Marathe, D. Lowenthal, B. Rountree, and M. Schulz.
Finding the Limits of Power-constrained Application Performance. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’15, 2015.

[4] B. J. Barnes, B. Rountree, D. K. Lowenthal, J. Reeves, B. de Supinski,
and M. Schulz. A Regression-based Approach to Scalability Prediction.
In Proceedings of the 22nd Annual International Conference on
Supercomputing, 2008.

[5] A. Borghesi, C. Conficoni, M. Lombardi, and A. Bartolini. Ms3: A
mediterranean-stile job scheduler for supercomputers-do less when it’s
too hot! In High Performance Computing & Simulation (HPCS), 2015
International Conference on, pages 88–95. IEEE, 2015.

[6] R. F. V. der Wijngaart and H. Jin. NAS Parallel Benchmarks, Multi-Zone
Versions. Technical report, July 2003.

[7] D. Ellsworth, A. Malony, B. Rountree, and M. Schulz. Dynamic Power
Sharing for Higher Job Throughput. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’15, 2015.

[8] D. Ellsworth, A. Malony, B. Rountree, and M. Schulz. POW:
System-wide Dynamic Reallocation of Limited Power in HPC. In High
Performance Parallel and Distributed Computing (HPDC), June 2015.

[9] H. Gahvari, A. H. Baker, M. Schulz, U. M. Yang, K. E. Jordan, and
W. Gropp. Modeling the Performance of an Algebraic Multigrid Cycle
on HPC Platforms. In Proceedings of the International Conference on
Supercomputing, ICS ’11, 2011.

https://www.cpubenchmark.net/


[10] Intel. Intel-64 and IA-32 Architectures Software Developer’s Manual,
System Programming Guide, 2011.

[11] Lawrence Livermore National Laboratory. SPhot–Monte Carlo Transport
Code, 2001. https://asc.llnl.gov/computing resources/purple/archive/
benchmarks/sphot/.

[12] R. Long, S. Moore, and B. Rountree. Iso-power-efficiency: An approach
to scaling application codes with a power budget. In Parallel and
Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE
International, pages 905–910, May 2015.

[13] A. Marathe, P. Bailey, D. K. Lowenthal, B. Rountree, M. Schulz, and
B. R. de Supinski. A Run-Time System for Power-Constrained HPC
Applications. In In International Supercomputing Conference (ISC),
July 2015.

[14] T. Patki, D. K. Lowenthal, B. Rountree, M. Schulz, and
B. R. de Supinski. Exploring Hardware Overprovisioning in
Power-constrained, High Performance Computing. In International

Conference on Supercomputing, June 2013.
[15] T. Patki, A. Sasidharan, M. Maiterth, D. Lowenthal, B. Rountree,

M. Schulz, and B. de Supinski. Practical Resource Management in
Power-Constrained, High Performance Computing. In High Performance
Parallel and Distributed Computing (HPDC), June 2015.

[16] O. Sarood, A. Langer, A. Gupta, and L. V. Kale. Maximizing Throughput
of Overprovisioned HPC Data Centers Under a Strict Power Budget. In
Supercomputing, Nov. 2014.

[17] O. Sarood, A. Langer, L. V. Kale, B. Rountree, and B. R. de Supinski.
Optimizing Power Allocation to CPU and Memory Subsystems in
Overprovisioned HPC Systems. In International Conference on Cluster
Computing, 2013.

[18] Z. Zhang, M. Lang, S. Pakin, and S. Fu. Trapped Capacity: Scheduling
under a Power Cap to Maximize Machine-room Throughput. In
Proceedings of the 2nd International Workshop on Energy Efficient
Supercomputing, pages 41–50. IEEE Press, 2014.

https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/sphot/
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/sphot/

	Introduction
	Background
	Understanding System Procurement
	Node Cost

	Cost Model
	Power Budget and Node-Level Values
	Performance and Scalability Models
	Model Formulation

	Experimental Setup
	Evaluation Results
	Conclusions
	Acknowledgments
	References

