
 1

f-SEE

Fuzzy Software Estimation Environment

Submitted in Partial Fulfillment for the Award of the Degree of

Bachelor of Technology

(Computer Science and Engineering)

Guru Gobind Singh Indraprastha University

New Delhi, India

2006-2007

 2

CONTENTS

S. No. Title Page No.

1 Motivation 1

2 Software Engineering Practices 2

3 Software Cost Estimation Models 15

4 Function Point and Class Point Measures 26

5 Soft Computing and Fuzzy Logic 38

6 Fuzzy Software Estimation Framework 63

7 Features and Software Considerations for f-SEE 102

8 Future Scope 138

9 References 140

 3

CERTIFICATE

This is to certify that Aditi Kapoor (0191502703), Tapasya Patki (0731502703) and

Pratibha Pandey (0141502703) have carried out their project work entitled “f-SEE:

Fuzzy Software Estimation Environment” as a partial requirement for the award of

Bachelor of Technology Degree in Computer Science and Engineering by Guru Gobind

Singh Indraprastha University, New Delhi and is a record of bonafide work carried out

and completed under my supervision and guidance during the academic session from

2006-2007.

Ms. Sonali Bhatnagar Mr. V. Kumar

(Project Mentor) (HoD)

Department of Computer Science and Engineering

Maharaja Surajmal Institute of Technology

Guru Gobind Singh Indraprastha University

New Delhi

2006-2007

 4

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge the guidance and help we have received at various stages

in the development of this project. We are grateful to Mr. V. Kumar, HoD (Computer

Science and Engineering), for having given us an opportunity to work on fuzzy logic and

software engineering.

Our sincere thanks goes to Ms. Sonali Bhatnagar for believing in us, for providing

immense motivation all through, and for explaining software management and fuzzy

logic concepts to us. Without her guidance, this project would not have been such a

success.

We wish to extend a special thanks to all the faculty members who evaluated our project

during the review process and provided us constructive feedback. Their inputs have been

vital in shaping the project.

Finally, we wish to thank the laboratory assistants and library staff for rendering excellent

infrastructural facilities and for aiding us with the extensive literature references that were

required for this project.

An earnest thanks is also due to our colleagues, friends and family members for their

support.

 Aditi Kapoor Tapasya Patki Pratibha Pandey

 5

SYNOPSIS

Software engineering is concerned with the conception, development and verification of a

software system. This discipline deals with identifying, defining, implementing and

verifying the characteristics of a software product. These characteristics include attributes

such as desired functionality, maintainability, testability, ease-of-use, portability, and

reliability. Software engineering addresses these characteristics by preparing design and

technical specification documents, which when adhered to, will result in software that can

be verified to meet these requirements. Software Estimation is an important area that

falls under the planning procedure for any software. For a given set of requirements, it is

desirable to know how much it will cost to develop the software and how much time and

effort the actual development will take. Estimation of resources, cost, and schedule for a

software project requires experience, access to good historical information, and the

courage to commit to quantitative predictions when qualitative information is all that

exists.

Cost models provide direct estimates of effort. These models typically have a primary

cost factor such as size and a number of secondary adjustment factors or cost drivers.

Cost drivers are characteristics of the project, process, products, or resources that

influence effort. Boehm derived a cost model called COCOMO (Constructive Cost

Model) using data from a large set of projects at TRW, a consulting firm based in

California. COCOMO is a relatively straightforward model based on inputs relating to the

size of the system and a number of cost drivers that affect productivity. The original

COCOMO is a collection of three models: a Basic model that is applied early in the

project, an Intermediate model that is applied after requirements are specified, and an

Advanced model that is applied after design is complete.

Fuzzy Logic, a sub-discipline of Soft Computing, was conceived by Prof. Lofti Zadeh. It

is a form of logic that is tolerant to imprecision, partial truth and uncertainty, and is hence

able to capture the linguistic domains of software evaluation and modeling. Software cost

estimation deals with the planning and tracking of software projects. This calls for

 6

predictions of the likely amount of effort, time and staffing levels required to build a

software system. Existing models for this prediction process rely on accurate estimate of

either size of the software in terms of the lines of code, number of user screens etc., or on

the functionality or feature based analysis. Algorithmic models such as COCOMO, have

failed to present suitable solutions, due to their inability to capture the complex set of

relationships (e.g., the influence of each variable in a model on the overall predication

made using the model) that are evident in several software development environments.

While these existing models can be successful in a certain limited environments, they are

not flexible enough to adapt to new environments. These models cannot handle

categorical data (i.e. data that is specified over a range of values) and lack the reasoning

capabilities. Fuzzy Logic, with its offerings of a powerful linguistic representation can

easily incorporate imprecision in inputs and outputs, while providing a more expert-

knowledge based approach to model building. We propose a framework for an

interactive, integrated estimation environment that we refer to as “f-SEE- Fuzzy Software

Estimation Environment”. The platform used is Visual C#.

 7

CHAPTER 1

MOTIVATION

A recent report undertaken by National ICT, Australia and IBM Australia, published in

IEEE Software, talks about misleading software metrics and unsound estimation analysis

procedures. This report clearly highlights that uncertainty and unclear advice in the

software planning phase results in the adoption of incorrect data aggregation and analysis

techniques in the software cost modeling phase. Existing models have been successful in

the pre-Internet and the pre-Offshoring era, where software was not a global

phenomenon, and when computers were merely used for automation of simple processes.

The last few decades, however, have seen a boom in the software industry, with many

Small and Medium Enterprises (SMEs) and Multi National Companies (MNCs) joining

the league of software consultancy and software services. These companies build

significantly complex software systems with constantly changing requirements.

Conventional models are intolerant to uncertainty, partial truth and approximations, thus

causing disappointment and collapse of trust amongst the interacting groups. Thus, there

is a strong urge to resort to cost estimation models that translate to real-life scenarios and

function on linguistic scales, instead of the absolute numeric scales of the conventional

models. Soft Computing addresses most of these issues, and Fuzzy Logic being one of the

most popular and established disciplines of Soft Computing, has been used to deal with

software cost estimation in this work.

 8

CHAPTER 2

SOFTWARE ENGINEERING PRACTICES

2.1 Introduction to Software Engineering

Computer software is formally defined as a set of programs and procedures required to

enable a computer to perform a specific task, as opposed to the physical components of

the system (hardware). John W. Tukey first used the term “software” in this sense in

1957. Software has historically been considered an intermediary between electronic

hardware and data, which later the hardware processes according to the sequence of

instructions defined by the software.

The early decades of the emergence of information technology focused on hardware

requirements of a system rather than the software or the set of programs providing

functionality to the system. This was because initially the user and the programmer were

the same person: the users typically were the scientists and engineers who helped build

the hardware. Early programs were generally written in machine or assembly language

and involved very little logical complexity. The computer-based systems were used for

“number crunching” applications that were scientific, with little emphasis on user-

friendliness and sophistication of interface. Gradually, hardware became more powerful

and cheaper and the application specific needs were satisfied by software, which was now

written in higher-level languages. People who were not hardware engineers increasingly

started writing software.

This trend led to the software crisis, and the completion and delivery of software projects

became problematic. Software was found to be unreliable, non-maintainable and non-

transportable. There were many instances of customer dissatisfaction. The programmers

and management professionals started to realize that developing software merely with the

programmer’s viewpoint and relying on the belief that such software would “work” was

not enough. Rather, software needed to be ‘engineered’. Software Engineering was thus

identified as an important discipline. Initial work in this area was put forth by Fritz Bauer

in 1969, where he stated that there was a need for ‘the establishment and use of sound

engineering principles in order to obtain, economically, software that is reliable and

 9

works efficiently on real machines’. Thus, software no longer meant source code. It now

included the inspiration that led to choosing a certain set of data structures of the

program, the customer requirements, and the documents that described the system and the

expected usage in detail.

IEEE now defines software engineering as the application of a systematic, disciplined,

quantifiable approach to the development, operation and maintenance of software.

Software Engineering tools are used to support the tasks by automating the tasks or parts

of the tasks.

Software Life Cycle

The period of time from when a software product is conceived and to when the software

is no longer used, is termed as the Software Life Cycle. The software life cycle typically

includes phases such as concept, requirements, design, implementation, test, installation,

checkout, maintenance, and sometimes, retirement. These phases may overlap or be

performed iteratively, based on life cycle model in use. Choice of an appropriate software

life cycle model for a particular project depends on factors such as clarity of the problem,

technology to be used, time at hand to develop and implement the project, etc.

2.2 Software Estimation Modeling

Software project development comprises of a combination of engineering and

management activities that are closely interleaved with one another. The selected life

cycle model governs the engineering activities. Management activities, on the other hand,

support and control the execution of the engineering activities.

Software Project Management involves three basic phases:

1. Project Planning

2. Project Monitoring and Control

3. Project Termination

Project Planning entails all activities that must be performed before starting the actual

development work. It is a major management activity and it plays a vital role in

determining the actual nature of the developed software project. Before a project can

 1

0

begin, the manager and the software team must estimate the work to be done, the

resources that will be required, and the time that will elapse from the start to the finish.

Estimation begins with a description of the scope of the product. Software Scope

describes the data and control to be processed, function, performance, constraints,

interfaces and reliability. Until the scope is bounded, it is not possible to obtain a

meaningful estimate. The problem is decomposed into sub problems, and each of these is

estimated using historical data and experience as guidelines. The basic goal of planning is

thus to look into the future, and identify the tasks that need to be accomplished to

complete the project successfully, and handle the scheduling and the resource allocation

of these tasks. A good plan is flexible enough to tackle unforeseen events that inevitably

occur in a large software project. Social, economic and political factors must be taken

into account for a realistic plan. The input to a planning process is the desired

specification. The output is a project plan, which is a document that provides the various

phases of the development process.

Project Monitoring and Control deals with the actual execution and updating of the

project’s plan. The progress of the plan is monitored periodically. It is essential to

identify ‘stages’ within a project to aid the control and monitoring procedures. The plan

may need to be modified depending upon various dynamic factors that come into the

picture during the course of software development.

Project Termination stage involves the verification and validation activities. It also

accounts for delivering according to the promised Quality Assurance Plan. Verification is

the process of determining whether or not the products of a given phase of software

development fulfill the specifications established earlier (i.e. during previous phases).

Validation, on the other hand, is the process of evaluating the developed software to

ensure compliance with the software requirements. Testing is a common method of

validation. The verification and validation activities, together, are generally referred to as

V&V activities. The major V&V activities for software development are inspection,

reviews and testing (both static and dynamic). Testing is an activity that can be performed

only on the source code. Inspection is a more general activity and can be applied to any

 1

1

work product, including the source code. It is thus a formal evaluation technique in which

software requirements, design or code are examined in detail to detect faults, violations of

development standard, and other problems.

Software Estimation is an important area that falls under the planning procedure for any

software. For a given set of requirements, it is desirable to know how much it will cost to

develop the software, and how much time the development will take. Estimation of

resources, cost, and schedule for a software project requires experience, access to good

historical information, and the skill set for quantitative predictions when qualitative

information is all that exists. Resources in a software-planning task can be conceptualized

in the form of a pyramid. The development environment – hardware and software tools –

sits at the foundation of the resources pyramid and provides infrastructure to support the

development effort. At higher level, we encounter reusable software components –

software building blocks that can dramatically reduce development costs and accelerates

delivery. At the top of the pyramid is the primary resource – the people. The bulk of the

cost of software development is due to the human effort, and most cost estimation

methods focus on this aspect and give estimates in terms of person-months.

Accurate cost estimation is important because:

 It can help to classify and prioritize development projects with respect to an

overall business plan.

 It can be used to determine what resources to commit to the project and how well

these resources will be used.

 It can be used to assess the impact of changes and support replanning.

 Projects can be easier to manage and control when resources are better matched to

real needs.

 Customers expect actual development costs to be in line with estimated costs.

 1

2

Software cost estimation involves the determination of one or more of the following

estimates:

a. Effort (usually in person-months)

b. Project Development Time (in calendar time)

c. Productivity

Most cost estimation models attempt to generate an effort estimate, which can then be

converted into the project duration and cost. Although effort and cost are closely related,

they are not necessarily related by a simple transformation function. Effort is often

measured in person-months of the programmers, analysts and project managers. This

effort estimate can be converted into a unit cost figure by calculating an average salary

per unit time of the staff involved, and then multiplying this by the estimated effort

required.

Most cost models are based on the size measure, such as Lines of Code (LOC) and

Function Point (FP), obtained from size estimation. The accuracy of size estimation

directly impacts the accuracy of cost estimation. Size estimation, an internal attribute is of

prime importance in this project report. It has been used in several effort/cost models as a

predictor of the effort, duration and cost needed to design and implement the software.

 The various size measures so computed can be applied to find:

 productivity in terms of person-months, and

 quality which gives the number of defects per unit in a software with respect

to the requirements, design, coding and user documentation phases .

Time estimate for a module refers to the time a software engineer thinks it might take to

complete the coding of that module. The unit of time could be hours or days or man-

months or man-years. Thus time estimate can be considered under the productivity

applications of size measures.

For instance, a module in the structure chart could have time estimate that reads as [5-10-

20], 5 representing Optimistic Time, 10 representing Most Likely Time and 20

representing Pessimistic Time. In this case, Optimistic time is the time in which a

 1

3

particular module could have been completed if everything went well and there have been

no complications. A rule of thumb can be that there should be only one chance in ten of

accomplishing the coding in less time than the optimistic time estimate.

Experienced software engineers would have thumb rules to estimate the size of the code

before they write the code. This capability to predict the size of the code has been gained

over a period of programming experience.

The time size estimation also includes complexity and program size among various other

factors. For example it is known that the programmers can deliver a few lines of code per

day. There is some limit to speed of a programmer so any development size estimate that

is supposed to be independent of program size will be wrong if the program turns out to

be larger than that can be constructed during estimation period. The size so estimated

should be language and platform independent. Experienced software engineers are

capable of estimating the time requirement for coding because they understand the

complexity of the components of the programming task. They know their competence to

code a particular logic using certain data structures, in a given language. They could

visualize the sub modules in their programming task and arrive at a time estimate for the

task. On the other hand, novice software engineers find it difficult to estimate the time

requirement because of the lack of experience in understanding the complexity of the

programming task.

A methodology should be designed that allows software engineers to explicitly spell out

the different components of a module and provide time estimates for the development of

each of the component. It could then be used to monitor the progress of code

development and evaluate the developed program with respect to the time schedule.

These are some guidelines, which should be taken into account while undertaking the task

of size estimation:

1. Analyze similar past projects to generate the historical data needed to estimate the

size of new software projects. Relying on memory is not effective and leads to poor

estimates.

 1

4

2. Include data gathered from software and test team members. Early project team

involvement not only serves to improve the accuracy of the estimate, but also

prepares the team for the eventual project start date.

3. Keep in mind that experience is the key to effective software size estimation. The

larger the project, the more is the experience required to make a good estimate.

4. Use multiple estimation techniques. During the initial estimation stage, the

comparative results of different estimation techniques provide the best estimate.

5. Revise the initial size estimate as new information becomes available. During the

design phase as the major software pieces come into focus, each module can be

estimated separately, the sum of which reflects a revised, more accurate estimate.

To produce better estimates, we must improve our understanding of these project

attributes and their causal relationships, model the impact of evolving environment, and

develop effective ways of measuring software complexity.

At the initial stage of a project, there is high uncertainty about these project attributes.

The estimate produced at this stage is inevitably inaccurate, as the accuracy depends

highly on the amount of reliable information available to the estimator. If the effort

estimate is on upper side, the other competitive bidder will win over us and get the

contract. On the other hand, if our effort estimates are on lower side, we will have to

incur loss in executing the project. Thus, it is a conflicting situation i.e. if we are not

awarded the contract for the development project, we will never get an opportunity to

actually design it to improve upon the initial estimation models. Hence, it is of paramount

importance that we give as exact effort estimation as possible LOC has been widely used

for this modeling purpose. As we learn more about the project during analysis and later

design stages, the uncertainties are reduced and more accurate estimates can be made.

Most models produce acceptable level results without regard to this uncertainty. They

need to be enhanced to produce a range of estimates and their probabilities.

Although estimating is as much art as it is science, this important activity cannot be

conducted in a haphazard manner. Estimation carries inherent risk and this risk can lead

to uncertainty. These estimates are made within a certain limited time frame at the

beginning of the project and must be updated regularly as the project progresses.

 1

5

Estimation Risk is measured by the degree of uncertainty in the quantitative estimates

established for resources, cost and schedule. If project scope is poorly understood or

project requirements are vulnerable, uncertainty and risk become dangerously high. The

software planner should thus demand the completeness of function, performance and

interface definitions.

The Degree of Structural Uncertainty also has an effect on estimation risk. In this

context, structure refers to the degree to which the requirements have been solidified, the

ease with which the functions have been compartmentalized, and the hierarchical nature

of the information that must be processed. Another significant factor that can influence

the estimation risk is the availability of historical information. By backtracking, we can

emulate things that worked and improve the areas where the problems arose.

2.3 Capability Maturity Model

Capability Maturity Model (CMM) was developed by the SEI at Carnegie Mellon

University in Pittsburgh. It has been used extensively for avionics software and

government projects, in North America, Europe, Asia, Australia, South America, and

Africa. CMM broadly refers to a process improvement approach that is based on a

process model. CMM also refers specifically to the first such model, developed by the

Software Engineering Institute (SEI) in the mid-1980s, as well as the family of process

models that followed. A process model is a structured collection of practices that describe

the characteristics of effective processes; the practices included are those proven by

experience to be effective.

The Capability Maturity Model can be used to assess an organization against a scale of

five process maturity levels. Each level ranks the organization according to its

standardization of processes in the subject area being assessed. The subject areas can be

as diverse as software engineering, systems engineering, project management, risk

management, system acquisition, information technology (IT) services and personnel

management.

 1

6

Structure of CMM

Maturity Levels

A layered framework providing a progression to the discipline needed to engage in

continuous improvement (It is important to state here that an organization develops the

ability to assess the impact of a new practice, technology, or tool on their activity. Hence

it is not a matter of adopting these, rather it is a matter of determining how innovative

efforts influence existing practices. This really empowers projects, teams, and

organizations by giving them the foundation to support reasoned choice.)

Key Process Areas

Key process area (KPA) identifies a cluster of related activities that, when performed

collectively, achieve a set of goals considered important.

Goals

The goals of a key process area summarize the states that must exist for that key process

area to have been implemented in an effective and lasting way. The extent to which the

goals have been accomplished is an indicator of how much capability the organization has

established at that maturity level. The goals signify the scope, boundaries, and intent of

each key process area.

Common Features

Common features include practices that implement and institutionalize a key process

area. These five types of common features include: Commitment to Perform, Ability to

Perform, Activities Performed, Measurement and Analysis, and Verifying

Implementation.

Key Practices

The key practices describe the elements of infrastructure and practice that contribute most

effectively to the implementation and institutionalization of the key process areas.

Levels of CMM

There are five levels of the CMM. According to the SEI,

Predictability, effectiveness, and control of an organization's software processes are

believed to improve as the organization moves up these five levels. While not rigorous,

the empirical evidence to date supports this belief.”

 1

7

Level 1- Initial

At maturity level 1, processes are usually ad hoc and the organization usually does not

provide a stable environment. In spite of this ad hoc, chaotic environment, maturity level

1 organizations often produce products and services that work; however, they frequently

exceed the budget and schedule of their projects. Maturity level 1 organizations are

characterized by a tendency to over commit, abandon processes in the time of crisis, and

not be able to repeat their past successes again. Level 1 software project success depends

on having high quality people.

Level 2- Repeatable

At maturity level 2, software development successes are repeatable. The processes may

not repeat for all the projects in the organization. The organization may use some basic

project management to track cost and schedule. Process discipline helps ensure that

existing practices are retained during times of stress. When these practices are in place,

projects are performed and managed according to their documented plans. Basic project

management processes are established to track cost, schedule, and functionality. The

minimum process discipline is in place to repeat earlier successes on projects with similar

applications and scope. There is still a significant risk of exceeding cost and time

estimates.

Level 3 – Defined

The organization’s set of standard processes, which is the basis for level 3, is established

and improved over time. These standard processes are used to establish consistency

across the organization. Projects establish their defined processes by the organization’s

set of standard processes according to tailoring guidelines. A critical distinction between

level 2 and level 3 is the scope of standards, process descriptions, and procedures. At

level 2, the standards, process descriptions, and procedures may be quite different in each

specific instance of the process (for example, on a particular project). At level 3, the

standards, process descriptions, and procedures for a project are tailored from the

organization’s set of standard processes to suit a particular project or organizational unit.

 1

8

Level 4 – Managed

Organizations at this level set quantitative quality goals for both software process and

software maintenance. Subprocesses are selected that significantly contribute to overall

process performance. These selected subprocesses are controlled using statistical and

other quantitative techniques. A critical distinction between maturity level 3 and maturity

level 4 is the predictability of process performance. At maturity level 4, the performance

of processes is controlled using statistical and other quantitative techniques, and is

quantitatively predictable. At maturity level 3, processes are only qualitatively

predictable.

Level 5 – Optimizing

Maturity level 5 focuses on continually improving process performance through both

incremental and innovative technological improvements. Quantitative process-

improvement objectives for the organization are established, continually revised to reflect

changing business objectives, and used as criteria in managing process improvement. The

effects of deployed process improvements are measured and evaluated against the

quantitative process-improvement objectives. Both the defined processes and the

organization’s set of standard processes are targets of measurable improvement activities.

Optimizing processes that are nimble, adaptable and innovative depends on the

participation of an empowered workforce aligned with the business values and objectives

of the organization. The organization’s ability to rapidly respond to changes and

opportunities is enhanced by finding ways to accelerate and share learning. critical

distinction between maturity level 4 and maturity level 5 is the type of process variation

addressed. At maturity level 4, processes are concerned with addressing special causes of

process variation and providing statistical predictability of the results. Though processes

may produce predictable results, the results may be insufficient to achieve the established

objectives. At maturity level 5, processes are concerned with addressing common causes

of process variation and changing the process (that is, shifting the mean of the process

performance) to improve process performance (while maintaining statistical probability)

to achieve the established quantitative process-improvement objectives.

 1

9

Capability Maturity Model Integration

The CMMI is the successor of the CMM. The CMM was developed from 1987 until

1997. In 2002 version 1.1 of the CMMI was released: v1.2 followed in August 2006. The

goal of the CMMI project is to improve usability of maturity models for software

engineering and other disciplines, by integrating many different models into one

framework. It was created by members of industry, government and the SEI.

The CMMI comes with two different representations - staged and continuous. The staged

model, which groups process areas into 5 maturity levels, was also used in the ancestor

software development CMM, and is the representation used to achieve a "CMMI Level

Rating" from a SCAMPI appraisal. The continuous representation, which was used in the

ancestor systems engineering CMM, defines capability levels within each profile. The

differences in the representations are solely organizational; the content is equivalent. The

CMMI uses a common structure to describe each of the 22 process areas (PAs). A process

area has 1 to 4 goals, and each goal is comprised of practices. Within the 22 PAs these

are called specific goals and practices, as they describe activities that are specific to a

single PA. There is one additional set of goals and practices that apply in common across

all of the PAs; these are called generic goals and practices.

CMMI should be adapted to each individual company; therefore companies are not

"certified." A company is appraised (e.g. with an appraisal method like SCAMPI) at a

certain level of CMMI.

In this chapter we have examined the fundamental issues of software engineering that are

of relevance to the estimation effort modeling. The next chapter outlines the Cost

Estimation aspects.

 2

0

CHAPTER 3

SOFTWARE COST ESTIMATION MODELS

3.1 Introduction

In the previous chapter we have seen the importance of assessment of effort estimation.

There are two types of models that have been used to estimate software cost: cost models

and constraint models.

(i) Cost Models

Cost models provide direct estimates of effort. These models typically have a primary

cost factor such as size and a number of secondary adjustment factors or cost drivers.

Cost drivers are characteristics of the project, process, products, or resources that

influence effort. Cost drivers are used to adjust the preliminary estimate provided by the

primary cost factor.

A typical cost model is derived using regression analysis on data collected from past

software projects. Effort is plotted against the primary cost factor for a series of projects.

The line of best fit is then calculated among the data points. If the primary cost factor

were a perfect predictor of effort, then every point on the graph would lie on the line of

best fit. In reality however, there is usually a significant residual error. It is therefore

necessary to identify the factors that cause variation between predicted and actual effort.

These parameters are added to the model as cost drivers.

The overall structure of regression-based models takes the form:

E = A + B x S
C

where A, B, and C are empirically derived constants, E is effort in person months, and S is

the primary input (typically either LOC or FP).

 2

1

The following are some examples of cost models using LOC as a primary input:

 Table 1 LOC Based Models

 E = 5.2 X (KLOC)
0.91

 Walston-Felix Model

 E = 5.5 + 0.73 x (KLOC)
1.16

 Bailey-Basili Model

 E = 3.2 x (KLOC)
1.05

 COCOMO Basic Model

 E = 5.288 x (KLOC)
1.047

 Doty Model for KLOC > 9

Cost models using FP as a primary input include:

 Table 2 FP Based Models

 E = -12.39 + 0.0545 FP Albrecht and Gaffney Model

 E = 60.62 x 7.728 x 10
-8

 FP
3

 Kemerer Model

 E = 585.7 + 15.12 FP Matson, Barnett, and Mellichamp Model

(ii) Constraint Models

Constraint models demonstrate the relationship over time between two or more

parameters of effort, duration, or staffing level. The RCA PRICE S model and Putnam’s

SLIM model are two examples of constraint models.

3.2 Constructive Cost Models

The most fundamental cost models used for software cost estimation are COCOMO and

COCOMO – II and we have identified them for further study in the context of this

project.

COCOMO ’81

Boehm derived a cost model called COCOMO (Constructive Cost Model) using data

from a large set of projects at TRW, a consulting firm based in California. COCOMO is a

relatively straightforward model based on inputs relating to the size of the system and a

number of cost drivers that affect productivity. The original COCOMO model was first

 2

2

published in 1981. Boehm and his colleagues have since defined an updated COCOMO,

called COCOMO II that accounts for recent changes in software engineering technology.

Original COCOMO

The original COCOMO is a collection of three models: a Basic model that is applied

early in the project, an Intermediate model that is applied after requirements are specified,

and an Advanced model that is applied after design is complete. All three models take the

form:

E = aS
b
 x EAF

where E is effort in person months, S is size measured in thousands of lines of code

(KLOC), and EAF is an effort adjustment factor (equal to 1 in the Basic model). The

factors a and b depend on the development mode. Boehm has defined three development

modes:

1. Organic mode – relatively simple projects in which small teams work to a

set of informal requirements (i.e. thermal transfer program developed for a

heat transfer group).

2. Semi-detached mode – an intermediate project in which mixed teams must

work to a set of rigid and less than rigid requirements (i.e. a transaction

processing system with fixed requirements for terminal hardware and

software).

3. Embedded mode – a project that must operate within a tight set of

constraints (ie. flight control software for aircraft).

Basic COCOMO

The Basic COCOMO model computes effort as a function of program size. The Basic

COCOMO equation is:

E = a (KLOC)
 b

 2

3

The factors a and b for the Basic COCOMO model are shown in Table 3.

Table 3 Effort for three modes of Basic COCOMO

Mode a b

 Organic 2.4 1.05

 Semi-detached 3.0 1.12

 Embedded 3.6 1.20

Intermediate COCOMO

The Intermediate COCOMO model computes effort as a function of program size and a

set of cost drivers. The Intermediate COCOMO equation is:

E = a (KLOC)
 b

 x EAF

The factors a and b for the Intermediate COCOMO model are shown in Table 4.

Table 4 Effort parameters for three modes of Intermediate COCOMO

Mode a b

 Organic 3.2 1.05

 Semi-detached 3.0 1.12

 Embedded 2.8 1.20

The effort adjustment factor (EAF) is calculated using 15 cost drivers. The cost drivers

are grouped into four categories: product, computer, personnel, and project. Each cost

driver is rated on a six-point ordinal scale ranging from low to high importance. Based on

the rating, an effort multiplier is determined using Table 5. The product of all effort

multipliers is the EAF. The figure illustrates the basic process of the COCOMO model.

 2

4

Table 5. Software Development Effort Multipliers

Cost

Driver

Description

Rating

Very

Low

Low Nominal High Very

High

Extra

High

Product

RELY Required software reliability 0.75 0.88 1.00 1.15 1.40 -

DATA Database size - 0.94 1.00 1.08 1.16 -

CPLX Product complexity 0.70 0.85 1.00 1.15 1.30 1.65

Computer

TIME Execution time constraint - - 1.00 1.11 1.30 1.66

STOR Main storage constraint - - 1.00 1.06 1.21 1.56

VIRT Virtual machine volatility - 0.87 1.00 1.15 1.30 -

TURN Computer turnaround time - 0.87 1.00 1.07 1.15 -

Personnel

ACAP Analyst capability 1.46 1.19 1.00 0.86 0.71 -

AEXP Applications experience 1.29 1.13 1.00 0.91 0.82 -

PCAP Programmer capability 1.42 1.17 1.00 0.86 0.70 -

VEXP Virtual machine experience 1.21 1.10 1.00 0.90 - -

LEXP Language experience 1.14 1.07 1.00 0.95 - -

Project

MODP Modernprogramming practices 1.24 1.10 1.00 0.91 0.82 -

TOOL Software Tools 1.24 1.10 1.00 0.91 0.83 -

SCED Development Schedule 1.23 1.08 1.00 1.04 1.10 -

Advanced COCOMO

 2

5

The Advanced COCOMO model computes effort as a function of program size and a set

of cost drivers weighted according to each phase of the software lifecycle. The Advanced

model applies the Intermediate model at the component level, and then a phase-based

approach is used to consolidate the estimate.

The 4 phases used in the detailed COCOMO model are: requirements planning and

product design (RPD), detailed design (DD), code and unit test (CUT), and integration

and test (IT). Each cost driver is broken down by phase as in the example shown in Table

6.

 Table 6 Analyst capability effort multiplier for Detailed COCOMO

Cost Driver Rating RPD DD CUT IT

ACAP

Very Low 1.80 1.35 1.35 1.50

Low 0.85 0.85 0.85 1.20

Nominal 1.00 1.00 1.00 1.00

High 0.75 0.90 0.90 0.85

Very High 0.55 0.75 0.75 0.70

Estimates made for each module are combined into subsystems and eventually an overall

project estimate. Using the detailed cost drivers, an estimate is determined for each phase

of the lifecycle.

3.3 COCOMO II

Whereas COCOMO is reasonably well matched to custom, build-to-specification

software projects, COCOMO II is useful for a much wider collection of techniques and

technologies. COCOMO II provides up-to-date support for business software, object-

oriented software, software created via spiral or evolutionary development models, and

software developed using commercial-off-the-shelf application composition utilities.

COCOMO II includes the Application Composition model (for early prototyping efforts)

and the more detailed Early Design and Post-Architecture models (for subsequent

portions of the lifecycle).

 2

6

The Application Composition Model

The Application Composition model is used in prototyping to resolve potential high-risk

issues such as user interfaces, software/system interaction, performance, or technology

maturity. Object points are used for sizing rather than the traditional LOC metric.

An initial size measure is determined by counting the number of screens, reports, and

third-generation components that will be used in the application. Each object is classified

as simple, medium, or difficult using the guidelines shown in Tables 7 and 8.

 Table 7 Object point complexity levels for screens

 Number and source of data tables

Number of views contained
Total <4 Total <8 Total 8+

< 3 simple simple medium

3 to 7 simple medium difficult

8 + medium difficult difficult

 Table 8 Object point complexity levels for reports

 Number and source of data tables

Number of views contained Total <4 Total <8 Total 8+

< 3 Simple simple medium

3 to 7 Simple medium difficult

8 + Medium difficult difficult

The number in each cell is then weighted according to Table 9. The weights represent the

relative effort required to implement an instance of that complexity level.

 Table 9 Complexity weights for object points

Object type Simple Medium Difficult

Screen 1 2 3

Report 2 5 8

3GL component - - 10

The weighted instances are summed to provide a single object point number. Reuse is

then taken into account. Assuming that r% of the objects will be reused from previous

projects, the number of new object points (NOP) is calculated to be:

 2

7

NOP = (object points) x (100 – r) / 100

A productivity rate (PROD) is determined using Table 10.

Table 10 Average productivity rates

Developers' experience and capability Very Low Low Nominal High Very High

ICASE maturity and capability Very Low Low Nominal High Very High

PROD 4 7 13 25 50

Effort can then be estimated using the following equation:

E = NOP / PROD

The Early Design Model

The Early Design model is used to evaluate alternative software/system architectures and

concepts of operation. An unadjusted function point count (UFC) is used for sizing. This

value is converted to LOC using tables such as those published by Jones, excerpted in

Table 11.

 2

8

 Table 11 Programming language levels and ranges of source code per function point

Language Level Min Mode Max

Machine language 0.10 - 640 -

Assembly 1.00 237 320 416

C 2.50 60 128 170

RPGII 5.50 40 58 85

C++ 6.00 40 55 140

Visual C++ 9.50 - 34 -

PowerBuilder 20.00 - 16 -

Excel 57.00 - 5.5 -

The Early Design model equation is:

E = a (KLOC) x EAF

where a is a constant, provisionally set to 2.45. The effort adjustment factor (EAF) is

calculated as in the original COCOMO model using the 7 cost drivers shown in Table 12.

The Early Design cost drivers are obtained by combining the Post-Architecture cost

drivers shown in Table 13.

 Table 12 Early Design Cost Drivers

Cost Driver Description
Counterpart Combined Post-

Architecture Cost Driver

RCPX Product reliability and complexity RELY, DATA, CPLX, DOCU

RUSE Required reuse RUSE

PDIF Platform difficulty TIME, STOR, PVOL

PERS Personnel capability ACAP, PCAP, PCON

PREX Personnel experience AEXP, PEXP, LTEX

FCIL Facilities TOOL, SITE

SCED Schedule SCED

 2

9

The Post-Architecture Model

The Post-Architecture model is used during the actual development and maintenance of a

product. Function points or LOC can be used for sizing, with modifiers for reuse and

software breakage. Boehm advocates the set of guidelines proposed by The Software

Engineering Institute in counting lines of code. The Post-Architecture model includes a

set of 17 cost drivers and a set of 5 factors determining the projects scaling component.

The 5 factors replace the development modes (organic, semidetached, embedded) of the

original COCOMO model.

The Post-Architecture model equation is:

E = a (KLOC)
b
 x EAF

where a is set to 2.55 and b is calculated as:

b = 1.01 + 0.01 x SUM(Wi)

where W is the set of 5 scale factors shown in Table 13.

 Table 13 COCOMO II scale factors

W(i) Very Low Low Nominal High Very High Extra High

Precedentedness 4.05 3.24 2.42 1.62 0.81 0.00

Development/Flexibility 6.07 4.86 3.64 2.43 1.21 0.00

Architecture/Risk Resolution 4.22 3.38 2.53 1.69 0.84 0.00

Team Cohesion 4.94 3.95 2.97 1.98 0.99 0.00

Process Maturity 4.54 3.64 2.73 1.82 0.91 0.00

The EAF is calculated using the 17 cost drivers shown in Table 14.

 3

0

Table 14 Post-Architecture Cost Drivers

Cost Driver Description Rating

Very

Low

Low Nominal High Very

High

Extra

High

Product

RELY Required software reliability 0.75 0.88 1.00 1.15 1.39 -

DATA Database size - 0.93 1.00 1.09 1.19 -

CPLX Product complexity 0.70 0.88 1.00 1.15 1.30 1.66

RUSE Required reusability 0.91 1.00 1.14 1.29 1.49

DOCU Documentation 0.95 1.00 1.06 1.13

Platform

TIME Execution time constraint - - 1.00 1.11 1.31 1.67

STOR Main storage constraint - - 1.00 1.06 1.21 1.57

PVOL Platform volatility - 0.87 1.00 1.15 1.30 -

Personnel

ACAP Analyst capability 1.50 1.22 1.00 0.83 0.67 -

PCAP Programmer capability 1.37 1.16 1.00 0.87 0.74 -

PCON Personnel continuity 1.24 1.10 1.00 0.92 0.84 -

AEXP Applications experience 1.22 1.10 1.00 0.89 0.81 -

PEXP Platform experience 1.25 1.12 1.00 0.88 0.81 -

LTEX Language and tool experience 1.22 1.10 1.00 0.91 0.84

Project

TOOL Software Tools 1.24 1.12 1.00 0.86 0.72 -

SITE Multisite development 1.25 1.10 1.00 0.92 0.84 0.78

SCED Development Schedule 1.29 1.10 1.00 1.00 1.00 -

 3

1

CHAPTER 4

FUNCTION POINT AND CLASS POINT MEASURES

4.1 Software Metrics

Measurements in the physical world can be categorized in two ways: Direct Measures

(e.g. the length of a bolt) and indirect measures (e.g. the ‘quality’ of the bolts produced,

measured by counting the rejects). An analogy from this basic concept can be used to

classify the software metrics as well. Direct Measures, thus include the cost and effort

applied. These define the parameters like Lines of Code (LOC) produced, execution

speed, memory size, and defects reported over some fixed time interval. Indirect

Measures of the product include the functionality, quality, complexity, efficiency,

reliability, maintainability etc. The direct measures can be determined easily, as long as

specific conventions for measurement are established in advance. The indirect measures,

however, are more difficult to assess. The software metrics domain can be partitioned into

process, project and product metrics. Product metrics, are generally private to an

individual, and are generally combined to develop project metrics that are public to a

software team. Project metrics are then consolidated to create process metrics that are

public to the software organization as a whole. The need for metrics is particularly acute

when an organization is adopting a new technology for which the established practices

have not been developed.

Taxonomy of the Software Metrics is presented below:

1. Size-Oriented Metrics

2. Function-Oriented Metrics

3. Extended Function Point Metrics

Normalizing the quality and/or productivity measures by considering the size of the

software that has been produced derives Size-Oriented Metrics. Generally a table of size-

oriented measures is constructed from the records of the software organization. The table

 3

2

lists each software development project that has been completed over the past few years

and the corresponding measures (e.g. LOC, Effort, Errors, Defects, People, Cost, Pages of

Documentation) of that project. All the activities like analysis, design, coding and testing

are accounted for. In order to develop metrics that can be assimilated with similar metrics

from other projects, the LOC parameter is chosen for normalization. Form the

rudimentary data contained in the table, a set of simple size-oriented metrics is generated.

Size-Oriented Metrics are not universally accepted as the best way to measure the

software development process. The controversy swirls around the use of LOC as a key

measure. The proponents claim that LOC is an artifact of all the software estimation

models, whereas the opponents argue that LOC measures are programming language

dependent, and that their use in estimation requires a level of detail that may be difficult

to achieve at the planning stage.

Function-Oriented Metrics, use a measure of functionality delivered by the application as

a normalization value. Since functionality is an indirect measure, it must be derived

indirectly from existing direct measures. We define a function point for this purpose.

Function points are deduced using an empirical relationship based on countable (i.e.

direct) measures of the software’s information domain and assessments of the software

complexity.

4.2 Function Point Approach

Function points are computed by first calculating an unadjusted function point count

(UFC). Counts are made for the following categories:

1. Number of user inputs – those items provided by the user that describe distinct

application-oriented data (such as file names and menu selections). Inputs should be

distinguished from inquiries.

2. Number of user outputs – those items provided to the user that generate distinct

application-oriented data (such as reports and messages, rather than the individual

components of these).

 3

3

3. Number of user inquiries – an inquiry is defined as an online input that results in the

generation of some immediate software response in the form of an online output.

4. Number of logical files – each logical master file, i.e., a logical grouping of data that

may be a part of large database or a separate file, is counted.

5. Number of external interfaces – all machine readable interfaces (e.g., data files on

storage media) that are used to transfer information to another system are counted.

 Table 15 Function point complexity weights

 Weighting Factors

Measurement Parameter Simple Average Complex

Number of User Inputs 3 4 6

Number of User Outputs 4 5 7

Number of User Inquiries 3 4 6

Number of Logical Files 7 10 15

Number of External Interfaces 5 7 10

Each count is multiplied by its corresponding complexity weight and the results are

summed to provide the UFC. The adjusted function point count (FP) is calculated by

multiplying the UFC by a technical complexity factor (TCF). Components of the TCF are

listed in Table 16.

Table 16 Components of the Technical Complexity Factor

F1 Reliable back-up and recovery F2 Data communications

F3 Distributed functions F4 Performance

F5 Heavily used configuration F6 Online data entry

F7 Operational ease F8 Online update

F9 Complex interface F10 Complex processing

F11 Reusability F12 Installation ease

F13 Multiple sites F14 Facilitate change

Each component is rated from 0 to 5, where 0 means the component has no influence on

the system and 5 means the component is essential. The TCF can then be calculated as:

 3

4

TCF = 0.65 + 0.01 (SUM (Fi))

The factor varies from 0.65 (if each Fi is set to 0) to 1.35 (if each Fi is set to 5)).

The final function point calculation is:

FP = UFC x TCF

The figure illustrates this process of Function Points Calculations.

Extended Function Point Metrics were proposed to accommodate both data dimensions

as well as control (functional and behavioral) dimensions. A major limitation of the

Function Point approach is that control dimensions are not emphasized upon which

makes the approach inadequate for many engineering and embedded system problems.

A Feature Point is a superset of the function point measure that can be applied to

problems, which are high algorithmic complexity. To compute a feature point,

information domain values are again counted and weighted as discussed in the previous

section. In addition, the feature point metric accounts for a new software characteristic –

algorithms. An algorithm is defined as a bounded computational problem that is included

in a specific computer program. The data dimension is evaluated using retained data (e.g.,

 3

5

files) and the external data (e.g., inputs, outputs and inquiries). The function dimension is

measured by considering the number of internal operations required to transform the

input to the output. The behavioral dimensions include the states and state transitions.

Together, the functional and the behavioral dimension determine the control dimension.

Benefits of Function Point Analysis

Organizations that adopt Function Point Analysis as software metric realize many

benefits including: improved project estimating; understanding project and maintenance

productivity; managing changing project requirements; and gathering user requirements.

Each of these is discussed below. Estimating software projects is as much an art as a

science. While there are several environmental factors that need to be considered in

estimating projects, two key data points are essential. The first is the size of the

deliverable. The second addresses how much of the deliverable can be produced within a

defined period of time. Size can be derived from Function Points, as described above. The

second requirement for estimating is determining how long it takes to produce a function

point. This delivery rate can be calculated based on past project performance or by using

industry benchmarks. The delivery rate is expressed in function points per hour (FP/Hr)

and can be applied to similar proposed projects to estimate effort

Project Hours = estimated project function points FP/Hr.

Productivity measurement is a natural output of Function Points Analysis. Since function

points are technology independent they can be used as a vehicle to compare productivity

across dissimilar tools and platforms. More importantly, they can be used to establish a

productivity rate (i.e. FP/Hr) for a specific tool set and platform. Once productivity rates

are established they can be used for project estimating as described above and tracked

over time to determine the impact continuous process improvement initiatives have on

productivity.

In addition to delivery productivity, function points can be used to evaluate the support

requirements for maintaining systems. In this analysis, productivity is determined by

 3

6

calculating the number of function points one individual can support for a given system in

a year (i.e. FP/FTE year). When compared with other systems, these rates help to identify

which systems require the most support. The resulting analysis helps an organization

develop a maintenance and replacement strategy for those systems that have high

maintenance requirements.

Managing Change of Scope for an in-process project is another key benefit of Function

Point Analysis. Once a project has been approved and the function point count has been

established, it becomes a relatively easy task to identify, track and communicate new and

changing requirements. As requests come in from users for new displays or capabilities,

function point counts are developed and applied against the rate. This result is then used

to determine the impact on budget and effort. The user and the project team can then

determine the importance of the request against its impact on budget and schedule. At the

conclusion of the project the final function point count can be evaluated against the initial

estimate to determine the effectiveness of requirements gathering techniques. This

analysis helps to identify opportunities to improve the requirements definition process.

Organizations that adopt Function Point Analysis as software metric realize many

benefits including: improved project estimating; understanding project and maintenance

productivity.

 FPA has become generally accepted as an effective way to

 Estimate a software project's size (and in part, duration)

 Establish productivity rates in function points per hour

 Evaluate support requirements

 Estimate system change costs

 Normalize the comparison of software modules.

 Managing changing project requirements; and gathering user requirements.

Function Points measures systems from a functional perspective they are independent of

technology. Regardless of language, development method, or hardware platform used, the

number of function points for a system will remain constant. The only variable is the

amount of effort needed to deliver a given set of function points; therefore, Function

 3

7

Point Analysis can be used to determine whether a tool, an environment, a language is

more productive compared with others within an organization or among organizations.

This is a critical point and one of the greatest values of Function Point Analysis.

The task of counting function points should be included as part of the overall project plan.

That is, counting function points should be scheduled and planned. The first function

point count should be developed to provide sizing used for estimating.

4.3 Class Point Approach

The Class Point approach is analogous to the Function point approach in its technique. It

has been developed to aid the size estimation in object-oriented systems. In this approach,

the basic unit is a class. Thus the entities that are counted and weighed in this case are

classes. Although in some ways Class Point may be considered an extension of Function

Point with Object Oriented features. But there is no one-to-one mapping between the

logical files and transactions of Function Point Approach and the classes and methods of

Class Point Approach. This is because of the differences between the procedural and

Object Oriented features. This is of great value as it encompasses the advantages of

various earlier approaches in size estimation and overcomes the drawbacks.

Class Point Algorithm

The Class Point methodology can be expressed in algorithmic form by implementing the

following steps:

1. Process the information available for size estimation. This further includes the

following sub-steps-:

a. Identify and organize the classes in to groups depending upon their application

domain.

b. Evaluate the complexity level of each class.

c. Estimate the Total Unadjusted Class Point (TUCP).

2. Estimate the technical complexity factor.

3. Evaluate the final Class Point value based on the results of the above steps.

 3

8

Taxonomy of classes

The basic unit of class point approach is classes. In the first step these classes are

identified and organized in groups. They can be categorized on the basis of their

application into 4 groups namely:

1. Problem Domain Type (PDT)

They contain classes representing real-world entities in the application domain of the

system

2. Human Interaction Type (HIT)

They are designed to satisfy the need for information visualization and human-

computer interaction

3. Data Management Type (DMT)

The DMT component encompasses the classes that offer functionality for data storage

and retrieval.

4. Task Management type (TMT)

TMT classes are designed for task management purposes, thus they are responsible

for the definition and control of tasks such as Manage-Emergency-Control and

Report-Emergency-Control. Moreover, such components also include classes

responsible for communication between subsystems allocated to different computers,

and classes responsible for the communication with external systems. As a matter of

fact, Message and Connection are typical classes falling within this component is

assigned a high complexity level.

Evaluation of complexity of each class

The behavior of each class component is taken into account in order to evaluate its

complexity level. There are two measures for finding the complexity of any system: CP1

and CP2. The difference between the CP1 and CP2 measures lies in the way such a

 3

9

complexity level is determined. In particular, in CP1 the number of external methods and

the number of services requested are taken into account; whereas, in CP2, the number of

attributes is also exploited.

The Number of External Methods (NEM) measures the size of the interface of a class

and is determined by the number of locally defined public methods. The Number of

Services Requested (NSR) provides a measure of the interconnection of system

components.

Both measures are available in a distributed information system for design

documentation. Indeed, activities that characterize any OO design process include the

identification of the classes with their attributes and methods, and the construction of

interaction (or collaboration) diagrams showing which external services are needed for a

class to perform the expected tasks. Thus CP1 is generally applicable only in the

estimation of preliminary stages. CP2 on the other hand, also depends upon the Number

of Attributes (NOA). It is thus more often used for refining the existing information.

This is done when more information about the software is available, for example when

the number of attributes is known. In both measures, CP1 and CP2, after the complexity

has been evaluated, it weighed based on its type and level of complexity. It can be

assigned levels like: HIGH, MEDIUM and LOW.

This is illustrated in the table given below:

In the same way complexity levels for CP2 are also formed. In this case, for each range of

NOA values, a table similar to the one above is constructed in which a particular value

gives the level based on all three characteristics.

Estimate the TUCP (Total Unadjusted Class Point factor)

 4

0

To find the TUCP, the value of complexity of each level is multiplied by the weight

assigned to the particular type and level to which it belongs. The TUCP is computed as

the weighted total of the four components of the application:

where xij is the number of classes of component type i (Problem Domain, Human

Interaction etc.) with complexity level j (Low, Average, High), and wij is the weighting

value for type i and complexity level j.

Find the TCF (Technical Complexity Factor)

The TCF depends upon the TDI (Total Degree of Influence) as shown by the formula.

TCF = 0.55 + 0.01 * TDI

As it can be seen, even when there is no TDI (or TDI=0), TCF still exist. This is due to

the basic complexity which exists in each and every case. Thus to find the TCF, we need

to calculate TDI. TDI in turn is derived by taking the sum total of all the degrees of

influence of various predetermined factors.

 4

1

Given below are examples to illustrate how to assign degree of influence.

 4

2

Evaluate the final CP

The final value of the Adjusted Class Point (CP) is obtained by multiplying the TUCP

value by TCF

CP = TUCP * TCF

In this chapter we have seen the function point and class point approaches for effort

estimation. Chapter 2 described the COCOMO models. It has become evident that these

conventional modeling have to handle many uncertainties and hence we introduce the

basics of fuzzy sets and fuzzy logic in the next chapter to discuss vague and uncertainty

handling.

 4

3

CHAPTER 5

SOFT COMPUTING AND FUZZY LOGIC

5.1 Introductory Soft Computing Concepts

The modern computer industry is now shifting towards what is known as ‘soft’

computing, and a deviation from the conventional use of computer systems from zero-IQ

machines to systems that can go hand-in-hand with human thought processes is being

discovered. The preliminary research associated with soft computing includes areas such

as Fuzzy Logic, Rough Set Theory, Neural Networks, Genetic Algorithms, Chaos and

Fractals. We now need to advance a step further in this respect to introduce ‘intelligent’

or ‘thinking’ computer systems, which can be applied in various aspects of day-to-day

life. Technology and science always go hand in hand; hence the need is felt to tap the

potentials of the science of Soft Computing and to utilize its principles technically for the

betterment of human existence.

Conventional computing techniques, i.e. hard computing techniques require precisely

stated analytical models, which are valid for ideal situations. These also require a lot of

computation time. Real life situations, on the other hand are non-ideal and more generic

in nature; and thus they cannot be dealt with entirely by the hard computing techniques.

Practical problems have a pervasive element of imprecision and uncertainty. Premises

and guiding principles of hard computing include precision, certainty and rigor.

Recognition problems (handwriting, speech, objects, images etc.), mobile robot

coordination, forecasting, combinational problems etc do not lend themselves to precise

solutions, thus introducing the need for soft computing.

As opposed to the conventional techniques, soft computing is tolerant to imprecision,

uncertainty, partial truth and approximation. We can easily state that the role model for

soft computing is the human mind. The basic principle behind soft computing is to utilize

the tolerance for imprecision, uncertainty, partial truth and approximation to achieve

tractability, robustness and low solution cost.

 4

4

The basic ideas underlying soft computing in its current manifestation have links to many

earlier influences; among them is Zadeh’s 1965 paper on fuzzy sets. The inclusion of

neural computing and genetic computing in soft computing came at a later point.

Soft Computing includes an emerging and more-or-less established family of problem

stating and problem-solving methods that attempt to mimic the intelligence found in

nature.

Some unique properties of Soft Computing include:

 Learning from experimental data

 Deriving their power of generalization from approximating or interpolating from

these previously ‘learned’ inputs to produce outputs from unseen inputs

 Embedding existing structured human knowledge (experience, expertise,

heuristics) into workable mathematics

At this point in time, the principal constituents of Soft Computing (SC) are Fuzzy Logic

(FL), Neural Computing (NC), Evolutionary Computation (EC), Machine Learning (ML)

and Probabilistic Reasoning (PR), with the latter subsuming belief networks, chaos theory

and parts of learning theory. However, it is important to note that soft computing is not a

concoction. It is rather a partnership in which each of the partners contributes a dissimilar

methodology for addressing problems in its domain. In this standpoint, the principal

constituent methodologies in SC are complimentary rather than competitive. In addition,

soft computing may be viewed as a foundation component for the promising field of

conceptual intelligence.

Current applications of Soft Computing include handwriting recognition, manufacture of

automotive systems, image processing, data compression, decision-support systems,

fuzzy control and neuro-fuzzy control. The successful applications of soft computing

suggest that the impact of soft computing will be felt increasingly in the coming years in

addressing issues of reducing ‘cognitive load’ of end user. The influence of soft

 4

5

computing will eventually increase beyond science and engineering, providing the

Machine Intelligence Quotient (MIQ) as the performance parameter of hardware/software

systems. It represents a significant paradigm shift in the intentions of computing, which

will reflect the fact that human mind, unlike present day computers, possesses the

remarkable ability to store and process information lacking in categoricity.

5.2 Fuzzy Sets and Fuzzy Logic

Fuzzy logic is a branch of Soft Computing which deals with a system which tolerant to

imprecision, partial truth, uncertainty and approximation. It allows for a gradation of

values instead of discrete values. The concept of Fuzzy Logic (FL) was conceived by

Lotfi Zadeh, a professor at the University of California at Berkley, and presented not as a

control methodology, but as a way of processing data by allowing partial set membership

rather than crisp set membership or non-membership. This approach to set theory was not

applied to control systems until the 70's due to insufficient small-computer capability

prior to that time. In the context of Information Systems, Professor Zadeh reasoned that

people do not require precise, numerical information input, and yet they are capable of

highly adaptive control and decision-making. He proposed a comprehensive theory of

approximate reasoning based on Fuzzy Logic in which truth-values are linguistic and the

rules are expressed as fuzzy propositions. Approximate reasoning can be viewed as a

process by which a possible imprecise conclusion is deduced from a collection of

imprecise premises expressed in linguistic terms and fuzzy sets. Historically, FL

applications were seen in the control system domain as successful commercial products.

However, trends for FL applications in IT and computer science have been also reported

in the literature. Professor Watanabe suggested Fuzzy Hardware Inference Engine chip

and Fuzzy Microprocessor approach.

A fuzzy subset A of a (crisp) set X is characterized by assigning to each element x of X the

degree of membership of x in A (e.g. X is a group of people, A the fuzzy set of old people

in X). Now if X is a set of propositions then its elements may be assigned their degree of

truth, which may be “absolutely true,” “absolutely false” or some intermediate truth

degree: a proposition may be more true than another proposition. This is obvious in the

 4

6

case of vague (imprecise) propositions like “this person is old” (beautiful, rich, etc.). In

the analogy to various definitions of operations on fuzzy sets (intersection, union,

complement) one may ask how propositions can be combined by connectives

(conjunction, disjunction, negation) and if the truth degree of a composed proposition is

determined by the truth degrees of its components, i.e. if the connectives have their

corresponding truth functions (like truth tables of classical logic). Saying “yes” (which is

the mainstream of fuzzy logic) one accepts the truth-functional approach; this makes

fuzzy logic to something distinctly different from probability theory since the latter is not

truth-functional (the probability of conjunction of two propositions is not determined by

the probabilities of those propositions).

Fuzzy sets are an extension of classical set theory and are used in fuzzy logic. In classical

set theory the membership of elements in relation to a set is assessed in binary terms

according to a crisp condition — an element either belongs or does not belong to the set.

By contrast, fuzzy set theory permits the gradual assessment of the membership of

elements in relation to a set; this is described with the aid of a membership function .

Fuzzy sets are an extension of classical set theory since, for a certain universe, a

membership function may act as an indicator function, mapping all elements to either 1 or

0, as in the classical notion.

The theory of binary logic is based on the assumption of crisp membership of an element

to a certain set. An element x thus either belongs to (i.e. has a membership value of 1) or

doesn’t belong to (i.e. has a membership value of 0) a particular set X. Conventional logic

systems can be extended to encompass normalized values in the range of (0,1), thus

introducing the notion of partial membership of an element to a particular set. Such a

logic system allows us to represent variables in a natural form with infinite degrees of

membership is referred to as Fuzzy Logic System. The variable in a fuzzy system is

generally described linguistically prior to its mathematical description, as it is more

important to visualize a problem in totality to devise a practical solution.

Fuzzy membership functions can be illustrated as follows:

 4

7

A fuzzy set F, on a collection of objects, X, is a mapping

µF (x): X [0,a]

Here, µF (x) indicates the extent to which x X has the attribute F, thus it is the

membership function. In general, we use a normalized fuzzy domain set, for which

a = sup µF (x) = 1

The membership function can be generated with the help of mathematical equations.

Typically, it can be in trapezoidal form, triangular form or in the form of S or - curve.

The support of a fuzzy set, F, S (F) is the crisp set of all x X such that µ (x) >0.

he three basic logical operations of intersection, union and complementation can be

performed on fuzzy sets as well.

1. The membership µC (x) of the intersection C = A satisfies for each x X,

µC (x) = min {µA (x), µB (x)}

2. The membership µC (x) of the union C = A B X

 4

8

µC (x) = max {µA (x), µB (x)}

3. The membership µC (x) of the complementation C = A

satisfies for each x X,

µC (x) = 1- µA (x)

Properties of classical sets are very important to consider because of their influence on

the mathematical manipulation. Some of these properties are listed below.

Commutativity:

A B = B A

A B = B A

Associativity:

A (B C) = (A B) C

A (B C) = (A B) C

Distributivity:

A (B C) = (A B) (A C)

A (B C) = (A B) (A C)

Idempotency:

A A = A

A A = A

Identity:

A = A

A U = A

A =

A U = U

Excluded middle laws are very important since they are the only set operations that are

not valid for both classical and fuzzy sets. Excluded middle laws consist of two laws.

The first, known as Law of Excluded Middle, deals with the union of a set A and its

 4

9

complement. The second law, known as Law of Contradiction, represents the intersection

of a set A and its complement.

The following equations describe these laws:

Law of Excluded Middle

A A = U

Law of Contradiction

A A =

Some of the possible membership functions are:

(a) the -function: an increasing membership function with straight lines;

(b) the L-function: a decreasing function with straight lines;

(c) -function: a triangular function with straight lines;

(d) the singleton: a membership function with a membership function value 1 for only

one value and the rest is zero.

(e) There are many other possible functions such as trapezoidal, Gaussian, sigmoidal or

even arbitrary. These are much more popular.

Alpha-Cut Fuzzy Sets

It is the crisp domain in which we perform all computations with today’s computers.

Given a fuzzy set ~
A

, the alpha-cut (or lambda cut) set of ~
A

 is defined by

)(
~

xxA A

Note that by virtue of the condition on
)(

~

xA in above equation, i.e., a common property,

the set A is now a crisp set. In fact, any fuzzy set can be converted to an infinite number

of cut sets.

 5

0

Extension Principle

In fuzzy sets, just as in crisp sets, one needs to find means to extend the domain of a

function, i.e., given a fuzzy set ~
A

 and a function f(), then what is the value of function

f(~
A

)? This notion is called the extension principle.

Let the function f be defined by

VUf :

where U and V are domain and range sets, respectively. Define a fuzzy set ~
A
U as,

n

n

uuu
A

2

2

1

1

~

Then the extension principle asserts that the function f is a fuzzy set, as well, which is

defined below:

)()()(

)(
2

2

1

1

~~
n

n

ufufuf
AfB

The complexity of the extension principle would increase when more than one member of

u1 x u2 is mapped to only one member of v; one would take the maximum membership

grades of these members in the fuzzy set ~
A

.

Hedges

The linguistic hedge is an operation that modifies the meaning of a term or more

generally, of a fuzzy set. The distribution of membership of the membership function as

indicated above can be modified so that the concept captured by the modified fuzzy term

is stronger (concentrated) or weaker (dilated) than the original term. If A is a fuzzy set

then the modifier m generates the (composite) term B = m (A). The linguistic hedge

comprises concentration and dilation. These are discussed below:

 5

1

Concentration:

The operation of concentration on F set results in a fuzzy subset of F that the reduction in

the magnitude of the grade of membership of an element in F is relatively small for those

values which have high membership and relatively large for those which have low

membership. The operation of concentration is defined by:

CON (F) = F
p

con, A (x) = (A(x))
p

, where p >1

Dilation:

The operation of dilation on F set results in a fuzzy subset of F that the increase in the

magnitude of the grade of membership of an element in F is relatively small for those

values which have high membership and relatively large for those which have low

membership. The operation of dilation is defined by:

DIL (F) = F
 q

dil, A (x) = (A(x))
q

, where q <1

Defuzzification is the process of producing a quantifiable result in fuzzy logic. Typically,

a fuzzy system will have a number of rules that transform a number of variables into a

"fuzzy" result, that is, the result is described in terms of membership in fuzzy sets. For

example, rules designed to decide how much pressure to apply might result in "Decrease

Pressure (15%), Maintain Pressure (34%), Increase Pressure (72%)". Defuzzification

would transform this result into a single number indicating the change in pressure. The

simplest but least useful defuzzification method is to choose the set with the highest

membership, in this case, "Increase Pressure" since it has a 72% membership, and ignore

the others, and convert this 72% to some number. The problem with this approach is that

 5

2

it loses information. The rules that called for decreasing or maintaining pressure might as

well have not been there in this case.

A useful defuzzification technique must first add the results of the rules together in some

way. The most typical fuzzy set membership function has the graph of a triangle. Now, if

this triangle were to be cut in a straight horizontal line somewhere between the top and

the bottom, and the top portion were to be removed, the remaining portion forms a

trapezoid. The first step of defuzzification typically "chops off" parts of the graphs to

form trapezoids (or other shapes if the initial shapes were not triangles). For example, if

the output has "Decrease Pressure (15%)", then this triangle will be cut 15% the way up

from the bottom. In the most common technique, all of these trapezoids are then

superimposed one upon another, forming a single geometric shape. Then, the centroid of

this shape, called the fuzzy centroid, is calculated. The x coordinate of the centroid is the

defuzzified value.

CentroidFuzzy = (di wI) / (wI)

T-norm:

A T-norm is a function T: [0, 1] × [0, 1] → [0, 1] which satisfies the following properties:

• Commutativity: T(a, b) = T(b, a)

• Monotonicity: T(a, b) ≤ T(c, d) if a ≤ c and b ≤ d

• Associativity: T(a, T(b, c)) = T(T(a, b), c)

• The number 1 acts as identity element: T(a, 1) = a

Minimum T-norm is defined by:

Product T-norm is defined by:

 5

3

T-Conorm (S-norm):

• Dual to T-norms under the order-reversing operation which assigns 1 – x to x on

[0, 1]

• Generalizes De Morgan's laws

• Given a T-norm, the complementary Conorm is defined by:

Maximum T-conorm is defined by :

Probabilistic sum T-conorm is defined by:

Fuzzy Control System

FL offers several unique features that make it a particularly good choice for many control

problems:

1. It is inherently robust since it does not require precise, noise-free inputs and can be

programmed to fail safely if a feedback sensor quits or is destroyed. The output

control is a smooth control function despite a wide range of input variations.

2. Since the FL controller processes user-defined rules governing the target control

system, it can be modified and tweaked easily to improve or drastically alter system

performance. New sensors can easily be incorporated into the system simply by

generating appropriate governing rules.

3. FL is not limited to a few feedback inputs and one or two control outputs, nor is it

necessary to measure or compute rate-of-change parameters in order for it to be

implemented. Any sensor data that provides some indication of a system's actions and

reactions is sufficient. This allows the sensors to be inexpensive and imprecise thus

keeping the overall system cost and complexity low.

 5

4

4. Because of the rule-based operation, any reasonable number of inputs can be

processed (1-8 or more) and numerous outputs (1-4 or more) generated, although

defining the rule base quickly becomes complex if too many inputs and outputs are

chosen for a single implementation since rules defining their interrelations must also

be defined. It would be better to break the control system into smaller chunks and use

several smaller FL controllers distributed on the system, each with more limited

responsibilities.

5. FL can control nonlinear systems that would be difficult or impossible to model

mathematically. This opens doors for control systems that would normally be deemed

unfeasible for automation.

Fuzzy Logic Control (FLC) is an algorithm. This develops a process control as fuzzy

relation information on the condition of the process to be controlled and the control

action. The essence of fuzzy control algorithm is a conditional statement between a fuzzy

input variable B.

This is expressed by a linguistic implication statement such as :-

A B (condition A implies condition B),

This may be written as

IF A THEN B

There is an equivalency between this expression and the relation obtained by a Cartesian

multiplication i.e.

R=A * B IF A THEN B.

 5

5

A fuzzy variable is expressed through a fuzzy set which in turn is defined by a

membership function. The fuzzy variable may be continuous or discrete. A continuous

variable can be quantized and expressed as if it were discrete.

Fuzzy production rules are used for knowledge representation. The general formulation of

fuzzy production rule is

If Fi (CF = x) then Ci (CF = y)

Where Fi represents the antecedent portion of the rule containing fuzzy quantifiers and Ci

represents the consequent. The CF values give the confidence measures usually varying

from 0 to 1.

The Fuzzy Control Logic process, described above, can be illustrated as shown in the

following diagram:

5.3 Fuzzy Numbers

A fuzzy number is a convex, normalized fuzzy set whose membership function

is at least segmentally continuous and has the functional value μA(x) = 1 at precisely one

element .This can further be explained by the following terms in relation to fuzzy

numbers :

 5

6

 Convex: In Euclidean space, an object is convex if for every pair of points within the

object, every point on the straight line segment that joins them is also within the

object. For example, a solid cube is convex, but anything that is hollow or has a dent

in it is not convex. This can be explained by the figure given below comparing the

convex and non-convex shapes.

CONVEX FUNCTION NONCONVEX FUNCTION

 Normalized: A normalized set is one in which values fixed within a specific range.

For example, 0 to1 instead of random variations.

 Continuous: In mathematics, a continuous function is a function for which,

intuitively, small changes in the input result in small changes in the output.

 Fuzzy: Being part of the fuzzy set is what makes a fuzzy number an ordinary number

whose precise value is somewhat uncertain. Thus being fuzzy allows it to have

approximations.

 A fuzzy number is a thus quantity whose value is imprecise, rather than being exact like

single-valued numbers. Any fuzzy number can be thought of as a function whose domain

is a specified set (usually the set of real numbers, and whose range is the span of non-

negative real numbers between, and including, 0 and 1000. Each numerical value in the

domain is assigned a specific "grade of membership" where 0 represents the smallest

possible grade, and 1000 is the largest possible grade. In many respects, fuzzy numbers

depict the physical world more realistically than single-valued numbers.

The number has three main properties, the minimum possible value of fuzzy number are

called Minimum, the maximum possible value - Maximum, and most possible value –

 5

7

Best. The peak, minimum, and maximum, also describe the apex, left corner and right

corner of the membership function

Fuzzy numbers can also be called fuzzy sets on which certain restrictions and distinctive

denotations have been applied:

For fuzzy set A,

1. A(x) is a function mapping , often a subset of <, into [0,1]

2. The value of A(x) is called its membership value in A, denoted by

3. For some that is, fuzzy numbers are normalized to 1. The set

is called the core. If x is a singleton it may be called a vertex.

4. The membership function A must have C0 continuity; i.e., be connected, have no

breaks.

5. The interval for which A(x) > 0, say [a,c], a<·the core< c, is called the support of the

fuzzy number. In this case, a (c) is called the left (right) support. Some authors allow

the support to be an open interval. The membership function from a to the core (the

core to c) must be monotonically increasing (decreasing).

There are two main ways of representing fuzzy numbers:

1. By creating a set of pairs

2. By using a set of Belief graphs. For example, the fuzzy number Z could have the

following Belief graph:

 5

8

Each fuzzy number has a centroid. It is determined as the balancing point of Belief graph.

Centroid is used to display fuzzy number in the sheet cell.

When working with fuzzy numbers and performing fuzzy arithmetic, we should use a

large universal space because the intervals over which fuzzy numbers are defined, widen

as arithmetic operations are performed. Also, like traditional numbers, fuzzy numbers can

be negative or positive, so the universal space should be symmetric around zero.

Hedges and Fuzzy Numbers

Fuzzy numbers are most easily specified by using modifying words called hedges. For

example:

All these dispersions are measured at the 50% confidence level. That is, we are at least

50% sure that a number belongs to about 2 with a confidence of 500 or greater if it lies

within 10% of 2, or between 1.8 and 2.2.

So far we have two ways of representing uncertainties: by confidence levels attached to a

specific datum, such as the value of some real-world variable; and by the use of fuzzy sets

of word descriptors. We now consider how to represent an uncertain number.

Suppose a fuzzy set is given members as all the real numbers. Since there is infinity of

real numbers, this fuzzy set has infinity of members. As in all fuzzy sets, to each real

number there will be attached a grade of membership.

 5

9

There are many cases when an input number may be only approximately known, or may

be subject to uncertainties even if a precise value is available. In these cases, fuzzy

numbers are useful. Like membership functions, fuzzy numbers have shape .There are

many cases when an input number may be only approximately known, or may be subject

to uncertainties even if a precise value is available.

Fuzzy numbers are also useful when we believe that the true value of a decimal number

falls within a known range, for example +/- 10%.

Like membership functions, fuzzy numbers have shape restrictions. Usually, the

confidence is zero in small numbers, rises to full confidence, and then declines again to

zero. (Technically, such numbers are called convex.) There may also be special fuzzy

numbers which start or end up with full confidence, as in some membership functions;

this is reasonable.

A fuzzy number can be linear, curvilinear shaped or bell shaped. This is illustrated in the

figure comparing the various shapes:

Trapezoidal and Triangular functions for fuzzy numbers are separately, being more

popular as compared to other functions in case of fuzzy numbers.

 6

0

Many functions, like triangular, can further be classified as:

1. Symmetric functions and,

2. Asymmetric functions

 6

1

As shown above, some fuzzy number representations can be triangular and trapezoidal.

Triangular can be symmetric or asymmetric. In symmetric representation, (v, l) are taken

where v gives the position of the vertex and l gives the support distance where

perpendicular bisects it. A notation for asymmetric is (a/b/c) where b is the vertex and (a,

c) gives the support (i.e. the base of the triangle). If the core (like vertex b) is not a single

value, then it gives rise to trapezoidal fuzzy numbers. It uses the notation (a/b/c/d) with

[a, d] as support and [b, c] as base.

Fuzzy numbers define various concepts using partial membership functions. Amongst

various membership functions, most often used in this case are, triangular and parabolic.

These are represented by (æ, m, ß) where m is the modal value and and represent the

left and right boundary values.

Triangular Fuzzy Numbers:

A triangular fuzzy number (TFN) K, is described by a triplet {, m, } where m is the

modal value of the fuzzy number K, and and are its left and right boundary values,

respectively .K=TFN {, m, }

Parabolic Fuzzy Numbers:

Parabolic fuzzy number (PFN) is composed of two parabolic segments of the membership

grades delimited by modal and boundary values. It is described by a triplet PFN {, m,

} with modal value m, and parameters of the left and right boundaries and . K= PFN

{, m, }

Equations of the Triangular Fuzzy Number:

Equation of the Parabolic Fuzzy Number:

 6

2

Figure Showing a TFN and a PFN:

Fuzzy numbers are special fuzzy sets representing uncertain quantitative information.

They are convex and normal, usually with single modal value. They are also associated

with some vagueness or fuzziness. For evaluation of uncertainty, relative fuzziness is

defined as:

where more the relative fuzziness, more uncertain A is.

Computations involving fuzzy numbers are carried out in the setting of fuzzy arithmetic.

It dwells on the extension principle. The extension principle deals with the generalization

of this mapping to the case of arguments being fuzzy numbers that is B =f (A), where A

and B are fuzzy numbers.

If C= f (A, B) then its membership function can be defined by:

 6

3

Comparing Fuzzy Numbers

In computer programming, it is quite common to compare two numbers in various ways.

For example, we might want to know if some input number X equals some certain value:

in almost any computer language, we can write an instruction like this:

If x = 200 then (do something)

Similarly, we can write a rule to do the same thing:

Rule: IF x = 200 THEN (do something)

In both cases, if x is just slightly off (say x is 199.99) the instruction will not be executed

and the rule will not fire.

In fuzzy reasoning, we are often not concerned with precise equality, but would like to be

able to say

IF x is approximately 200 THEN (do something)

The use of fuzzy numbers permits us to do this. This can be done by using approximate

numerical comparisons like: ~< (approximately less than), ~<= (approximately less than

or equal to), ~= (approximately equal) and so on..

Suppose we are comparing two fuzzy numbers, as shown in figure:

 6

4

We see that the two curves cross at two points. The confidence that the comparison holds

is the greater of the confidences at these intersection points, in this case 600.

5.4 Fuzzy Inference

Applications of Fuzzy Logic in simulation and modeling are based on fuzzy inference

mechanism. A Fuzzy Inferencing System (FIS) uses fuzzy sets to make decisions or draw

conclusions. Assuming that there is a particular problem that cannot (at all or with

difficulty) be tackled by conventional methods such as by developing a mathematical

model, after some process (e.g. knowledge acquisition from an expert in the domain) the

`base' fuzzy sets that describe the problem are determined. These might be, for example,

how a doctor describes the temperature of a patient as low, normal or high and that the

patient's temperature is a factor in the diagnostic process. The rules (usually of an

IF....THEN.... nature (if-then)) are thus determined. These rules then have to be combined

in some way referred to as rule composition. Finally conclusions have to be drawn -

defuzzification.

A general fuzzy inference system consists of three parts. A crisp input is fuzzified by

input membership functions and processed by a fuzzy logic interpretation of a set of

fuzzy rules. This is followed by the defuzzification stage resulting in a crisp output. The

rule base is typically crafted by an expert.

 6

5

An approach that we can define for a Fuzzy Inferencing System as:

 the base fuzzy sets that are to be used, as defined by their membership functions;

 the rules that combine the fuzzy sets;

 the fuzzy composition of the rules;

 the Defuzzification of the solution fuzzy set.

There are two types of fuzzy inference systems that can be implemented:

 Mamdani-type

 Sugeno-type

Mamdani-type inference, as defined for Fuzzy Logic Toolbox, expects the output

membership functions to be fuzzy sets. After the aggregation process, there is a fuzzy

set for each output variable that needs defuzzification. it is possible, and in many cases

much more efficient, to use a single spike as the output membership function rather

than a distributed fuzzy set. This type of output is sometimes known as a singleton

output membership function, and it can be thought of as a pre-defuzzified fuzzy set. It

enhances the efficiency of the defuzzification process because it greatly simplifies the

computation required by the more general Mamdani method, which finds the centroid

of a two-dimensional function. Rather than integrating across the two-dimensional

function to find the centroid, you use the weighted average of a few data points.

 6

6

Sugeno-type systems support this type of model. In general, Sugeno-type systems can

be used to model any inference system in which the output membership functions are

either linear or constant.

Before concluding this chapter, it is necessary to discuss some misconceptions about

Fuzzy Logic. These have been highlighted below.

(i) Fuzzy logic is the same as "imprecise logic"

Fuzzy logic is not any less precise than any other form of logic: it is an organized and

mathematical method of handling inherently imprecise concepts. The concept of

"coldness" cannot be expressed in an equation, because although temperature is a

quantity, "coldness" is not. However, people have an idea of what "cold" is, and agree

that something cannot be "cold" at N degrees but "not cold" at N+1 degrees — a concept

classical logic cannot easily handle due to the principle of bivalence.

(ii) Fuzzy logic is a new way of expressing probability

Fuzzy logic and probability refer to different kinds of uncertainty. Fuzzy logic is

specifically designed to deal with imprecision of facts (fuzzy logic statements), while

prob ability deals with chances of that happening (but still considering the result to be

precise). However, this is a point of controversy. Many statisticians are persuaded by the

work of Bruno de Finetti that only one kind of mathematical uncertainty is needed and

thus fuzzy logic is unnecessary. On the other hand, Bart Kosko argues that probability is a

sub theory of fuzzy logic, as probability only handles one kind of uncertainty. He also

claims to have proven a theorem demonstrating that Bayes' theorem can be derived from

the concept of fuzzy subsethood. Lotfi Zadeh, the creator of fuzzy logic, argues that fuzzy

logic is different in character from probability, and is not a replacement for it. He has

created a fuzzy alternative to probability, which he calls possibility theory. Other

controversial approaches to uncertainty include Dempster-Shafer theory and rough sets.

(iii) Fuzzy logic will be difficult to scale to larger problems

In a widely circulated and highly controversial paper, Charles Elkan in 1993 commented

that "...there are few, if any, published reports of expert systems in real-world use that

reason about uncertainty using fuzzy logic. It appears that the limitations of fuzzy logic

have not been detrimental in control applications because current fuzzy controllers are

 6

7

far simpler than other knowledge-based systems. In future, the technical limitations of

fuzzy logic can be expected to become important in practice, and work on fuzzy

controllers will also encounter several problems of scale already known for other

knowledge-based systems". Reactions to Elkan's paper are many and varied, from claims

that he is simply mistaken, to others who accept that he has identified important

limitations of fuzzy logic that need to be addressed by system designers. In fact, fuzzy

logic wasn't largely used at that time, and today it is used to solve very complex problems

in the AI area. Probably the scalability and complexity of the fuzzy system will depend

more on its implementation than on the theory of fuzzy logic.

 6

8

CHAPTER 6

FUZZY SOFTWARE ESTIMATION FRAMEWORK

6.1 Introduction

In the previous chapters, we have seen the need to provide support for cost estimation

models to handle uncertainties and vagueness arising out of several practices used in

software development process. In our project, Software Effort Estimation and Design is

developed using classical and fuzzy models. During the course of our project, we went

through various papers and articles so as to select the best possible methodology for

implementing Fuzzy Software Estimation. The fuzzy models implemented in our

software are based on the models established and proposed in these papers. Hence, we are

providing a short overview of the ideas presented by various authors which have been

used by us in the fuzzy Software Estimation Environment (f-SEE) package.

PAPER 1:

Estimation of f-COCOMO Model Parameters Using Optimization Techniques

Leonard J. Jowers, James J. Buckley, and Kevin D. Reilly

Summary

The paper is concerned with improving the project outcome using COCOMO. It allows

for uncertainty by use of fuzzy logic. We start with a crisp COCOMO model which

depends on interpretation of a set of linguistic variables to create a set of crisp

parameters. There are always a number of parameters in the system whose values are not

known precisely. These parameters need to be estimated and their estimators contain

uncertainties. We model these uncertainties using fuzzy numbers and fuzzy arithmetic. It

is primarily based of the principle of fuzzy extension which effective in COCOMO

estimation. Thus the COCOMO model changes into a fuzzy COCOMO model. This

uncertainty in the parameter values computes a larger uncertainty in the COCOMO result.

 6

9

If a project parameter is fuzzy, the associated COCOMO Model also becomes a fuzzy

COCOMO Model (f-COCOMO Model) with a fuzzy result i.e: schedule and effort. A

dictated fuzzy schedule and budget can be used to improve an f-COCOMO Model, or

plan a project. By application of constraints created by dictated fuzzy results, and back

propagation, better estimates of project parameters are obtainable. Such a project scenario

is presented in this paper and the method is applied to demonstrate its use.

There is more than one way in which fuzziness occurs in computation:

 perception-based (linguistic) and

 measurement-based (numerical) fuzziness.

Fuzzy Numbers

Some fuzzy number representations can be triangular and trapezoidal. Triangular can be

symmetric or asymmetric. In symmetric representation, (v, l) are taken where v gives the

position of the vertex and l gives the support distance where perpendicular bisects it. A

notation for asymmetric is (a/b/c) where b is the vertex and (a, c) gives the support (i.e.

the base of the triangle). If the core (like vertex b) is not a single value, then it gives rise

to trapezoidal fuzzy numbers. It uses the notation (a/b/c/d) with [a, d] as support and [b,

c] as base.

Fuzzy arithmetic is primarily based on two methods:

1. Extension Principle

If A and B are two fuzzy numbers, then C is calculated as the supremum of the min of

these two. This is shown in the given equations:

2. Interval arithmetic on alpha cuts.

Alpha-cuts are slices through a fuzzy set producing crisp (non-fuzzy) sets.

 7

0

Given a fuzzy set ~
A

, the alpha-cut (or lambda cut) set of ~
A

 is defined by

)(
~

xxA A

Note that by virtue of the condition on
)(

~

xA in above equation, i.e., a common property,

the set A is now a crisp set. In fact, any fuzzy set can be converted to an infinite number

of cut sets.

Alpha cut sets are calculated for the following equations:

Fuzzy COCOMO

COCOMO II being more popular, is taken into consideration in the paper.the basic

equations are given as follows:

In this case, fuzzification is done for all parameters which are inexactly known using the

TFN values. Another concept implemented in that of inverse problem.

Fuzzy Estimators

In this paper only one method of fuzzy estimation that is expert opinion is considered.

Then a value “b” is obtained from experts. This is then fuzzified using triangular fuzzy

number concept. It is assumed that b1 is the pessimistic value, b 3 is the optimistic value

and b2 is the most likely value. Thus a TFN is constructed by using b=(b1 /b2 /b3) for b.

This is one approach towards fuzzy estimators.

 The Inverse Problem

 7

1

It can be explained as:

“Given an effort budget, where should resources be directed to increase possibility of

staying within budget?"

A research based on Monte Carlo method is done for this problem. And additional

evaluations are carried out by a defined defuzzification scheme. The Monte Carlo method

takes as input an incomplete set of parameters (linguistic) and the target fuzzy solution (

ie. the effort and the development time).It then optimizes them in such a way so as to

resolve the unknown fuzzy parameters and make a complete set available.

 7

2

PAPER 2

On the Use of Fuzzy Regression in Parametric Software Estimation Models:

Integrating Imprecision in COCOMO Cost Drivers

F. Javier. Crespo, Miguel-Ángel Silicia, Juan J. Cuadrado

Summary

Parametric software estimating models are based on inherently imprecise and uncertain

input variables. These use mathematical models elaborated from regression techniques to

obtain effort of development estimates. In this paper, preliminary results on using fuzzy

inputs to f-regression have been reported. It shows that fuzzy regression is able to obtain

estimation models with similar predictive properties than existing basic estimation

models.

The limitations of COCOMO in crisp set evaluation arises due to the imprecision of the

limited set of labels and the uncertainty of the human approximate judgments about

abstract concepts of the various parameters. In this paper the concept of fuzzy regression

is shown to overcome the limitations. Fuzzy regression analysis approaches can be

roughly categorized in two groups:

1. Classical fuzzy regression –it is based on the assumption that deviations are due to

the fuzziness of parameters

2. Fuzziness in the experimental points while using a crisp model.

In this paper, the second method is implemented. It takes into consideration the

imperfection in the input assessment.

The standard COCOMO is given below:

where e is the effort,

a and b are constants

and M is the product of the cost drivers ranked on linguistic ordinal scales,

it can be given as:

 7

3

 This paper takes into account the kind and impact of uncertainty of each of these cost

drivers and calculates an upper bound error for them. Only an upper bound is calculated

because of diversity of imperfection of different parameters.

The f-regression method is based on obtaining a coefficient vector a for a given crisp

model, assuming that experimental points (both inputs and actual outputs) are modeled as

fuzzy numbers µQ(xi, y) modeled as the product T-norm of the fuzzy numbers

representing inputs and outputs. Then, a similarity measure Mi(a) with function f (for

coefficient vector

a) for a given fuzzy point Qi is defined as follows:

In addition, an aggregation operator M is used to compute the similarity of a set of fuzzy

points to a given coefficient vector for function f. Its aggregation operation is given as

follows:

The optimal coefficient vector a* is obtained by random search techniques as described

by above equation.

Thus, the same ordinal linguistic scale for cost drivers is mapped to different non-regular

intervals that suggest a loss of information when casting input variables to the numbers.

Another limitation of this paper lies in requiring further research in fuzzy formulation of

input values, which may eventually result in more accurate models, e.g. cost drivers

selected in COCOMO are heterogeneous in uncertainty terms, so that different forms of

membership functions would be required for a more realistic modeling.

 7

4

PAPER 3

f-COCOMO : Fuzzy Constructive Cost Model in Software Engineering

Fei Zonglian, Liu Xihui

Summary

In this paper, the fuzzy Constructive Cost Model (f-COCOMO) is presented. This

involves overcoming the limitations of the existing COCOMO and making it more

tolerant to imprecision using a domain of Soft Computing called Fuzzy Logic. It shows

how allowing for uncertainties leads to improved decision making. It provides a

reasonable estimation of manpower and development time.

Though the analysis methodology of COCOMO takes the uncertainties of randomness

into consideration; yet, the uncertainty of fuzziness involved in the process of analysis is

not taken into account. In these traditional COCOMO models, linguistic values are used

for representation and user convenience but for calculations, these are converted to

numerical values. These are crisp values. But for linguistic values, use of fuzzy numbers

is generally more efficient.

Basic COCOMO implementation

It gives an equation (l) for estimating the number of Man-Months (MM) required for a

specified software product in terms of the number of thousands of delivered source

instructions (KDSI) and equation (2) for calculating the required development time.

(1)

 (2)

These equations can be transformed into fuzzy ones to ease the process of decision

making. This is done by using relational algebra. This is done by first providing intervals

of values instead of discrete values and then defining the exponential operation for those

intervals.

 7

5

This is shown in the equation below:

Intermediate COCOMO implementation

The intermediate COCOMO has greater accuracy and is suitable for cost estimation in the

more detailed stages a compared to Basic COCOMO. In this case, 15 additional are

defined. Instead of assigning discrete values to the natural language values of these

parameters, they are implemented using intervals in fuzzy logic. This thus led to fuzzy

adjustment factor.

Fuzzy Decision Making

In this paper, a comprehensive evaluation system is provided as shown below:

1. Factor set U={ul ,u2,. . . . ,un}, where ui (i=l, 2,. . ,n) are associated factors

involved.

2. Evaluation set V={vl ,v2,. ,vm}, where vj (j=l,2,. ,m) represent the

results of evaluation of the system.

3. Fuzzy relationship matrix(R)

4. Weight Set (a)

Comprehensive evaluation

b = a * R,

Where * gives the composition operator.

“b” is the result of the evaluation and bj gives the degree of membership.

In the given paper, this concept is explained by taking an example of selection of

powerful computer. Here “b” is evaluated and it is verified that the result is more

reasonable due to fuzzy application.

 7

6

PAPER 4

FULSOME

Stephen G. MacDonell, Andrew R. Gray, and James M. Calvert

Summary

This paper discusses the benefits of using fuzzy logic modeling for software metric

models. Fuzzy Logic has joined both traditional and robust statistical techniques,

regression and classification tress, case based reasoning and neural networks, model

based attempts for efficient software development.

Advantages of using fuzzy logic:

 using expert knowledge based system

 using linguistic values before actual values are known

 allowing less precise estimates for models

Function Point Approach can be implemented using fuzzy logic as it is well documented

and has quality control.

Software and guidelines leads to adopting fuzzy logic scheme prominently.

Conventionally the models fail to predict the software effort before coding, in some cases

like COCOMO the size measure is transformed before hand .Fuzzy logic implementation

of software metrics helps by use of single model, ability to cope with small or non

existent data sets, robustness to data quality and use of fuzzy logic as means of

communicating project management issues.

Using a single model through out the entire development model is advantageous as it

takes linguistic inputs in the form of small or large and gives output as precise crisp

values .In multiple models the requirements to predict effort is less but it leads to

fluctuation and inconsistency.

Effort prediction from a fuzzy logic model can be made in different stages of

development cycle with different levels of precision. This paper suggests some of the

levels of precision in estimating development effort

 7

7

Fuzzy models can be easily constructed with a small sample of data to validate the

models

FULSOME provides software metrics developer using a series of tools like to input data,

membership function, rule creation, inferencing and online explanation of fuzzy logic.

Few of the membership functions used are Gaussian, Bell, Trapezoidal, Triangular,

Sigmoidal, Tnorm, Tconorm and defuzzification strategies.

This paper has generated an algorithm for membership functions. This involves selecting

a function and finding the center and making it the center of cluster. This can be

explained by the following algorithm as given in the paper:

1. Select an appropriate mathematically defined function for the membership functions

of the variable of interest (i), say fi(z)

2. Select the number of membership functions that are desired for that particular

variable, mi functions for variable i

3. Call each of the mi functions fij([z]) where j = 1. . .mi and [XI is an array of parameters

defining that particular function (usually a center and width parameter are defined,

either explicitly or implicitly)

4. Using one-dimensional fuzzy c-means clustering on the data set find the ma cluster

centers, from the available data

5. Sort the cluster centers into monotonic

6. Set the membership function center for f a J , generally represented as one of the

parameters in the array [z], to the cluster center ctJ

7. Set the membership function widths for fij in [x] such that f t n ([c z n , . ..I) = 1, or

as close as possible for the chosen f(z) where this can not be achieved exactly (for

example for triangular membership functions each function can be defined using three

points, a, b, and c where a is the center of the next smaller functions and c is the

center of the next larger function)

 7

8

PAPER 5

On Generating FC Fuzzy Rule Systems from Data Using Evolution Strategies

Yaochu Jin, Member, IEEE, Werner von Seelen, and Bernhard Sendhoff

Summary

Software sizing is an important management activity for both customer and developer

that is characterized by uncertainty. Fuzzy system modeling offers a means to capture and

logically reason with uncertainty. This paper investigates the application of fuzzy

modeling techniques to two of the most widely used software effort prediction models,

the Constructive Cost Model and the Function Points model.

SOFTWARE PREDICTION MODELS

A. Current Methods

Current methods of software effort prediction include

1) expert opinion,

2) 2) analogy,

3) decomposition and summation , and

 4) algorithmic models which attempt to relate input cost drivers to output effort (cost)

Algorithmic modeling is preferred by management because the inputs are quantifiable:

and it is a repeatable process. These models use linear regression to correlate cost drivers,

based on historical data, to the effort required.

B. Constructive Cost Model

COCOMO, developed by Boehm while at TRW, is used in three phases. Basic

COCOMO has two inputs: the mode and LOC estimate (in thousands of delivered source

code), and produces a nominal effort estimate using the nonlinear equation.

 7

9

Intermediate COCOMO uses the product of 15 adjustment factors [Table 21, determined

by the user, and the nominal effort (from Basic COCOMO) to produce an adjusted effort

estimate.

C. Function Points

 Functionality factors in each of five categories are counted and given an expert

weighting

 8

0

FUZZY MODELING APPROACH

An alternate approach to the effort prediction problem is to use fuzzy systems that

perform a mapping between linguistic terms such as “medium complexity” and “high

cost”. Fuzzy systems are able to capture uncertainty associated with independent input

variables (cost drivers) and output variables (cost/effort) using fuzzy set theory. Fuzzy

logic is used as an approximate reasoning technique.

A fuzzy expert system has three parts:

 fuzzification of inputs,

 imprecise reasoning with a fuzzy rule bank, and

 defuzzification for final output.

Inputs and outputs can be either linguistic or numeric. Fuzzification involves finding the

membership of an input variable with a linguistic term.

Some of the benefits of using fuzzy modeling techniques for software effort prediction:

 intuitive nature of linguistic inputs and output

 possible reduction of input variables

 approximate reasoning ability

 8

1

 better performance early in sizing task

 reduces dependence on historical data

 reduces commitment on crisp prediction

Fuzzy COCOMO and Fuzzy Function Points Models

One way to deal with the imprecision in these models involves in,serting a fuzzy expert

system to calculate the adjustment factor.

A second alternative involves reducing the number of inputs of both models and inserting

the fuzzy expert system at the top layer. For COCOMO, this would eliminate the equation

calculation. For functions points, it would eliminate the function points calculation.

 8

2

PAPER 6

f
2
 COCOMO: Estimating Software Project Effort and Cost

Allan Caine and Anne Banks Pidduck

Summary

The Constructive Cost Model, COCOMO, was developed to estimate the effort and cost

to complete a software project. All business enterprises involved in developing software

must know their costs to maintain their long-term viability. COCOMO measures the size

of the project is lines of code. When the size of the project is measured in function points,

COCOMO uses a function points to lines of code converter. By experimentation, this

research paper shows that software project data can be analyzed on a programming

language basis. The different programming languages are reflected in the constants a and

b. A model can be derived for each programming language by simply separating the data

on a programming language basis. Suppose we have project data which relates function

points to project effort. If that data is separated by programming language and analyzed,

then a function point model, f2 COCOMO, can be derived for each programming

language. One advantage of this model is that it eliminates the errors introduced by

arbitrary function point indices and replaces them with constants that are scientifically

verifiable.

The formula for COCOMO is:

where SM is effort, S is lines of code, EAF is effort adjustment factor and a and b are

constants.

Similarly for COCOMO II, the formula is:

 The COCOMO 81 and COCOMO II models both models have a major deficiency that

they cannot take function points as a direct input. Yet function points are a superior

 8

3

metric to measuring project size compared to lines of code. Instead, a function point

index is used to convert the function points to an equivalent number of lines of code using

a standard converter. Unfortunately, the values of these indices are not universally agreed

upon and any errors in the values of these indices materially affect the estimate of the

software project effort and consequently the estimated cost of producing the software.

In the model proposed in this paper, function points, EM, W, and possibly other model

inputs are taken as a direct input. The function point to lines of code converter is not used.

The box labeled ‘f
2
 COCOMO’ is the mathematical formula, which computes SM2 from

function points, EM, W, and possibly other model inputs. In this, experiments were

carried out by re-computing the values of constants a and b in the formula given earlier.

It uses the Gauss-Newton method. This begins by assuming a form of the solution and

taking an initial guess of the parameters a and b. Iteratively, the method computes the

‘goodness-of-fit’ of the current parameters, and computes new and better parameters. As

it iterates, the method (hopefully) converges upon the ‘correct’ solution.

 8

4

PAPER 7

Software Cost Estimation with Fuzzy Models

Petr Musilek, Witold Pcdrycz, Giancarlo Succi, Marek Reformat

Summary

Estimation of effort/cost required for development of software products is inherently

associated with uncertainty. This paper deals with a fuzzy set-based generalization of the

COCOMO model (f-COCOMO).Rather than using a single number, the software size can

be regarded as a fuzzy set (fuzzy number) yielding the cost estimate also in form of a

fuzzy set. The paper includes detailed results with this regard by relating fuzzy sets of

project size with the fuzzy set of effort. The analysis is carried out for several commonly

encountered classes of membership functions (such as triangular and parabolic fuzzy

sets). Here the emphasis is on a way of propagation of uncertainty and ensuing

visualization of the resulting effort (cost). In the simplest augment the model by

admitting, software systems to belong partially to the three main categories (namely

embedded, semidetached and organic). In general, these models are based on measuring

certain size or function related attributes of the software and relating these measurements

to the cost or effort necessary for its development.

Fuzzy sets (as opposed to standard interval analysis) create a more flexible, highly

versatile development environment. Firstly, they help articulate the estimates and their

essence (e.g., by exploiting fuzzy numbers described by asymmetric membership

functions).Secondly, they generate a feedback as to the resulting uncertainty (granularity)

of the results.

The reason for extending traditional cost estimation models using fuzzy logic stems from

the vagueness present in all the data entering cost estimation process: size, function

points, development modes, and other metrics and attributes are matter .of (informed)

guessing rather than exact measurements.

In particular, in this paper, the basic COCOMO model is extended. The reason for this

lies in it being most simple, plausible for extension and availability for database. The

basic equation used is:

 8

5

 which relates effort E to KDSI,K

But size of the project, especially during the earlier stages, is matter of estimation. The

correctness and precision of such estimates are limited. Using fuzzy sets, size of a

software project can be specified by distribution of its possible values. Fuzzy numbers

define various concepts using partial membership functions. Amongst various

membership functions, most often used in this case are, triangular and parabolic. These

are represented by (æ, m, ß) where m is the modal value and æ and ß represent the left

and right boundary values.

Equations of the triangular function: Equations of the parabolic function:

Fuzzy numbers are special fuzzy sets representing uncertain quantitative information.

They are convex and normal, usually with single modal value. They are also associated

with some vagueness or fuzziness. For evaluation of uncertainty, relative fuzziness is

defined as:

where more the relative fuzziness, more uncertain A is.

Computations involving fuzzy numbers are carried out in the setting of fuzzy arithmetic.

It dwells on the extension principle. The extension principle deals with the generalization

of this mapping to the case of arguments being fuzzy numbers that is B =f (A), where A

and B are fuzzy numbers.

If C= f (A, B) then its membership function can be defined by:

 8

6

This principle is extended to give rise to simple fCOCOMO. Here the input variable (size

K) is a fuzzy set (fuzzy number), so is the effort E and a, b are crisp values. Its extended

equation is as follows:

Using the above equation and the equation of the triangular function, we get:

This directly estimates effort from size of software.

Another application is when the software project may concern a system whose

membership to one of the three system categories is not obvious. In this case values of a,

b are also taken as fuzzy sets. This leads to equation as shown below:

The methodology of fCOCOMO, as presented in this paper can be applied to other

models of software cost estimation also.

 8

7

PAPER 8

COCOMO Cost Model using Fuzzy Logic

Ali Idri, Alain Abran, Laila Kijri

Summary

In this paper COCOMO’81 and in particular its intermediate model is studied with view

to its implementation using fuzzy logic.

The intermediate model is emphasized upon because:

 It is the most widely use version

 Database for only the simple and intermediate models are available

 The simple model doesn’t take enough factors for validation

 Accuracy is greater than the simple model.

The work effort formula is:

MM=A*SIZE
B

∑j=1
15

Cij

where MM are man months, SIZE is size of software in KDSI,

A,B are constants specific to project mode

Cij is the effort multiplier with jth selecting range and ith cost driver.

Assignment of linguistic values uses conventional quantization. So no parameter can

occupy more than class even if it exists at the boundary of 2. This is because values are

taken as intervals with abrupt discrete change between levels instead of gradual. To

overcome this, fuzzy sets are used:

 More general

 Mimic human linguistic ways

 Changes are gradual and not abrupt between levels

Intermediate COCMO is evaluated in same way but effort multipliers are taken as fuzzy

sets. The gradation is less sensitive to changes in inputs.

Hence, in this case accuracy sensitive is to changes in inputs.

 8

8

PAPER 9

On Generating FC Fuzzy Rule Systems from Data Using Evolution Strategies

Yaochu Jin, Member, IEEE, Werner von Seelen, and Bernhard Sendhoff

Summary

Sophisticated fuzzy rule systems are supposed to be flexible, complete, consistent, and

compact (FC3). Flexibility, completeness and consistency are essential for fuzzy systems

to exhibit an excellent performance and to have a clear physical meaning, while

compactness is crucial when the number of the input variables increases. However, the

completeness and consistency conditions are often violated if a fuzzy system is generated

from data collected from real world applications.

The structure of the fuzzy rules, which determines the compactness of the fuzzy systems,

is evolved along with the parameters of the fuzzy systems. Special attention has been paid

to the completeness and consistency of the rule base. The completeness is guaranteed by

checking the completeness of the fuzzy partitioning of input variables and the

completeness of the rule structure. An index of inconsistency is suggested with the help

of a fuzzy similarity measure, which can prevent the algorithm from generating rules that

seriously contradict with each other or with the heuristic knowledge.Soft T-norm and

BADD Defuzzification are introduced and optimized to increase the flexibility of the

fuzzy system.

Incompleteness

A common problem concerning adjustment of the membership parameters is that the

shape of the membership functions is adjusted so drastically that either some of the fuzzy

subsets lose their corresponding physical meanings, or the fuzzy subsets do not cover the

whole space of the input variable. This is called Incompleteness.

The proposed approach is advantageous over the other methods in the following respects.

1) The fuzzy system is compact and efficient because the number of the fuzzy rules is

greatly reduced

 8

9

2) The fuzzy system is complete and no seriously conflicting rules will be generated,

which contributes to the improvement of the generalization ability of the fuzzy system

and guarantees that the knowledge acquired by the fuzzy rules is physically sound,

 3) The fuzzy system is expected to exhibit a better flexibility because soft fuzzy

operators are incorporated and optimized.

Basic Formulas of Fuzzy Systems

which is a fuzzy set whose membership function is described by

where means the T-norm operator. Based on sup-star composition, the overall fuzzy

relation of the fuzzy system in terms of membership function can be written as follows:

The output of a Takagi–Sugeno rule system is in the following form:

The consequent part of the Takagi–Sugeno rules is often simplified to a constant, in

which case the output of the Takagi–Sugeno rules can be written as follows:

 9

0

Flexible Fuzzy Operators

The soft T-norm and BADD defuzzifier are very flexible They can be expressed in the

following

Completeness of the Fuzzy Systems

A fuzzy system is said to be complete if

1. Fuzzy partitioning of each input variable is complete;

2. Rule structure of the fuzzy system is complete.

The over fitting of the fuzzy membership functions results in the following consequences:

1. Fuzzy partitioning become incomplete

2. Physical meaning of some fuzzy subsets may be blurred, that is to say, the fuzzy

subsets lack distinguishability

A fuzzy similarity measure indicates the degree to which two fuzzy sets are equal

In our approach, the fuzzy similarity measure is used to preserve the completeness of the

fuzzy partitionings of the input variables and to preserve the distinguishability of the

fuzzy subsets. For any two fuzzy sets A and B the fuzzy similarity measure is defined by:

where M(A) is called the size of fuzzy set A and can be calculated as follows:

 9

1

A fuzzy rule system may still be incomplete even if the fuzzy partitioning of the input

variables are complete. This happens when the rule structure is incomplete, i.e., some of

the fuzzy subsets are not used by the rule system, which is often the case in the course of

rule structure optimization.

Consistency of the Fuzzy Systems

Therefore, fuzzy rules are regarded as inconsistent, if

1. They have very similar premise parts, but possess rather different consequents,

and

2. They conflict with the expert knowledge or heuristics.

Two fuzzy rules may contradict with each other even if they do not have the same

premise, on the other hand, it is hard to say that two rules are inconsistent if their premise

parts have little similarity.

Then SRP and SRC of these two rules are defined as follows:

where is the total number of the input variables and is the fuzzy similarity measure of

fuzzy sets and as defined in (13). Then the consistency of rule and is defined by:

 9

2

PAPER 10

An Approach to Rule-Based Knowledge Extraction

Yaochu Jin ,Werner von Seelens and Bernhard Sendhoff

Summary

The extraction of easily interpretable knowledge from the large amount of data measured

in experiments is well desirable. A fuzzy rule system is first generated and optimized

using evolution strategies. This fuzzy system is then converted to an RBF neural network

to refine the obtained knowledge. In order to extract understandable fuzzy rules from the

trained RBF network, a neural network regularization technique called adaptive weight

sharing is developed.

Interpretability of a fuzzy system usually involves the following aspects. Firstly, the

fuzzy partitioning for each input variable of the fuzzy system should be complete and

different fuzzy subsets in a fuzzy partitioning should be well distinguishable

1. One direct method to achieve this is to limit the range of the parameters of

membership functions during learning [8]. This can be achieved more flexibly with

the help of a fuzzy similarity measure

2. Secondly, the number of fuzzy subsets in a fuzzy partitioning should be limited and

each fuzzy subset should have one unique membership function, to which a proper

physical meaning can be assigned.

3. Thirdly, fuzzy rules in the rule base should be consistent. Traditionally, this means

that fuzzy rules with the same premise should have the same consequent

A fuzzy system is first generated by virtue of evolution strategies. Then we convert the

fuzzy system to an RBF neural network for further training to refine the acquired

knowledge. After this learning stage, the RBF neural network cannot be directly

converted back to a clearly interpretable fuzzy system because there may be numerous

fuzzy subsets in a fuzzy partitioning which are hard to distinguish and hard to assign

 9

3

proper linguistic values to. To solve this problem, a network regularization algorithm

called adaptive weight sharing is developed to train the RBF neural network further so

that some of the basis functions as well as the output weights in the RBF network share

certain values. As a result, a well interpretable fuzzy system can again be obtained. This

method has proved to be successful by simulation studies on the Mackey-Glass time

series.

Fuzzy System Generation and Optimization

Using Evolution Strategies Completeness conditions:

Suppose an input variable of a fuzzy system x is partitioned into M fuzzy subsets

represented by Al (x), A2 (x), AM (x) on the universe of discourse U, then the

partitioning is complete if the following condition holds:

In the optimization of fuzzy systems based on evolutionary algorithms or neural

networks, it is often the case that either the fuzzy partitionings are incomplete or different

fuzzy subsets in a fuzzy partitioning lack good distinguishability. To avoid this, we

require that every two neighbouring fuzzy sets should satisfy the following constraints:

where S(Ai, Ai+l) is called the fuzzy similarity measure between the two fuzzy subsets Ai

and Ai+l, δ1 and δ2 are two thresholds of the fuzzy similarity measure, where δ1 should be

greater than zero to keep the fuzzy partitioning complete and δ2 should be sufficiently

smaller than δ1 to ensure good distinguishability. The fuzzy similarity measure is defined

by:

where M(.) is called the size of the fuzzy set. If fuzzy set A (x) has a Gaussian

membership function with center p and width (or variance) 0, then M (A(x)) can be

calculated as:

 9

4

It is noticed that if S (Ai, Ai+l) equals 1, the two fuzzy sets overlap completely, i.e. Ai and

Ai+1 are equal. On the other hand, they do not overlap if S (Ai, Ai+l) = 0.

Consistency of fuzzy systems

It is easy to imagine that two fuzzy rules are inconsistent if they have the same

if-part but different then-parts. However, we argue that two fuzzy rules may also be

inconsistent even if their if-parts are different. To evaluate the consistency of two

arbitrary fuzzy rules, definitions of Similarity of Rule Premise (SRP) and Similarity of

Rule Consequent (SRC) are given.

Then SRP and SRC between rule i and rule k are defined in terms of the fuzzy similarity

measure as follows:

where n is the total number of the input variables. The consistency between rule R(i) and

R(k) can now be defined as:

Thus, inconsistency is given by:

where N is the total number of rules.

Since they impose additional restrictions in generating fuzzy systems, they could be

treated as a means of regularization

 9

5

ES based fuzzy rule generation and optimization

The quality of the fuzzy system can be evaluated by the following cost function:

Conversion of the Fuzzy System to an RBF Network

The significance of converting fuzzy systems to neural networks lies in two aspects. On

the one hand, a fuzzy system can be refined taking advantage of the learning ability of

neural networks. On the other hand, the structure of a neural network can be determined

and prior knowledge can be incorporated into the network with the help of a fuzzy

system.

An interpretable fuzzy system and an RBF neural network are equivalent if the following

conditions hold:

1. Both the fuzzy system and the neural network have Gaussian basis function

2. The number of fuzzy rules is equal to the number of receptive field units (or

hidden nodes) in the RBF network.

3. The fuzzy system is either a zero-order Takagi-Sugeno model or a Mamdani

model. If a Mamdani model is used, the corresponding defuzzification method

should be the simplified weighted average

4. The output of the RBF neural network should be normalized.

5. The receptive field units in the RBF network are allowed to have different

variances.

6. Centers and variances from different receptive field units but for the same input

variable should share certain values, which could construct a complete and well

distinguishable fuzzy partitioning.

In this section, we convert the fuzzy system generated by evolution strategies to an RBF

network for further training using the learning algorithm of the neural network. The final

input-output relationship of the fuzzy system with n inputs and one output is expressed as

follows:

 9

6

Consequently, a conventional learning algorithm based on the gradient method can be

directly applied.

Extraction of Fuzzy Rules by Regularization

To extract meaningful fuzzy rules from the trained neural network, we introduce here a

novel weight sharing regularization technique. This technique enables the output weights

and the parameters of the basis functions of the RBF network to share some certain values

so that each fuzzy partitioning has a proper number of fuzzy subsets with well

distinguishable membership functions.

 9

7

PAPER 11

Design Of Fuzzy Controllers

Jan Jantzen

Summary

Fuzzy controllers are used to control consumer products, such as washing machines,

video cameras, and rice cookers, as well as industrial processes, such as cement kilns,

underground trains, and robots. Fuzzy control is a control method based on fuzzy logic.

Fuzzy control can be described simply as ’’control with sentences rather than equations’’.

Design of a fuzzy controller requires more design decisions than usual, for example

regarding rule base, inference engine, defuzzification, and data pre- and post processing.

The approach here is based on a three step design procedure that builds on PID control:

1. Start with a PID controller.

2. Insert an equivalent, linear fuzzy controller.

3. Make it gradually nonlinear.

In a rule based controller the control strategy is stored in a more or less natural language.

The control strategy is isolated in a rule base opposed to an equation-based description. A

rule based controller is easy to understand and easy to maintain for a non-specialist end-

user. The computer is able to execute the rules and compute a control signal depending on

the measured inputs errors and change in errors.

One control scheme is Direct Control where the fuzzy controller is in the forward path in

a feedback control system. The process output is compared with a reference, and if there

is a deviation, the controller takes action according to the control strategy.

 9

8

In Feed forward Control, a measurable disturbance is being compensated. It requires a

good model, but if a mathematical model is difficult or expensive to obtain, a fuzzy

model may be useful.

Fuzzy rules are also used to correct tuning parameters in parameter adaptive control

schemes (Fig. 3). A gain scheduling controller contains a linear controller whose

parameters are changed as a function of the operating point in a preprogrammed way.

Sensor measurements are used as scheduling variable that govern the change of the

controller parameters, often by means of a table look-up.

 9

9

Stability concerns the system’s ability to converge or stay close to equilibrium. A stable

linear system will converge to the equilibrium asymptotically no matter where the system

states Variables start.

There are at least four main sources for finding control rules. The most common approach

to establishing such a collection of rules of thumb is to question experts or operators

using a carefully organized questionnaire.

 Based on the operator’s control knowledge- Fuzzy if – then rules can be deduced

from observations of an operator’s control actions or a log book. The rules

express input-output relationships.

 Based on the fuzzy model on the process- This method is restricted to relatively

low order systems, but it provides an explicit solution assuming that fuzzy

models of the open and closed loop systems are available.

 Based on learning- The self-organizing controller is an example of a controller

that finds the rules itself. Neural networks are another possibility.

Structure of Fuzzy Controller

There are specific components characteristic of a fuzzy controller to support a design

procedure.

 1

0

0

In the block diagram in Fig. 4, the controller is between a preprocessing block and

a post-processing block.

Preprocessor

A preprocessor, conditions the measurements before they enter the controller. Examples

of preprocessing are:

 Quantisation in connection with sampling or rounding to integers;

 Normalization or scaling onto a particular, standard range;

 Filtering in order to remove noise;

 Averaging to obtain long term or short term tendencies;

 A combination of several measurements to obtain key indicators; and

 Differentiation and integration or their discrete equivalences.

A quantizer is necessary to convert the incoming values in order to find the best level in a

discrete universe.

Fuzzification

The first block inside the controller is fuzzification, which converts each piece of input

data to degrees of membership by a lookup in one or several membership functions. The

fuzzification block thus matches the input data with the conditions of the rules to

determine how well the condition of each rule matches that particular input instance.

 1

0

1

Rule Base

The rules may use several variables both in the condition and the conclusion of the rules.

The controllers can therefore be applied to both multi-input-multi-output (MIMO)

problems and single-input-single-output (SISO) problems.

Rule Format

Basically a linguistic controller contains rules in the if-then format, but they can be

presented in different formats.

1. If error is Neg and change in error is Neg then output is NB

2. If error is Neg and change in error is Zero then output is NM

3. If error is Neg and change in error is Pos then output is Zero

4. If error is Zero and change in error is Neg then output is NM

5. If error is Zero and change in error is Zero then output is Zero

6. If error is Zero and change in error is Pos then output is PM

7. If error is Pos and change in error is Neg then output is Zero

8. If error is Pos and change in error is Zero then output is PM

9. If error is Pos and change in error is Pos then output is PB

In case the table has an empty cell, it is an indication of a missing rule, and this format is

useful for checking completeness.

Connectives

Here the lines are connected using if-then-else, if and only if The connectives “and” and

“or” are always defined in pairs, for example, A and B = min (A,B)

Modifiers

A linguistic modifier, is an operation that modifies the meaning of a term.

Universe

Elements of a fuzzy set are taken from a Universe of discourse or just universe.

The universe contains all elements that can come into consideration

 1

0

2

Membership Function

Every element in the universe of discourse is a member of a fuzzy set to some grade,

maybe even zero. The set of elements that have a non-zero membership is called the

support of the fuzzy set. The function that ties a number to each element of the universe

is called the Membership function

Inference Engine

The rules reflect the strategy that the control signal should be a combination of the

reference error and the change in error, a fuzzy proportional-derivative controller. For

each rule, the inference engine looks up the membership values in the condition of the

rule. Following are the operations:

 Aggregation

 Activation

 Accumulation

Defuzzification

The resulting fuzzy set must be converted to a number that can be sent to the process as a

control signal. This operation is called Defuzzification. There are several Defuzzification

methods:

 Center of gravity

 Center of Gravity for singleton

 Bisector of Area

 Mean of Maxima

 Left most maximum and right most maximum

Postprocessing

The postprocessing block often contains an output gain that can be tuned, and sometimes

also an integrator.

 1

0

3

Table based controller

In a table based controller the relation between all input combinations and their

corresponding outputs are arranged in a table.

With two inputs and one output, the table is a two-dimensional look-up table. The array

implementation improves execution speed, without too much searching.

Input output mapping

The controllers have the input families in the if -column and the output families in the

then column. The results depend on the choice of design.

 1

0

4

PAPER 12

Adaptation of Fuzzy Inferencing: A Survey

Payman Arabshahi, Robert J. Marks II, and Russell Reed

Summary

Fuzzy inference has numerous applications, ranging from control to forecasting. A

number of researchers have suggested how such systems can be tuned during application

to enhance inference performance. Inference parameters that can be tuned include the

central tendency and dispersion of the input and output fuzzy membership functions, the

rule base, the cardinality of the fuzzy membership function sets, the shapes of the

membership functions and the parameters of the fuzzy AND and OR operations. In this

paper, an overview of these tuning procedures is given. An extensive bibliography is

provided of recent literature on the topic.

A general fuzzy inference system consists of three parts

The familiar operations to arrive at the output are as follows.

1. Perform a pairwise fuzzy intersection T, on each of the membership values of x1

and x2 in µl 1 and µm2 for every rule with consequent nk, forming activation

values

Let us assume that the (T-norm) operator T itself is parameterized by a, i.e., T = T

(a).

 1

0

5

2. Collect activation values for like output membership functions and perform a

fuzzy union T_, where T_ = T_(b)

3. These values are defuzzified to generate the output estimated value, f (x1; x2), by

computing the centroid of the composite membership function µ:

where

Ak and ck are, respectively, the area and centroid of the consequent

membership function nk.

Adaptation in Fuzzy Inference Systems

All of the stages of the fuzzy inference system are affected by the choice of certain

parameters. A list follows.

A. The Fuzzifier

The fuzzifier maps the input onto the possibility domain and has the following

parameters:

1. The number of membership functions.

2. The shape of the membership functions (e.g. triangle, Gaussian, etc.)

3. The Central tendency (e.g. center of mass) and dispersion (e.g. standard

deviation, bandwidth, or range) of the membership function.

B. The Inference Engine

The inference engine is the system “decision maker” and determines how the system

interprets the fuzzy linguistics. Its parameters are those of the aggregation operators.

which provide interpretation of connectives “AND” and “Or”.

 1

0

6

C. The Defuzzifier

The defuzzification stage maps fuzzy consequents into crisp output values. Its design

requires choice of

1. The number of membership functions.

2. The shape of membership functions.

3. The definition of fuzzy implication, i.e., how the value of the consequents

from the inference engine impact the output membership functions prior to

defuzzification.

4. A measure of central tendency of the consequent altered output membership

functions. The center of mass is typically used, although use of medians and

modes can also be used to arrive at the crisp output.

6.2 f-SEE Analysis and Design Models

The above literature survey was useful in formulating the framework for f-COCOMO

and Inference Based Analysis Models and the Design Models used in f-SEE. It helped

us to choose effective default values for the various fuzzy variables used in f-SEE.

The default rule base provided by us is also based on the study of these papers from

the literature. We have used two fuzzy number based models and we have also

developed a skeleton expert system for fuzzy inference based cost estimation. Rule

Base Editor and Membership Function Editors have been provided to enable the user

to experiment with values other than the default values. All the membership functions

in f-SEE are triangular in nature, as they pertain to software engineering practices and

are widely adopted in the industry. A main reason for this is that they provide a peak,

singleton value, which allows us to specify a crisp set, if required.

 1

0

7

CHAPTER 7

FEATURES AND SOFTWARE CONSIDERATIONS FOR f-SEE

7.1 Introduction

f-SEE is a user-friendly, integrated, graphics-based Software Estimation Environment.

Developed in Visual C#, it provides the user with over 40 interactive forms. The user is

prompted accordingly to rectify an input error. f-SEE has two modes of operation:

1. Analysis

2. Design

The modes are selected using Menu Options. The software provides graceful

degradability in all cases, by means of various error handling mechanisms. In the

Analysis Mode, the user can feed in the information s/he has about the software and

employ the models provided for software estimation. The models have been classified at

three levels- Conventional Models, which include the Basic COCOMO Model, the

Intermediate COCOMO Model and the Function Point Measure; Fuzzy Models, which

include the Basic f-COCOMO Model, the Intermediate f-COCOMO Model and the

Fuzzy Inference Based Estimation Model; and Object-Oriented Models, which includes

the Class Point Measure. The Conventional Models have been suggested in the 1980s by

Prof. Barry Boehm of the University of South Carolina. The f-COCOMO Models (Basic

and Intermediate) have been based on the lines of the model suggested by Musilek et al.

The Design Mode is a special crucial feature of f-SEE that offers the user design guidance

and support. This mode of operation allows the user to validate all the membership

functions of the fuzzy variables used in the inference engine (KLOC, Complexity and

Effort). It also helps the user to improve his/her membership function. The module checks

for two main characteristics – Incompleteness and Lack of Distinguishability.

Incompleteness is exhibited by the fuzzy variable if certain values from its Universe of

Discourse are left unmapped on the µ-axis. The fuzzy variable exhibits Lack of

Distinguishability when the physical meaning of the fuzzy subsets defined on the

Universe of Discourse is blurred. The Design Mode also provides Rule Base Validation.

Fuzzy Rules are regarded as inconsistent if they have very similar premise parts and

rather different consequents. Fuzzy membership graphic display is provided in f-SEE for

 1

0

8

pictorial representation. A Summary Sheet showing a rule-by-rule similarity based report

is generated by the software.

Major Highlights of f-SEE:

 It is an easy-to-use, user-friendly, GUI based software package

 It provides graceful degradability at all times

 It caters for analysis as well as design in the same environment

 It serves as a comparator tool for the various estimation models of analysis

 It can serve in the industry as a deliverable, as well as a research software for

independent study, thus making it very versatile specially for SMEs who cannot

afford expensive tools

 It allows the user to plot all the membership functions associated with the fuzzy

variables to the scale

 It also allows the user to save all the validated membership functions to the

Inference Engine for future use

 It provides a Membership Function Editor and a Rule Base Editor, thus equipping

the user with the facility of modifying the inferencing process to suit his/her needs

 It provides a basic Primer for users who are not well-equipped with the basics of

Software Engineering and Fuzzy Logic

Analysis Mode

Conventional Models

o Basic COCOMO

o Intermediate COCOMO

o Function Point Measure

 Fuzzy Models

o Basic f-COCOMO

o Intermediate f-COCOMO

o Fuzzy Inference Based Estimation

 Object-Oriented Models

 1

0

9

o Class Point Measure

Design Mode

 KLOC Validation

 Complexity Validation

 Effort Validation

 Rule Validation

Programming language selection for f-SEE development was a very important

consideration. We had Java and C# as two major options and we selected Visual Express

C# environment primarily due to its ease of availability from Microsoft and the emerging

popularity of .NET platforms. We found several web sites providing reference articles for

understanding C# language. Although Visual C# has been used for development of f-

SEE, it is not required to deploy f-SEE. Thus, the SME units need not have Visual C#

installed on their PCs. For deploying f-SEE, we have to first install .NET framework

(version 2), if it is not already installed e.g. in Windows 98 and Windows ME. However,

Windows Xp which is being used by several SME units is already .NET framework

enabled. The executable version installs using setup.exe file. In order to get insight into

the potentials of f-SEE, several screen shots are included in this report.

 1

1

0

7.2 UML Diagrams for f-SEE Classes

We have used the Visual C# environment for developing the software. Over 40 forms

have been developed, and the environment defines partial classes for these forms

accordingly. In addition to the forms, we have added two classes for catering to similarity

operations and Rule Consistency operations. We are providing UML diagrams for these

two classes.

 1

1

1

7.3 f-SEE Screen Shots

 1

1

2

 1

1

3

Basic COCOMO

 1

1

4

Intermediate COCOMO

 1

1

5

Intermediate COCOMO

 1

1

6

Intermediate COCOMO

 1

1

7

Function Point Measure

 1

1

8

Function Point Measure

 1

1

9

Basic f-COCOMO

 1

2

0

Basic f-COCOMO

 1

2

1

Intermediate f-COCOMO

 1

2

2

Intermediate f-COCOMO

 1

2

3

Intermediate f-COCOMO

 1

2

4

Intermediate f-COCOMO

 1

2

5

Fuzzy Inference Based Estimation

 1

2

6

Fuzzy Inference Based Estimation

 1

2

7

Fuzzy Inference Based Estimation

 1

2

8

Fuzzy Inference Based Estimation

 1

2

9

Class Point Measure

 1

3

0

Class Point Measure

 1

3

1

KLOC Validation

 1

3

2

Complexity Validation

 1

3

3

Effort Validation

 1

3

4

Rule Base Validation

 1

3

5

Rule Base Validation

 1

3

6

Rule Base Validation

 1

3

7

Rule Base Validation

 1

3

8

Rule Base Validation

 1

3

9

About f-SEE

 1

4

0

7.4 f-SEE Source Code File Sizes Summary Details

C:\tap8semprj\fSEE\fSEETap\fSEETap>dir *.cs

 Volume in drive C has no label.

 Volume Serial Number is 74A5-A460

Directory of C:\tap8semprj\fSEE\fSEETap\fSEETap

04/22/2007 12:48 AM 3,628 Form1.cs

04/22/2007 12:36 AM 19,603 Form1.Designer.cs

04/25/2007 08:15 PM 7,663 Form10.cs

04/25/2007 07:47 PM 7,558 Form10.Designer.cs

04/22/2007 09:49 PM 3,657 Form11.cs

03/21/2007 11:32 PM 2,165 Form11.Designer.cs

03/25/2007 11:47 AM 1,819 Form12.cs

03/23/2007 10:14 PM 5,874 Form12.Designer.cs

03/25/2007 12:04 PM 4,202 Form13.cs

03/25/2007 12:01 PM 10,467 Form13.Designer.cs

03/23/2007 10:45 PM 1,773 Form14.cs

03/23/2007 02:45 PM 9,955 Form14.Designer.cs

03/23/2007 04:09 PM 6,021 Form15.cs

03/23/2007 04:09 PM 12,345 Form15.Designer.cs

03/25/2007 11:46 AM 6,410 Form16.cs

03/25/2007 11:36 AM 2,048 Form16.Designer.cs

03/25/2007 11:37 AM 2,187 Form17.cs

03/25/2007 10:53 AM 7,250 Form17.Designer.cs

03/24/2007 11:53 AM 745 Form18.cs

03/24/2007 11:53 AM 5,092 Form18.Designer.cs

03/25/2007 10:50 AM 2,048 Form19.cs

03/25/2007 10:50 AM 7,190 Form19.Designer.cs

04/25/2007 07:38 PM 5,135 Form2.cs

 1

4

1

03/18/2007 07:50 PM 9,791 Form2.Designer.cs

03/24/2007 05:03 PM 3,188 Form20.cs

03/24/2007 04:57 PM 16,652 Form20.Designer.cs

03/24/2007 05:10 PM 3,554 Form21.cs

03/24/2007 05:07 PM 18,201 Form21.Designer.cs

03/24/2007 05:23 PM 4,603 Form22.cs

03/24/2007 05:23 PM 23,830 Form22.Designer.cs

03/24/2007 09:57 PM 3,376 Form23.cs

03/24/2007 09:57 PM 16,761 Form23.Designer.cs

03/24/2007 10:11 PM 952 Form24.cs

03/24/2007 10:12 PM 5,113 Form24.Designer.cs

03/25/2007 11:37 AM 1,843 Form25.cs

03/25/2007 11:27 AM 9,950 Form25.Designer.cs

03/25/2007 10:09 PM 336 Form26.cs

03/25/2007 10:09 PM 1,408 Form26.Designer.cs

04/26/2007 11:03 AM 11,170 Form27.cs

03/27/2007 12:16 AM 10,559 Form27.Designer.cs

03/31/2007 05:59 PM 1,701 Form28.cs

03/31/2007 05:57 PM 8,256 Form28.Designer.cs

04/26/2007 11:20 AM 5,500 Form29.cs

03/27/2007 12:58 AM 10,639 Form29.Designer.cs

04/22/2007 09:53 PM 2,307 Form3.cs

03/21/2007 08:13 PM 9,031 Form3.Designer.cs

03/31/2007 05:59 PM 1,682 Form30.cs

03/31/2007 05:59 PM 8,268 Form30.Designer.cs

04/26/2007 11:24 AM 5,414 Form31.cs

03/27/2007 01:17 AM 10,564 Form31.Designer.cs

03/31/2007 06:04 PM 1,882 Form32.cs

03/31/2007 06:02 PM 8,260 Form32.Designer.cs

04/26/2007 12:54 PM 8,515 Form33.cs

04/21/2007 09:55 PM 22,292 Form33.Designer.cs

04/26/2007 12:34 PM 11,365 Form34.cs

 1

4

2

04/20/2007 08:14 PM 19,316 Form34.Designer.cs

04/26/2007 11:26 AM 20,120 Form35.cs

04/26/2007 11:26 AM 22,957 Form35.Designer.cs

04/26/2007 12:37 PM 862 Form36.cs

04/20/2007 08:26 PM 5,024 Form36.Designer.cs

04/26/2007 12:50 PM 6,395 Form37.cs

04/21/2007 09:53 PM 17,872 Form37.Designer.cs

04/26/2007 12:38 PM 14,136 Form38.cs

04/22/2007 12:00 AM 23,110 Form38.Designer.cs

04/26/2007 12:38 PM 882 Form39.cs

04/21/2007 11:46 PM 5,039 Form39.Designer.cs

04/25/2007 07:43 PM 4,544 Form4.cs

03/19/2007 08:32 PM 9,833 Form4.Designer.cs

04/26/2007 11:31 AM 536 Form40.cs

04/26/2007 11:31 AM 5,394 Form40.Designer.cs

03/22/2007 12:04 AM 3,595 Form5.cs

03/22/2007 12:04 AM 17,187 Form5.Designer.cs

03/22/2007 12:04 AM 3,593 Form6.cs

03/17/2007 04:43 PM 18,516 Form6.Designer.cs

03/24/2007 05:16 PM 5,114 Form7.cs

03/24/2007 05:16 PM 24,660 Form7.Designer.cs

03/22/2007 12:03 AM 3,400 Form8.cs

03/17/2007 07:07 PM 17,038 Form8.Designer.cs

04/25/2007 07:44 PM 2,665 Form9.cs

03/21/2007 11:49 PM 8,612 Form9.Designer.cs

03/11/2007 10:18 PM 474 Program.cs

 81 File(s) 652,672 bytes

 1

4

3

CHAPTER 8

FUTURE SCOPE

f-SEE is an integrated software package for effort estimation (with design support) for

software projects Its usefulness in the initial phase of software projects tender bidding

process is of paramount significance since it computes effort assessment using

conventional as well fuzzy models. f-SEE uses concepts of fuzzy set representation for f-

COCOMO model. It has also provisions to compare analysis using function point and

class point conventional models. We discuss the future scope of work along the above

lines.

The existing fuzzy model uses the popular triangular representation of fuzzy membership

functions. It needs to be examined and compared whether the trapezoidal and S/Pi

representation of membership functions will be more effective or the popular triangular

membership function is adequate, especially during contract tender bidding process. f-

SEE could be accordingly augmented to represent other forms of fuzzy membership

functions.

The function point and class point modules use the required data as a user supplied input.

We have interacted with some software specialists and the opinion was that there should

be a mechanism to assist the software professionals on this front also. We recommend

that similar to Rational Rose philosophy of UML modeling, f-SEE could be provided

with a front end interface. Thus, the existing f-SEE GUI should be tied with the module

to UML analysis of software thereby providing an extra resource for data input in

addition to the existing user supplied inputs for function / class point modules.

As suggested by Kitchenham and Heffery, misleading metrics and unsound analyses are

the causes of concern amongst large software development houses like IBM, Australia.

We see considerable future applications of f-SEE to expand on the fuzzy rule base

modeling using AI techniques like evolutionary computing and genetic algorithm. It

might be argued that because function point and class point approaches are not that useful

 1

4

4

during the tender bidding process, these may be separated from the f-SEE. However, we

strongly feel that fuzzy logic rule base could be a great source to overcome the lacuna of

function point / class point methodologies in future. A work in this direction will be

useful for software developers as well as outsourcing agencies that can have a joint,

validated approach for assessing web enabled projects.

 1

4

5

CHAPTER 9

REFERENCES

1. Aggarwal K.K., Singh Y., Software Engineering, New Age International Publishers,

2006

2. Arabshahi P., Marks R.J., Reed R., Adaptation of Fuzzy Inferencing: A Survey, Proc.

IEEE/Nagoya Univ. Workshop, Learning and Adaptive Systems, Nagoya, Japan,

Nov. 1993

3. Caine, A., and Pidducks A.B., f
2
 COCOMO: Estimating Software Project Effort and

Cost, Proceedings of the 6th International Workshop on Economic-Driven Software

Engineering Research (EDSER-6), Edinburgh, Scotland: IEEE, 2004.

4. Chen W., Saif M., A Novel Fuzzy System with Dynamic Rule Base, IEEE Trans. on

Fuzzy Systems, Vol. 13, No. 5, pp. 569-582, October 2005

5. Costagaliola G., and Tortora G., Class Point: An Approach for the Size Estimation of

Object-Oriented Systems, IEEE Trans. On software Engineering, Vol. 31, No. 1, pp

52-74, Jan. 2005

6. Fei Z., f-COCOMO: Fuzzy Constructive Cost Model in Software Engineering, IEEE

International Conference on Fuzzy Systems, pp. 331-337, March, 1992

7. Idri A., Abran A., and Kijri L., COCOMO Cost Model using Fuzzy Logic, 7
th

International Conference on Fuzzy Theory & Technology, NJ, 2000

8. Jantzen J., Design of Fuzzy Controllers, Technical University of Denmark, 98-E-864,

1998

 1

4

6

9. Javier F.C., Sicilia M.A., and Cuadrado J.J., On the Use of Fuzzy Regression in

Parametric Software Estimation Models: Integrating Imprecision in COCOMO Cost

Drivers, accessed at http://www.inf.uc3m.es

10. Jin Y., von Seelen W., and Sendhoff B., Jin Y., An Approach to Rule-Based

Knowledge Extraction, Proceedings of IEEE International Conference on Fuzzy

Systems, Vol 2 pp. 1188-1193, May 1998

11. Jin Y., von Seelen W., and Sendhoff B., On Generating FC
3
 Fuzzy rule systems from

Data Using Evolution Strategies, IEEE Trans. On Systems, Man and Cyberbetics,

Part B: Cybernetics, Vol. 29, No. 6, June, pp. 376-386, pp. 829-845, Dec. 1999

12. Jowers L.J., James J.B., and Reilly K.D., Estimation of f-COCOMO Model

Parameters using Optimization Techniques, Oct 2006

13. Kapoor A., Patki T, Khurana S. – Analytical Methodologies in Soft Computing Part-I:

Exposure to cyber forensic Software tools Part II, Training Report Submitted to DIT,

July 2005

14. Kapoor A., Pandey P., Fuzzy Implementation of Class Point Approach, Training

Report Submitted to DIT, July 2006

15. Kitchenham B., and Jeffery D.R., Misleading Metrics and Unsound Analysia, IEEE

Software, pp. 73-78, Mar-Apr, 2007.

16. Klir G., and Folger T., Fuzzy Sets, Uncertainty and Information, Prentice Hall,

January 1988

17. MacDonell S.G., Gray A.R., and Calvert J.M., FULSOME: Fuzzy Logic for Software

Metrics Practitioners and Researchers, ICONIP -1999, Proceedings of International

conference on Neural Information Processing, IEEE, pp. 308-313, 1999

http://www.inf.uc3m.es/

 1

4

7

18. Musilek P., Pedrycz W., Succi G., and Reformat M., Software Cost Estimation with

Fuzzy Models, ACM SIGAPP Applied computing Review, Vol. 8, Issue 2, 2000

19. Patki Tapasya, and Khurana Swati , Software Cost Estimation and Software

Obfuscation: A Fuzzy Logic Perspective, Technical Report Submitted to Department

of Information Technology, New Delhi, July 2006

20. Rajsekaran S., and Pai G.A.V, Neural Networks, Fuzzy Logic, and Genetic

Algorithms – Synthesis and Applications, Prentice Hall India, 2006

21. Setnes M., Babuska R., Kaymak U., and Nauta Lemke H.R., Similarity Measures in

fuzzy Rule Base Simplification, IEEE Trans. On Systems, Man and Cybernetics, Part

B: Cybernetics, Vol. 28, No. 3, June, pp. 376-386, 1998

22. Zadeh, L. A., Fuzzy Sets, Information and Control, (8), pp. 338-353, 1965

23. Zadeh, L. A., A Fuzzy-Algorithmic Approach to the Definition of Complex or

Imprecise Concepts, Int. Journal Man-machine Studies, (8), pp. 249-291, 1976

