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SYNOPSIS 

Software engineering is concerned with the conception, development and verification of a 

software system. This discipline deals with identifying, defining, implementing and 

verifying the characteristics of a software product. These characteristics include attributes 

such as desired functionality, maintainability, testability, ease-of-use, portability, and 

reliability. Software engineering addresses these characteristics by preparing design and 

technical specification documents, which when adhered to, will result in software that can 

be verified to meet these requirements. Software Estimation is an important area that 

falls under the planning procedure for any software. For a given set of requirements, it is 

desirable to know how much it will cost to develop the software and how much time and 

effort the actual development will take. Estimation of resources, cost, and schedule for a 

software project requires experience, access to good historical information, and the 

courage to commit to quantitative predictions when qualitative information is all that 

exists.  

Cost models provide direct estimates of effort. These models typically have a primary 

cost factor such as size and a number of secondary adjustment factors or cost drivers. 

Cost drivers are characteristics of the project, process, products, or resources that 

influence effort. Boehm derived a cost model called COCOMO (Constructive Cost 

Model) using data from a large set of projects at TRW, a consulting firm based in 

California. COCOMO is a relatively straightforward model based on inputs relating to the 

size of the system and a number of cost drivers that affect productivity. The original 

COCOMO is a collection of three models: a Basic model that is applied early in the 

project, an Intermediate model that is applied after requirements are specified, and an 

Advanced model that is applied after design is complete. 

Fuzzy Logic, a sub-discipline of Soft Computing, was conceived by Prof. Lofti Zadeh. It 

is a form of logic that is tolerant to imprecision, partial truth and uncertainty, and is hence 

able to capture the linguistic domains of software evaluation and modeling. Software cost 

estimation deals with the planning and tracking of software projects. This calls for 
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predictions of the likely amount of effort, time and staffing levels required to build a 

software system. Existing models for this prediction process rely on accurate estimate of 

either size of the software in terms of the lines of code, number of user screens etc., or on 

the functionality or feature based analysis. Algorithmic models such as COCOMO, have 

failed to present suitable solutions, due to their inability to capture the complex set of 

relationships (e.g., the influence of each variable in a model on the overall predication 

made using the model) that are evident in several software development environments. 

While these existing models can be successful in a certain limited environments, they are 

not flexible enough to adapt to new environments. These models cannot handle 

categorical data (i.e. data that is specified over a range of values) and lack the reasoning 

capabilities. Fuzzy Logic, with its offerings of a powerful linguistic representation can 

easily incorporate imprecision in inputs and outputs, while providing a more expert-

knowledge based approach to model building. We propose a framework for an 

interactive, integrated estimation environment that we refer to as “f-SEE- Fuzzy Software 

Estimation Environment”. The platform used is Visual C#. 
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CHAPTER 1 

MOTIVATION 

 

A recent report undertaken by National ICT, Australia and IBM Australia, published in 

IEEE Software, talks about misleading software metrics and unsound estimation analysis 

procedures. This report clearly highlights that uncertainty and unclear advice in the 

software planning phase results in the adoption of incorrect data aggregation and analysis 

techniques in the software cost modeling phase. Existing models have been successful in 

the pre-Internet and the pre-Offshoring era, where software was not a global 

phenomenon, and when computers were merely used for automation of simple processes. 

The last few decades, however, have seen a boom in the software industry, with many 

Small and Medium Enterprises (SMEs) and Multi National Companies (MNCs) joining 

the league of software consultancy and software services. These companies build 

significantly complex software systems with constantly changing requirements. 

Conventional models are intolerant to uncertainty, partial truth and approximations, thus 

causing disappointment and collapse of trust amongst the interacting groups. Thus, there 

is a strong urge to resort to cost estimation models that translate to real-life scenarios and 

function on linguistic scales, instead of the absolute numeric scales of the conventional 

models. Soft Computing addresses most of these issues, and Fuzzy Logic being one of the 

most popular and established disciplines of Soft Computing, has been used to deal with 

software cost estimation in this work. 
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CHAPTER 2 

SOFTWARE ENGINEERING PRACTICES 

 

2.1 Introduction to Software Engineering 

Computer software is formally defined as a set of programs and procedures required to 

enable a computer to perform a specific task, as opposed to the physical components of 

the system (hardware). John W. Tukey first used the term “software” in this sense in 

1957. Software has historically been considered an intermediary between electronic 

hardware and data, which later the hardware processes according to the sequence of 

instructions defined by the software. 

The early decades of the emergence of information technology focused on hardware 

requirements of a system rather than the software or the set of programs providing 

functionality to the system. This was because initially the user and the programmer were 

the same person: the users typically were the scientists and engineers who helped build 

the hardware. Early programs were generally written in machine or assembly language 

and involved very little logical complexity. The computer-based systems were used for 

“number crunching” applications that were scientific, with little emphasis on user-

friendliness and sophistication of interface. Gradually, hardware became more powerful 

and cheaper and the application specific needs were satisfied by software, which was now 

written in higher-level languages. People who were not hardware engineers increasingly 

started writing software.  

This trend led to the software crisis, and the completion and delivery of software projects 

became problematic. Software was found to be unreliable, non-maintainable and non-

transportable. There were many instances of customer dissatisfaction. The programmers 

and management professionals started to realize that developing software merely with the 

programmer’s viewpoint and relying on the belief that such software would “work” was 

not enough. Rather, software needed to be ‘engineered’. Software Engineering was thus 

identified as an important discipline. Initial work in this area was put forth by Fritz Bauer 

in 1969, where he stated that there was a need for ‘the establishment and use of sound 

engineering principles in order to obtain, economically, software that is reliable and 
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works efficiently on real machines’. Thus, software no longer meant source code. It now 

included the inspiration that led to choosing a certain set of data structures of the 

program, the customer requirements, and the documents that described the system and the 

expected usage in detail.  

IEEE now defines software engineering as the application of a systematic, disciplined, 

quantifiable approach to the development, operation and maintenance of software. 

Software Engineering tools are used to support the tasks by automating the tasks or parts 

of the tasks. 

 

Software Life Cycle 

The period of time from when a software product is conceived and to when the software 

is no longer used, is termed as the Software Life Cycle. The software life cycle typically 

includes phases such as concept, requirements, design, implementation, test, installation, 

checkout, maintenance, and sometimes, retirement. These phases may overlap or be 

performed iteratively, based on life cycle model in use. Choice of an appropriate software 

life cycle model for a particular project depends on factors such as clarity of the problem, 

technology to be used, time at hand to develop and implement the project, etc. 

 

2.2 Software Estimation Modeling 

Software project development comprises of a combination of engineering and 

management activities that are closely interleaved with one another. The selected life 

cycle model governs the engineering activities. Management activities, on the other hand, 

support and control the execution of the engineering activities.  

Software Project Management involves three basic phases: 

1. Project Planning 

2. Project Monitoring and Control 

3. Project Termination 

 

Project Planning entails all activities that must be performed before starting the actual 

development work. It is a major management activity and it plays a vital role in 

determining the actual nature of the developed software project. Before a project can 
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begin, the manager and the software team must estimate the work to be done, the 

resources that will be required, and the time that will elapse from the start to the finish. 

Estimation begins with a description of the scope of the product. Software Scope 

describes the data and control to be processed, function, performance, constraints, 

interfaces and reliability. Until the scope is bounded, it is not possible to obtain a 

meaningful estimate. The problem is decomposed into sub problems, and each of these is 

estimated using historical data and experience as guidelines. The basic goal of planning is 

thus to look into the future, and identify the tasks that need to be accomplished to 

complete the project successfully, and handle the scheduling and the resource allocation 

of these tasks. A good plan is flexible enough to tackle unforeseen events that inevitably 

occur in a large software project. Social, economic and political factors must be taken 

into account for a realistic plan. The input to a planning process is the desired 

specification. The output is a project plan, which is a document that provides the various 

phases of the development process. 

 

Project Monitoring and Control deals with the actual execution and updating of the 

project’s plan. The progress of the plan is monitored periodically. It is essential to 

identify ‘stages’ within a project to aid the control and monitoring procedures. The plan 

may need to be modified depending upon various dynamic factors that come into the 

picture during the course of software development. 

 

Project Termination stage involves the verification and validation activities. It also 

accounts for delivering according to the promised Quality Assurance Plan. Verification is 

the process of determining whether or not the products of a given phase of software 

development fulfill the specifications established earlier (i.e. during previous phases). 

Validation, on the other hand, is the process of evaluating the developed software to 

ensure compliance with the software requirements. Testing is a common method of 

validation. The verification and validation activities, together, are generally referred to as 

V&V activities. The major V&V activities for software development are inspection, 

reviews and testing (both static and dynamic). Testing is an activity that can be performed 

only on the source code. Inspection is a more general activity and can be applied to any 
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work product, including the source code. It is thus a formal evaluation technique in which 

software requirements, design or code are examined in detail to detect faults, violations of 

development standard, and other problems.  

 

Software Estimation is an important area that falls under the planning procedure for any 

software. For a given set of requirements, it is desirable to know how much it will cost to 

develop the software, and how much time the development will take. Estimation of 

resources, cost, and schedule for a software project requires experience, access to good 

historical information, and the skill set for quantitative predictions when qualitative 

information is all that exists. Resources in a software-planning task can be conceptualized 

in the form of a pyramid. The development environment – hardware and software tools – 

sits at the foundation of the resources pyramid and provides infrastructure to support the 

development effort. At higher level, we encounter reusable software components – 

software building blocks that can dramatically reduce development costs and accelerates 

delivery. At the top of the pyramid is the primary resource – the people. The bulk of the 

cost of software development is due to the human effort, and most cost estimation 

methods focus on this aspect and give estimates in terms of person-months.  

Accurate cost estimation is important because: 

 It can help to classify and prioritize development projects with respect to an 

overall business plan. 

 It can be used to determine what resources to commit to the project and how well 

these resources will be used. 

 It can be used to assess the impact of changes and support replanning. 

 Projects can be easier to manage and control when resources are better matched to 

real needs. 

 Customers expect actual development costs to be in line with estimated costs. 
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Software cost estimation involves the determination of one or more of the following 

estimates: 

a. Effort (usually in person-months) 

b. Project Development Time (in calendar time) 

c. Productivity 

Most cost estimation models attempt to generate an effort estimate, which can then be 

converted into the project duration and cost. Although effort and cost are closely related, 

they are not necessarily related by a simple transformation function. Effort is often 

measured in person-months of the programmers, analysts and project managers. This 

effort estimate can be converted into a unit cost figure by calculating an average salary 

per unit time of the staff involved, and then multiplying this by the estimated effort 

required. 

 

Most cost models are based on the size measure, such as Lines of Code (LOC) and 

Function Point (FP), obtained from size estimation. The accuracy of size estimation 

directly impacts the accuracy of cost estimation. Size estimation, an internal attribute is of 

prime importance in this project report. It has been used in several effort/cost models as a 

predictor of the effort, duration and cost needed to design and implement the software. 

 

 The various size measures so computed can be applied to find:  

 productivity in terms of person-months, and  

 quality which gives the number of defects per unit in a software with respect 

to the requirements, design, coding and user documentation phases . 

Time estimate for a module refers to the time a software engineer thinks it might take to 

complete the coding of that module. The unit of time could be hours or days or man-

months or man-years. Thus time estimate can be considered under the productivity 

applications of size measures. 

 

For instance, a module in the structure chart could have time estimate that reads as [5-10-

20], 5 representing Optimistic Time, 10 representing Most Likely Time and 20 

representing Pessimistic Time. In this case, Optimistic time is the time in which a 
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particular module could have been completed if everything went well and there have been 

no complications. A rule of thumb can be that there should be only one chance in ten of 

accomplishing the coding in less time than the optimistic time estimate. 

Experienced software engineers would have thumb rules to estimate the size of the code 

before they write the code. This capability to predict the size of the code has been gained 

over a period of programming experience. 

The time size estimation also includes complexity and program size among various other 

factors. For example it is known that the programmers can deliver a few lines of code per 

day. There is some limit to speed of a programmer so any development size estimate that 

is supposed to be independent of program size will be wrong if the program turns out to 

be larger than that can be constructed during estimation period. The size so estimated 

should be language and platform independent. Experienced software engineers are 

capable of estimating the time requirement for coding because they understand the 

complexity of the components of the programming task. They know their competence to 

code a particular logic using certain data structures, in a given language. They could 

visualize the sub modules in their programming task and arrive at a time estimate for the 

task. On the other hand, novice software engineers find it difficult to estimate the time 

requirement because of the lack of experience in understanding the complexity of the 

programming task.  

 

A methodology should be designed that allows software engineers to explicitly spell out 

the different components of a module and provide time estimates for the development of 

each of the component. It could then be used to monitor the progress of code 

development and evaluate the developed program with respect to the time schedule. 

 

These are some guidelines, which should be taken into account while undertaking the task 

of size estimation: 

1. Analyze similar past projects to generate the historical data needed to estimate the 

size of new software projects. Relying on memory is not effective and leads to poor 

estimates.  
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2. Include data gathered from software and test team members. Early project team 

involvement not only serves to improve the accuracy of the estimate, but also 

prepares the team for the eventual project start date.  

3. Keep in mind that experience is the key to effective software size estimation. The 

larger the project, the more is the experience required to make a good estimate.  

4. Use multiple estimation techniques. During the initial estimation stage, the 

comparative results of different estimation techniques provide the best estimate.  

5. Revise the initial size estimate as new information becomes available. During the 

design phase as the major software pieces come into focus, each module can be 

estimated separately, the sum of which reflects a revised, more accurate estimate.  

  

To produce better estimates, we must improve our understanding of these project 

attributes and their causal relationships, model the impact of evolving environment, and 

develop effective ways of measuring software complexity. 

At the initial stage of a project, there is high uncertainty about these project attributes. 

The estimate produced at this stage is inevitably inaccurate, as the accuracy depends 

highly on the amount of reliable information available to the estimator. If the effort 

estimate is on upper side, the other competitive bidder will win over us and get the 

contract. On the other hand, if our effort estimates are on lower side, we will have to 

incur loss in executing the project. Thus, it is a conflicting situation i.e. if we are not 

awarded the contract for the development project, we will never get an opportunity to 

actually design it to improve upon the initial estimation models. Hence, it is of paramount 

importance that we give as exact effort estimation as possible LOC has been widely used 

for this modeling purpose. As we learn more about the project during analysis and later 

design stages, the uncertainties are reduced and more accurate estimates can be made. 

Most models produce acceptable level results without regard to this uncertainty. They 

need to be enhanced to produce a range of estimates and their probabilities.                                   

Although estimating is as much art as it is science, this important activity cannot be 

conducted in a haphazard manner. Estimation carries inherent risk and this risk can lead 

to uncertainty. These estimates are made within a certain limited time frame at the 

beginning of the project and must be updated regularly as the project progresses.  
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Estimation Risk is measured by the degree of uncertainty in the quantitative estimates 

established for resources, cost and schedule. If project scope is poorly understood or 

project requirements are vulnerable, uncertainty and risk become dangerously high. The 

software planner should thus demand the completeness of function, performance and 

interface definitions.  

 

The Degree of Structural Uncertainty also has an effect on estimation risk. In this 

context, structure refers to the degree to which the requirements have been solidified, the 

ease with which the functions have been compartmentalized, and the hierarchical nature 

of the information that must be processed. Another significant factor that can influence 

the estimation risk is the availability of historical information. By backtracking, we can 

emulate things that worked and improve the areas where the problems arose.  

 

2.3 Capability Maturity Model 

Capability Maturity Model (CMM) was developed by the SEI at Carnegie Mellon 

University in Pittsburgh. It has been used extensively for avionics software and 

government projects, in North America, Europe, Asia, Australia, South America, and 

Africa. CMM broadly refers to a process improvement approach that is based on a 

process model. CMM also refers specifically to the first such model, developed by the 

Software Engineering Institute (SEI) in the mid-1980s, as well as the family of process 

models that followed. A process model is a structured collection of practices that describe 

the characteristics of effective processes; the practices included are those proven by 

experience to be effective. 

The Capability Maturity Model can be used to assess an organization against a scale of 

five process maturity levels. Each level ranks the organization according to its 

standardization of processes in the subject area being assessed. The subject areas can be 

as diverse as software engineering, systems engineering, project management, risk 

management, system acquisition, information technology (IT) services and personnel 

management. 
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Structure of CMM 

Maturity Levels  

A layered framework providing a progression to the discipline needed to engage in 

continuous improvement (It is important to state here that an organization develops the 

ability to assess the impact of a new practice, technology, or tool on their activity. Hence 

it is not a matter of adopting these, rather it is a matter of determining how innovative 

efforts influence existing practices. This really empowers projects, teams, and 

organizations by giving them the foundation to support reasoned choice.) 

Key Process Areas  

Key process area (KPA) identifies a cluster of related activities that, when performed 

collectively, achieve a set of goals considered important. 

Goals  

The goals of a key process area summarize the states that must exist for that key process 

area to have been implemented in an effective and lasting way. The extent to which the 

goals have been accomplished is an indicator of how much capability the organization has 

established at that maturity level. The goals signify the scope, boundaries, and intent of 

each key process area. 

Common Features  

Common features include practices that implement and institutionalize a key process 

area. These five types of common features include: Commitment to Perform, Ability to 

Perform, Activities Performed, Measurement and Analysis, and Verifying 

Implementation. 

Key Practices  

The key practices describe the elements of infrastructure and practice that contribute most 

effectively to the implementation and institutionalization of the key process areas. 

 

Levels of CMM 

There are five levels of the CMM. According to the SEI, 

Predictability, effectiveness, and control of an organization's software processes are 

believed to improve as the organization moves up these five levels. While not rigorous, 

the empirical evidence to date supports this belief.” 
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Level 1- Initial 

At maturity level 1, processes are usually ad hoc and the organization usually does not 

provide a stable environment. In spite of this ad hoc, chaotic environment, maturity level 

1 organizations often produce products and services that work; however, they frequently 

exceed the budget and schedule of their projects. Maturity level 1 organizations are 

characterized by a tendency to over commit, abandon processes in the time of crisis, and 

not be able to repeat their past successes again. Level 1 software project success depends 

on having high quality people. 

 

Level 2- Repeatable 

At maturity level 2, software development successes are repeatable. The processes may 

not repeat for all the projects in the organization. The organization may use some basic 

project management to track cost and schedule. Process discipline helps ensure that 

existing practices are retained during times of stress. When these practices are in place, 

projects are performed and managed according to their documented plans. Basic project 

management processes are established to track cost, schedule, and functionality. The 

minimum process discipline is in place to repeat earlier successes on projects with similar 

applications and scope. There is still a significant risk of exceeding cost and time 

estimates.  

 

Level 3 – Defined 

The organization’s set of standard processes, which is the basis for level 3, is established 

and improved over time. These standard processes are used to establish consistency 

across the organization. Projects establish their defined processes by the organization’s 

set of standard processes according to tailoring guidelines. A critical distinction between 

level 2 and level 3 is the scope of standards, process descriptions, and procedures. At 

level 2, the standards, process descriptions, and procedures may be quite different in each 

specific instance of the process (for example, on a particular project). At level 3, the 

standards, process descriptions, and procedures for a project are tailored from the 

organization’s set of standard processes to suit a particular project or organizational unit. 
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Level 4 – Managed 

Organizations at this level set quantitative quality goals for both software process and 

software maintenance. Subprocesses are selected that significantly contribute to overall 

process performance. These selected subprocesses are controlled using statistical and 

other quantitative techniques. A critical distinction between maturity level 3 and maturity 

level 4 is the predictability of process performance. At maturity level 4, the performance 

of processes is controlled using statistical and other quantitative techniques, and is 

quantitatively predictable. At maturity level 3, processes are only qualitatively 

predictable. 

 

Level 5 – Optimizing 

Maturity level 5 focuses on continually improving process performance through both 

incremental and innovative technological improvements. Quantitative process-

improvement objectives for the organization are established, continually revised to reflect 

changing business objectives, and used as criteria in managing process improvement. The 

effects of deployed process improvements are measured and evaluated against the 

quantitative process-improvement objectives. Both the defined processes and the 

organization’s set of standard processes are targets of measurable improvement activities. 

Optimizing processes that are nimble, adaptable and innovative depends on the 

participation of an empowered workforce aligned with the business values and objectives 

of the organization. The organization’s ability to rapidly respond to changes and 

opportunities is enhanced by finding ways to accelerate and share learning. critical 

distinction between maturity level 4 and maturity level 5 is the type of process variation 

addressed. At maturity level 4, processes are concerned with addressing special causes of 

process variation and providing statistical predictability of the results. Though processes 

may produce predictable results, the results may be insufficient to achieve the established 

objectives. At maturity level 5, processes are concerned with addressing common causes 

of process variation and changing the process (that is, shifting the mean of the process 

performance) to improve process performance (while maintaining statistical probability) 

to achieve the established quantitative process-improvement objectives. 
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Capability Maturity Model Integration 

The CMMI is the successor of the CMM. The CMM was developed from 1987 until 

1997. In 2002 version 1.1 of the CMMI was released: v1.2 followed in August 2006. The 

goal of the CMMI project is to improve usability of maturity models for software 

engineering and other disciplines, by integrating many different models into one 

framework. It was created by members of industry, government and the SEI.  

 

The CMMI comes with two different representations - staged and continuous. The staged 

model, which groups process areas into 5 maturity levels, was also used in the ancestor 

software development CMM, and is the representation used to achieve a "CMMI Level 

Rating" from a SCAMPI appraisal. The continuous representation, which was used in the 

ancestor systems engineering CMM, defines capability levels within each profile. The 

differences in the representations are solely organizational; the content is equivalent. The 

CMMI uses a common structure to describe each of the 22 process areas (PAs). A process 

area has 1 to 4 goals, and each goal is comprised of practices. Within the 22 PAs these 

are called specific goals and practices, as they describe activities that are specific to a 

single PA. There is one additional set of goals and practices that apply in common across 

all of the PAs; these are called generic goals and practices. 

CMMI should be adapted to each individual company; therefore companies are not 

"certified." A company is appraised (e.g. with an appraisal method like SCAMPI) at a 

certain level of CMMI.  

In this chapter we have examined the fundamental issues of software engineering that are 

of relevance to the estimation effort modeling. The next chapter outlines the Cost 

Estimation aspects.
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CHAPTER 3 

SOFTWARE COST ESTIMATION MODELS 

 

3.1 Introduction 

In the previous chapter we have seen the importance of assessment of effort estimation. 

There are two types of models that have been used to estimate software cost: cost models 

and constraint models. 

 

(i) Cost Models 

Cost models provide direct estimates of effort. These models typically have a primary 

cost factor such as size and a number of secondary adjustment factors or cost drivers. 

Cost drivers are characteristics of the project, process, products, or resources that 

influence effort. Cost drivers are used to adjust the preliminary estimate provided by the 

primary cost factor. 

A typical cost model is derived using regression analysis on data collected from past 

software projects. Effort is plotted against the primary cost factor for a series of projects. 

The line of best fit is then calculated among the data points. If the primary cost factor 

were a perfect predictor of effort, then every point on the graph would lie on the line of 

best fit. In reality however, there is usually a significant residual error. It is therefore 

necessary to identify the factors that cause variation between predicted and actual effort. 

These parameters are added to the model as cost drivers. 

The overall structure of regression-based models takes the form: 

E = A + B x S
C 

 

where A, B, and C are empirically derived constants, E is effort in person months, and S is 

the primary input (typically either LOC or FP). 
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The following are some examples of cost models using LOC as a primary input: 

 

              Table 1 LOC Based Models 

   E = 5.2 X (KLOC)
0.91 

    Walston-Felix Model 

   E = 5.5 + 0.73 x (KLOC)
1.16 

    Bailey-Basili Model 

   E = 3.2 x (KLOC)
1.05 

    COCOMO Basic Model 

   E = 5.288 x (KLOC)
1.047 

    Doty Model for KLOC > 9 

 

Cost models using FP as a primary input include: 

           Table 2 FP Based Models 

   E = -12.39 + 0.0545 FP     Albrecht and Gaffney Model 

   E = 60.62 x 7.728 x 10
-8

 FP
3 

    Kemerer Model 

   E = 585.7 + 15.12 FP    Matson, Barnett, and Mellichamp Model 

 

(ii) Constraint Models 

Constraint models demonstrate the relationship over time between two or more 

parameters of effort, duration, or staffing level. The RCA PRICE S model and Putnam’s 

SLIM model are two examples of constraint models. 

 

3.2 Constructive Cost Models 

The most fundamental cost models used for software cost estimation are COCOMO and 

COCOMO – II and we have identified them for further study in the context of this 

project. 

COCOMO ’81 

Boehm derived a cost model called COCOMO (Constructive Cost Model) using data 

from a large set of projects at TRW, a consulting firm based in California. COCOMO is a 

relatively straightforward model based on inputs relating to the size of the system and a 

number of cost drivers that affect productivity. The original COCOMO model was first 
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published in 1981. Boehm and his colleagues have since defined an updated COCOMO, 

called COCOMO II that accounts for recent changes in software engineering technology. 

Original COCOMO 

The original COCOMO is a collection of three models: a Basic model that is applied 

early in the project, an Intermediate model that is applied after requirements are specified, 

and an Advanced model that is applied after design is complete. All three models take the 

form: 

 

E = aS
b
 x EAF 

 

where E is effort in person months, S is size measured in thousands of lines of code 

(KLOC), and EAF is an effort adjustment factor (equal to 1 in the Basic model). The 

factors a and b depend on the development mode. Boehm has defined three development 

modes: 

1. Organic mode – relatively simple projects in which small teams work to a 

set of informal requirements (i.e. thermal transfer program developed for a 

heat transfer group).  

2. Semi-detached mode – an intermediate project in which mixed teams must 

work to a set of rigid and less than rigid requirements (i.e. a transaction 

processing system with fixed requirements for terminal hardware and 

software).  

3. Embedded mode – a project that must operate within a tight set of 

constraints (ie. flight control software for aircraft).  

Basic COCOMO 

The Basic COCOMO model computes effort as a function of program size. The Basic 

COCOMO equation is: 

 

E = a (KLOC)
 b 
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The factors a and b for the Basic COCOMO model are shown in Table 3. 

 

Table 3 Effort for three modes of Basic COCOMO 

Mode a b 

    Organic 2.4 1.05 

    Semi-detached 3.0 1.12 

    Embedded 3.6 1.20 

 

 

Intermediate COCOMO 

The Intermediate COCOMO model computes effort as a function of program size and a 

set of cost drivers. The Intermediate COCOMO equation is: 

 

E = a (KLOC)
 b

 x EAF 

 

The factors a and b for the Intermediate COCOMO model are shown in Table 4.  

 

Table 4 Effort parameters for three modes of Intermediate COCOMO 

Mode a b 

    Organic 3.2 1.05 

    Semi-detached 3.0 1.12 

    Embedded 2.8 1.20 

 

The effort adjustment factor (EAF) is calculated using 15 cost drivers. The cost drivers 

are grouped into four categories: product, computer, personnel, and project. Each cost 

driver is rated on a six-point ordinal scale ranging from low to high importance. Based on 

the rating, an effort multiplier is determined using Table 5. The product of all effort 

multipliers is the EAF. The figure illustrates the basic process of the COCOMO model. 
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Table 5. Software Development Effort Multipliers 

Cost 

Driver 

Description 

Rating 

Very 

Low 

Low Nominal High Very 

High 

Extra 

High 

Product        

RELY Required software reliability 0.75 0.88 1.00 1.15 1.40 - 

DATA Database size - 0.94 1.00 1.08 1.16 - 

CPLX Product complexity 0.70 0.85 1.00 1.15 1.30 1.65 

Computer        

TIME Execution time constraint - - 1.00 1.11 1.30 1.66 

STOR Main storage constraint - - 1.00 1.06 1.21 1.56 

VIRT Virtual machine volatility - 0.87 1.00 1.15 1.30 - 

TURN Computer turnaround time - 0.87 1.00 1.07 1.15 - 

Personnel        

ACAP Analyst capability 1.46 1.19 1.00 0.86 0.71 - 

AEXP Applications experience 1.29 1.13 1.00 0.91 0.82 - 

PCAP Programmer capability 1.42 1.17 1.00 0.86 0.70 - 

VEXP Virtual machine experience 1.21 1.10 1.00 0.90 - - 

LEXP Language experience 1.14 1.07 1.00 0.95 - - 

Project        

MODP Modernprogramming practices 1.24 1.10 1.00 0.91 0.82 - 

TOOL Software Tools 1.24 1.10 1.00 0.91 0.83 - 

SCED Development Schedule 1.23 1.08 1.00 1.04 1.10 - 

 

Advanced COCOMO 
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The Advanced COCOMO model computes effort as a function of program size and a set 

of cost drivers weighted according to each phase of the software lifecycle. The Advanced 

model applies the Intermediate model at the component level, and then a phase-based 

approach is used to consolidate the estimate. 

The 4 phases used in the detailed COCOMO model are: requirements planning and 

product design (RPD), detailed design (DD), code and unit test (CUT), and integration 

and test (IT). Each cost driver is broken down by phase as in the example shown in Table 

6. 

 

     Table 6 Analyst capability effort multiplier for Detailed COCOMO 

Cost Driver Rating RPD DD CUT IT 

ACAP 

Very Low 1.80 1.35 1.35 1.50 

Low 0.85 0.85 0.85 1.20 

Nominal 1.00 1.00 1.00 1.00 

High 0.75 0.90 0.90 0.85 

Very High 0.55 0.75 0.75 0.70 

 

Estimates made for each module are combined into subsystems and eventually an overall 

project estimate. Using the detailed cost drivers, an estimate is determined for each phase 

of the lifecycle. 

3.3 COCOMO II 

Whereas COCOMO is reasonably well matched to custom, build-to-specification 

software projects, COCOMO II is useful for a much wider collection of techniques and 

technologies. COCOMO II provides up-to-date support for business software, object-

oriented software, software created via spiral or evolutionary development models, and 

software developed using commercial-off-the-shelf application composition utilities. 

COCOMO II includes the Application Composition model (for early prototyping efforts) 

and the more detailed Early Design and Post-Architecture models (for subsequent 

portions of the lifecycle). 
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The Application Composition Model 

The Application Composition model is used in prototyping to resolve potential high-risk 

issues such as user interfaces, software/system interaction, performance, or technology 

maturity. Object points are used for sizing rather than the traditional LOC metric. 

An initial size measure is determined by counting the number of screens, reports, and 

third-generation components that will be used in the application. Each object is classified 

as simple, medium, or difficult using the guidelines shown in Tables 7 and 8. 

 

          Table 7 Object point complexity levels for screens 

 Number and source of data tables 

Number of views contained 
Total <4 Total <8 Total 8+ 

< 3 simple simple medium 

3 to 7 simple medium difficult 

8 + medium difficult difficult 

 

         Table 8 Object point complexity levels for reports 

 Number and source of data tables 

Number of views contained Total <4 Total <8 Total 8+ 

< 3 Simple simple medium 

3 to 7 Simple medium difficult 

8 + Medium difficult difficult 

 

The number in each cell is then weighted according to Table 9. The weights represent the 

relative effort required to implement an instance of that complexity level.  

                        Table 9 Complexity weights for object points 

Object type Simple Medium Difficult 

Screen 1 2 3 

Report 2 5 8 

3GL component - - 10 

The weighted instances are summed to provide a single object point number. Reuse is 

then taken into account. Assuming that r% of the objects will be reused from previous 

projects, the number of new object points (NOP) is calculated to be:  
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NOP = (object points) x (100 – r) / 100 

 

A productivity rate (PROD) is determined using Table 10. 

 

Table 10 Average productivity rates  

Developers' experience and capability Very Low Low Nominal High Very High 

ICASE maturity and capability Very Low Low Nominal High Very High 

PROD 4 7 13 25 50 

 

Effort can then be estimated using the following equation: 

 

E = NOP / PROD 

 

The Early Design Model 

The Early Design model is used to evaluate alternative software/system architectures and 

concepts of operation. An unadjusted function point count (UFC) is used for sizing. This 

value is converted to LOC using tables such as those published by Jones, excerpted in 

Table 11. 
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                Table 11 Programming language levels and ranges of source code per function point 

Language Level Min Mode Max 

Machine language 0.10 - 640 - 

Assembly 1.00 237 320 416 

C 2.50 60 128 170 

RPGII 5.50 40 58 85 

C++ 6.00 40 55 140 

Visual C++ 9.50 - 34 - 

PowerBuilder 20.00 - 16 - 

Excel 57.00 - 5.5 - 

 

The Early Design model equation is: 

 

E = a (KLOC) x EAF 

 

where a is a constant, provisionally set to 2.45. The effort adjustment factor (EAF) is 

calculated as in the original COCOMO model using the 7 cost drivers shown in Table 12. 

The Early Design cost drivers are obtained by combining the Post-Architecture cost 

drivers shown in Table 13. 

              Table 12 Early Design Cost Drivers 

Cost Driver Description 
Counterpart Combined Post-

Architecture Cost Driver 

RCPX     Product reliability and complexity RELY, DATA, CPLX, DOCU 

RUSE     Required reuse RUSE 

PDIF     Platform difficulty TIME, STOR, PVOL 

PERS     Personnel capability ACAP, PCAP, PCON 

PREX     Personnel experience AEXP, PEXP, LTEX 

FCIL     Facilities TOOL, SITE 

SCED     Schedule SCED 
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The Post-Architecture Model 

The Post-Architecture model is used during the actual development and maintenance of a 

product. Function points or LOC can be used for sizing, with modifiers for reuse and 

software breakage. Boehm advocates the set of guidelines proposed by The Software 

Engineering Institute in counting lines of code. The Post-Architecture model includes a 

set of 17 cost drivers and a set of 5 factors determining the projects scaling component. 

The 5 factors replace the development modes (organic, semidetached, embedded) of the 

original COCOMO model. 

The Post-Architecture model equation is: 

 

E = a (KLOC)
b
 x EAF 

 

where a is set to 2.55 and b is calculated as: 

 

b = 1.01 + 0.01 x SUM(Wi) 

 

where W is the set of 5 scale factors shown in Table 13. 

 Table 13 COCOMO II scale factors 

W(i) Very Low Low Nominal High Very High Extra High 

Precedentedness 4.05 3.24 2.42 1.62 0.81 0.00 

Development/Flexibility 6.07 4.86 3.64 2.43 1.21 0.00 

Architecture/Risk Resolution 4.22 3.38 2.53 1.69 0.84 0.00 

Team Cohesion 4.94 3.95 2.97 1.98 0.99 0.00 

Process Maturity 4.54 3.64 2.73 1.82 0.91 0.00 

 

 

The EAF is calculated using the 17 cost drivers shown in Table 14. 
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Table 14 Post-Architecture Cost Drivers 

Cost Driver Description Rating 

Very 

Low 

Low Nominal High Very 

High 

Extra 

High 

Product        

RELY Required software reliability 0.75 0.88 1.00 1.15 1.39 - 

DATA Database size - 0.93 1.00 1.09 1.19 - 

CPLX Product complexity 0.70 0.88 1.00 1.15 1.30 1.66 

RUSE Required reusability  0.91 1.00 1.14 1.29 1.49 

DOCU Documentation  0.95 1.00 1.06 1.13  

Platform        

TIME Execution time constraint - - 1.00 1.11 1.31 1.67 

STOR Main storage constraint - - 1.00 1.06 1.21 1.57 

PVOL Platform volatility - 0.87 1.00 1.15 1.30 - 

Personnel        

ACAP Analyst capability 1.50 1.22 1.00 0.83 0.67 - 

PCAP Programmer capability 1.37 1.16 1.00 0.87 0.74 - 

PCON Personnel continuity 1.24 1.10 1.00 0.92 0.84 - 

AEXP Applications experience 1.22 1.10 1.00 0.89 0.81 - 

PEXP Platform experience 1.25 1.12 1.00 0.88 0.81 - 

LTEX Language and tool experience 1.22 1.10 1.00 0.91 0.84  

Project        

TOOL Software Tools 1.24 1.12 1.00 0.86 0.72 - 

SITE Multisite development 1.25 1.10 1.00 0.92 0.84 0.78 

SCED Development Schedule 1.29 1.10 1.00 1.00 1.00 - 
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CHAPTER 4 

FUNCTION POINT AND CLASS POINT MEASURES 

 

4.1 Software Metrics 

Measurements in the physical world can be categorized in two ways: Direct Measures 

(e.g. the length of a bolt) and indirect measures (e.g. the ‘quality’ of the bolts produced, 

measured by counting the rejects). An analogy from this basic concept can be used to 

classify the software metrics as well. Direct Measures, thus include the cost and effort 

applied. These define the parameters like Lines of Code (LOC) produced, execution 

speed, memory size, and defects reported over some fixed time interval. Indirect 

Measures of the product include the functionality, quality, complexity, efficiency, 

reliability, maintainability etc. The direct measures can be determined easily, as long as 

specific conventions for measurement are established in advance. The indirect measures, 

however, are more difficult to assess. The software metrics domain can be partitioned into 

process, project and product metrics. Product metrics, are generally private to an 

individual, and are generally combined to develop project metrics that are public to a 

software team. Project metrics are then consolidated to create process metrics that are 

public to the software organization as a whole. The need for metrics is particularly acute 

when an organization is adopting a new technology for which the established practices 

have not been developed.  

 

Taxonomy of the Software Metrics is presented below: 

  

1. Size-Oriented Metrics 

2. Function-Oriented Metrics 

3. Extended Function Point Metrics 

 

Normalizing the quality and/or productivity measures by considering the size of the 

software that has been produced derives Size-Oriented Metrics. Generally a table of size-

oriented measures is constructed from the records of the software organization. The table 
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lists each software development project that has been completed over the past few years 

and the corresponding measures (e.g. LOC, Effort, Errors, Defects, People, Cost, Pages of 

Documentation) of that project. All the activities like analysis, design, coding and testing 

are accounted for. In order to develop metrics that can be assimilated with similar metrics 

from other projects, the LOC parameter is chosen for normalization. Form the 

rudimentary data contained in the table, a set of simple size-oriented metrics is generated.  

 

Size-Oriented Metrics are not universally accepted as the best way to measure the 

software development process. The controversy swirls around the use of LOC as a key 

measure. The proponents claim that LOC is an artifact of all the software estimation 

models, whereas the opponents argue that LOC measures are programming language 

dependent, and that their use in estimation requires a level of detail that may be difficult 

to achieve at the planning stage. 

 

Function-Oriented Metrics, use a measure of functionality delivered by the application as 

a normalization value. Since functionality is an indirect measure, it must be derived 

indirectly from existing direct measures. We define a function point for this purpose. 

Function points are deduced using an empirical relationship based on countable (i.e. 

direct) measures of the software’s information domain and assessments of the software 

complexity. 

 

4.2 Function Point Approach 

Function points are computed by first calculating an unadjusted function point count 

(UFC). Counts are made for the following categories: 

 

1. Number of user inputs – those items provided by the user that describe distinct 

application-oriented data (such as file names and menu selections). Inputs should be 

distinguished from inquiries.  

2. Number of user outputs – those items provided to the user that generate distinct 

application-oriented data (such as reports and messages, rather than the individual 

components of these). 
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3. Number of user inquiries – an inquiry is defined as an online input that results in the 

generation of some immediate software response in the form of an online output.  

4. Number of logical files – each logical master file, i.e., a logical grouping of data that 

may be a part of large database or a separate file, is counted.  

5. Number of external interfaces – all machine readable interfaces (e.g., data files on 

storage media) that are used to transfer information to another system are counted.  

 

   Table 15 Function point complexity weights 

 Weighting Factors 

Measurement Parameter Simple Average Complex 

Number of User Inputs 3 4 6 

Number of User Outputs 4 5 7 

Number of User Inquiries 3 4 6 

Number of Logical Files 7 10 15 

Number of External Interfaces 5 7 10 

 

 

Each count is multiplied by its corresponding complexity weight and the results are 

summed to provide the UFC. The adjusted function point count (FP) is calculated by 

multiplying the UFC by a technical complexity factor (TCF). Components of the TCF are 

listed in Table 16. 

Table 16 Components of the Technical Complexity Factor 

F1     Reliable back-up and recovery F2     Data communications 

F3     Distributed functions F4     Performance 

F5     Heavily used configuration F6     Online data entry 

F7     Operational ease F8     Online update 

F9     Complex interface F10     Complex processing 

F11     Reusability F12     Installation ease 

F13     Multiple sites F14     Facilitate change 

 

Each component is rated from 0 to 5, where 0 means the component has no influence on 

the system and 5 means the component is essential. The TCF can then be calculated as: 
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TCF = 0.65 + 0.01 (SUM (Fi)) 

 

The factor varies from 0.65 (if each Fi is set to 0) to 1.35 (if each Fi is set to 5)).  

The final function point calculation is: 

FP = UFC x TCF 

The figure illustrates this process of Function Points Calculations.  

 

 

Extended Function Point Metrics were proposed to accommodate both data dimensions 

as well as control (functional and behavioral) dimensions. A major limitation of the 

Function Point approach is that control dimensions are not emphasized upon which 

makes the approach inadequate for many engineering and embedded system problems.  

A Feature Point is a superset of the function point measure that can be applied to 

problems, which are high algorithmic complexity. To compute a feature point, 

information domain values are again counted and weighted as discussed in the previous 

section. In addition, the feature point metric accounts for a new software characteristic – 

algorithms. An algorithm is defined as a bounded computational problem that is included 

in a specific computer program. The data dimension is evaluated using retained data (e.g., 
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files) and the external data (e.g., inputs, outputs and inquiries). The function dimension is 

measured by considering the number of internal operations required to transform the 

input to the output. The behavioral dimensions include the states and state transitions. 

Together, the functional and the behavioral dimension determine the control dimension. 

 

Benefits of Function Point Analysis 

Organizations that adopt Function Point Analysis as software metric realize many 

benefits including: improved project estimating; understanding project and maintenance 

productivity; managing changing project requirements; and gathering user requirements. 

Each of these is discussed below. Estimating software projects is as much an art as a 

science. While there are several environmental factors that need to be considered in 

estimating projects, two key data points are essential. The first is the size of the 

deliverable. The second addresses how much of the deliverable can be produced within a 

defined period of time. Size can be derived from Function Points, as described above. The 

second requirement for estimating is determining how long it takes to produce a function 

point. This delivery rate can be calculated based on past project performance or by using 

industry benchmarks. The delivery rate is expressed in function points per hour (FP/Hr) 

and can be applied to similar proposed projects to estimate effort  

Project Hours = estimated project function points FP/Hr. 

 

Productivity measurement is a natural output of Function Points Analysis. Since function 

points are technology independent they can be used as a vehicle to compare productivity 

across dissimilar tools and platforms. More importantly, they can be used to establish a 

productivity rate (i.e. FP/Hr) for a specific tool set and platform. Once productivity rates 

are established they can be used for project estimating as described above and tracked 

over time to determine the impact continuous process improvement initiatives have on 

productivity.  

 

In addition to delivery productivity, function points can be used to evaluate the support 

requirements for maintaining systems. In this analysis, productivity is determined by 
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calculating the number of function points one individual can support for a given system in 

a year (i.e. FP/FTE year). When compared with other systems, these rates help to identify 

which systems require the most support. The resulting analysis helps an organization 

develop a maintenance and replacement strategy for those systems that have high 

maintenance requirements.  

Managing Change of Scope for an in-process project is another key benefit of Function 

Point Analysis. Once a project has been approved and the function point count has been 

established, it becomes a relatively easy task to identify, track and communicate new and 

changing requirements. As requests come in from users for new displays or capabilities, 

function point counts are developed and applied against the rate. This result is then used 

to determine the impact on budget and effort. The user and the project team can then 

determine the importance of the request against its impact on budget and schedule. At the 

conclusion of the project the final function point count can be evaluated against the initial 

estimate to determine the effectiveness of requirements gathering techniques. This 

analysis helps to identify opportunities to improve the requirements definition process. 

Organizations that adopt Function Point Analysis as software metric realize many 

benefits including: improved project estimating; understanding project and maintenance 

productivity. 

 FPA has become generally accepted as an effective way to 

 Estimate a software project's size (and in part, duration)  

 Establish productivity rates in function points per hour  

 Evaluate support requirements  

 Estimate system change costs  

 Normalize the comparison of software modules. 

 Managing changing project requirements; and gathering user requirements. 

 

Function Points measures systems from a functional perspective they are independent of 

technology. Regardless of language, development method, or hardware platform used, the 

number of function points for a system will remain constant. The only variable is the 

amount of effort needed to deliver a given set of function points; therefore, Function 
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Point Analysis can be used to determine whether a tool, an environment, a language is 

more productive compared with others within an organization or among organizations. 

This is a critical point and one of the greatest values of Function Point Analysis. 

The task of counting function points should be included as part of the overall project plan. 

That is, counting function points should be scheduled and planned. The first function 

point count should be developed to provide sizing used for estimating. 

 

4.3 Class Point Approach 

The Class Point approach is analogous to the Function point approach in its technique. It 

has been developed to aid the size estimation in object-oriented systems. In this approach, 

the basic unit is a class. Thus the entities that are counted and weighed in this case are 

classes. Although in some ways Class Point may be considered an extension of Function 

Point with Object Oriented features. But there is no one-to-one mapping between the 

logical files and transactions of Function Point Approach and the classes and methods of 

Class Point Approach. This is because of the differences between the procedural and 

Object Oriented features. This is of great value as it encompasses the advantages of 

various earlier approaches in size estimation and overcomes the drawbacks. 

 

Class Point Algorithm 

The Class Point methodology can be expressed in algorithmic form by implementing the 

following steps:  

 

1. Process the information available for size estimation. This further includes the 

following sub-steps-: 

a. Identify and organize the classes in to groups depending upon their application 

domain. 

b. Evaluate the complexity level of each class. 

c. Estimate the Total Unadjusted Class Point (TUCP). 

2. Estimate the technical complexity factor. 

3. Evaluate the final Class Point value based on the results of the above steps. 
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Taxonomy of classes 

The basic unit of class point approach is classes. In the first step these classes are 

identified and organized in groups. They can be categorized on the basis of their 

application into 4 groups namely: 

1. Problem Domain Type (PDT) 

They contain classes representing real-world entities in the application domain of the 

system 

2. Human Interaction Type (HIT) 

They are designed to satisfy the need for information visualization and human-

computer interaction 

3. Data Management Type (DMT) 

The DMT component encompasses the classes that offer functionality for data storage 

and retrieval. 

4. Task Management type (TMT)        

TMT classes are designed for task management purposes, thus they are responsible 

for the definition and control of tasks such as Manage-Emergency-Control and 

Report-Emergency-Control. Moreover, such components also include classes 

responsible for communication between subsystems allocated to different computers, 

and classes responsible for the communication with external systems. As a matter of 

fact, Message and Connection are typical classes falling within this component is 

assigned a high complexity level.  

 

 

 

Evaluation of complexity of each class 

The behavior of each class component is taken into account in order to evaluate its 

complexity level. There are two measures for finding the complexity of any system: CP1 

and CP2. The difference between the CP1 and CP2 measures lies in the way such a 
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complexity level is determined. In particular, in CP1 the number of external methods and 

the number of services requested are taken into account; whereas, in CP2, the number of 

attributes is also exploited.  

 

The Number of External Methods (NEM) measures the size of the interface of a class 

and is determined by the number of locally defined public methods. The Number of 

Services Requested (NSR) provides a measure of the interconnection of system 

components. 

Both measures are available in a distributed information system for design 

documentation. Indeed, activities that characterize any OO design process include the 

identification of the classes with their attributes and methods, and the construction of 

interaction (or collaboration) diagrams showing which external services are needed for a 

class to perform the expected tasks. Thus CP1 is generally applicable only in the 

estimation of preliminary stages. CP2 on the other hand, also depends upon the Number 

of Attributes (NOA). It is thus more often used for refining the existing information. 

This is done when more information about the software is available, for example when 

the number of attributes is known. In both measures, CP1 and CP2, after the complexity 

has been evaluated, it weighed based on its type and level of complexity. It can be 

assigned levels like: HIGH, MEDIUM and LOW.  

This is illustrated in the table given below:  

 

 

In the same way complexity levels for CP2 are also formed. In this case, for each range of 

NOA values, a table similar to the one above is constructed in which a particular value 

gives the level based on all three characteristics. 

 

Estimate the TUCP (Total Unadjusted Class Point factor) 
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To find the TUCP, the value of complexity of each level is multiplied by the weight 

assigned to the particular type and level to which it belongs.  The TUCP is computed as 

the weighted total of the four components of the application:  

 

    

where xij is the number of classes of component type i (Problem Domain, Human 

Interaction etc.) with complexity level j (Low, Average, High), and wij is the weighting 

value for type i and complexity level j. 

 

 

 

 

Find the TCF (Technical Complexity Factor) 

The TCF depends upon the TDI (Total Degree of Influence) as shown by the formula. 

 

TCF = 0.55 + 0.01 * TDI 

 

 

As it can be seen, even when there is no TDI (or TDI=0), TCF still exist. This is due to 

the basic complexity which exists in each and every case. Thus to find the TCF, we need 

to calculate TDI. TDI in turn is derived by taking the sum total of all the degrees of 

influence of various predetermined factors. 

 



 4

1 

 

Given below are examples to illustrate how to assign degree of influence. 
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Evaluate the final CP 

The final value of the Adjusted Class Point (CP) is obtained by multiplying the TUCP 

value by TCF 

CP = TUCP * TCF 

In this chapter we have seen the function point and class point approaches for effort 

estimation. Chapter 2 described the COCOMO models. It has become evident that these 

conventional modeling have to handle many uncertainties and hence we introduce the 

basics of fuzzy sets and fuzzy logic in the next chapter to discuss vague and uncertainty 

handling.
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CHAPTER 5 

SOFT COMPUTING AND FUZZY LOGIC 

 

5.1 Introductory Soft Computing Concepts 

The modern computer industry is now shifting towards what is known as ‘soft’ 

computing, and a deviation from the conventional use of computer systems from zero-IQ 

machines to systems that can go hand-in-hand with human thought processes is being 

discovered. The preliminary research associated with soft computing includes areas such 

as Fuzzy Logic, Rough Set Theory, Neural Networks, Genetic Algorithms, Chaos and 

Fractals. We now need to advance a step further in this respect to introduce ‘intelligent’ 

or ‘thinking’ computer systems, which can be applied in various aspects of day-to-day 

life. Technology and science always go hand in hand; hence the need is felt to tap the 

potentials of the science of Soft Computing and to utilize its principles technically for the 

betterment of human existence.  

Conventional computing techniques, i.e. hard computing techniques require precisely 

stated analytical models, which are valid for ideal situations. These also require a lot of 

computation time. Real life situations, on the other hand are non-ideal and more generic 

in nature; and thus they cannot be dealt with entirely by the hard computing techniques. 

Practical problems have a pervasive element of imprecision and uncertainty. Premises 

and guiding principles of hard computing include precision, certainty and rigor. 

Recognition problems (handwriting, speech, objects, images etc.), mobile robot 

coordination, forecasting, combinational problems etc do not lend themselves to precise 

solutions, thus introducing the need for soft computing. 

As opposed to the conventional techniques, soft computing is tolerant to imprecision, 

uncertainty, partial truth and approximation. We can easily state that the role model for 

soft computing is the human mind. The basic principle behind soft computing is to utilize 

the tolerance for imprecision, uncertainty, partial truth and approximation to achieve 

tractability, robustness and low solution cost.  
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The basic ideas underlying soft computing in its current manifestation have links to many 

earlier influences; among them is Zadeh’s 1965 paper on fuzzy sets. The inclusion of 

neural computing and genetic computing in soft computing came at a later point.  

Soft Computing includes an emerging and more-or-less established family of problem 

stating and problem-solving methods that attempt to mimic the intelligence found in 

nature.  

Some unique properties of Soft Computing include:  

 Learning from experimental data 

 Deriving their power of generalization from approximating or interpolating from 

these previously ‘learned’ inputs to produce outputs from unseen inputs 

 Embedding existing structured human knowledge (experience, expertise, 

heuristics) into workable mathematics  

At this point in time, the principal constituents of Soft Computing (SC) are Fuzzy Logic 

(FL), Neural Computing (NC), Evolutionary Computation (EC), Machine Learning (ML) 

and Probabilistic Reasoning (PR), with the latter subsuming belief networks, chaos theory 

and parts of learning theory. However, it is important to note that soft computing is not a 

concoction. It is rather a partnership in which each of the partners contributes a dissimilar 

methodology for addressing problems in its domain. In this standpoint, the principal 

constituent methodologies in SC are complimentary rather than competitive. In addition, 

soft computing may be viewed as a foundation component for the promising field of 

conceptual intelligence.  

Current applications of Soft Computing include handwriting recognition, manufacture of 

automotive systems, image processing, data compression, decision-support systems, 

fuzzy control and neuro-fuzzy control. The successful applications of soft computing 

suggest that the impact of soft computing will be felt increasingly in the coming years in 

addressing issues of reducing ‘cognitive load’ of end user. The influence of soft 
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computing will eventually increase beyond science and engineering, providing the 

Machine Intelligence Quotient (MIQ) as the performance parameter of hardware/software 

systems. It represents a significant paradigm shift in the intentions of computing, which 

will reflect the fact that human mind, unlike present day computers, possesses the 

remarkable ability to store and process information lacking in categoricity. 

5.2 Fuzzy Sets and Fuzzy Logic 

Fuzzy logic is a branch of Soft Computing which deals with a system which tolerant to 

imprecision, partial truth, uncertainty and approximation. It allows for a gradation of 

values instead of discrete values. The concept of Fuzzy Logic (FL) was conceived by 

Lotfi Zadeh, a professor at the University of California at Berkley, and presented not as a 

control methodology, but as a way of processing data by allowing partial set membership 

rather than crisp set membership or non-membership. This approach to set theory was not 

applied to control systems until the 70's due to insufficient small-computer capability 

prior to that time. In the context of Information Systems, Professor Zadeh reasoned that 

people do not require precise, numerical information input, and yet they are capable of 

highly adaptive control and decision-making. He proposed a comprehensive theory of 

approximate reasoning based on Fuzzy Logic in which truth-values are linguistic and the 

rules are expressed as fuzzy propositions. Approximate reasoning can be viewed as a 

process by which a possible imprecise conclusion is deduced from a collection of 

imprecise premises expressed in linguistic terms and fuzzy sets. Historically, FL 

applications were seen in the control system domain as successful commercial products. 

However, trends for FL applications in IT and computer science have been also reported 

in the literature. Professor Watanabe suggested Fuzzy Hardware Inference Engine chip 

and Fuzzy Microprocessor approach.   

 

A fuzzy subset A of a (crisp) set X is characterized by assigning to each element x of X the 

degree of membership of x in A (e.g. X is a group of people, A the fuzzy set of old people 

in X). Now if X is a set of propositions then its elements may be assigned their degree of 

truth, which may be “absolutely true,” “absolutely false” or some intermediate truth 

degree: a proposition may be more true than another proposition. This is obvious in the 
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case of vague (imprecise) propositions like “this person is old” (beautiful, rich, etc.). In 

the analogy to various definitions of operations on fuzzy sets (intersection, union, 

complement) one may ask how propositions can be combined by connectives 

(conjunction, disjunction, negation) and if the truth degree of a composed proposition is 

determined by the truth degrees of its components, i.e. if the connectives have their 

corresponding truth functions (like truth tables of classical logic). Saying “yes” (which is 

the mainstream of fuzzy logic) one accepts the truth-functional approach; this makes 

fuzzy logic to something distinctly different from probability theory since the latter is not 

truth-functional (the probability of conjunction of two propositions is not determined by 

the probabilities of those propositions). 

 

Fuzzy sets are an extension of classical set theory and are used in fuzzy logic. In classical 

set theory the membership of elements in relation to a set is assessed in binary terms 

according to a crisp condition — an element either belongs or does not belong to the set. 

By contrast, fuzzy set theory permits the gradual assessment of the membership of 

elements in relation to a set; this is described with the aid of a membership function . 

Fuzzy sets are an extension of classical set theory since, for a certain universe, a 

membership function may act as an indicator function, mapping all elements to either 1 or 

0, as in the classical notion.  

  

The theory of binary logic is based on the assumption of crisp membership of an element 

to a certain set. An element x thus either belongs to (i.e. has a membership value of 1) or 

doesn’t belong to (i.e. has a membership value of 0) a particular set X. Conventional logic 

systems can be extended to encompass normalized values in the range of (0,1), thus 

introducing the notion of partial membership of an element to a particular set. Such a 

logic system allows us to represent variables in a natural form with infinite degrees of 

membership is referred to as Fuzzy Logic System. The variable in a fuzzy system is 

generally described linguistically prior to its mathematical description, as it is more 

important to visualize a problem in totality to devise a practical solution. 

Fuzzy membership functions can be illustrated as follows: 
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A fuzzy set F, on a collection of objects, X, is a mapping 

 

µF (x): X  [0,a] 

Here, µF (x) indicates the extent to which x  X has the attribute F, thus it is the 

membership function. In general, we use a normalized fuzzy domain set, for which  

   

a = sup  µF (x) = 1 

The membership function can be generated with the help of mathematical equations. 

Typically, it can be in trapezoidal form, triangular form or in the form of S or - curve. 

The support of a fuzzy set, F, S (F) is the crisp set of all x  X such that µ (x) >0. 

he three basic logical operations of intersection, union and complementation can be 

performed on fuzzy sets as well. 

 

1. The membership µC (x) of the intersection C = A   satisfies for each   x  X, 

 

µC (x) = min {µA (x), µB (x)} 

 

2. The membership µC (x) of the union C = A  B X 
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µC (x) = max {µA (x), µB (x)} 

 

3. The membership µC (x) of the complementation C = A
  
satisfies for each  x  X, 

 

µC (x) = 1- µA (x) 

 

Properties of classical sets are very important to consider because of their influence on 

the mathematical manipulation.  Some of these properties are listed below. 

Commutativity: 

A  B = B  A 

A  B = B  A 

Associativity: 

A  (B  C) = (A  B)  C 

A  (B  C) = (A  B)  C 

Distributivity: 

A  (B  C) = (A  B)  (A  C) 

A  (B  C) = (A  B)  (A  C) 

Idempotency: 

A  A = A 

A  A = A 

Identity: 

A   = A 

A  U = A 

A   = 

A  U = U 

Excluded middle laws are very important since they are the only set operations that are 

not valid for both classical and fuzzy sets.  Excluded middle laws consist of two laws.  

The first, known as Law of Excluded Middle, deals with the union of a set A and its 
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complement. The second law, known as Law of Contradiction, represents the intersection 

of a set A and its complement.  

The following equations describe these laws: 

Law of Excluded Middle 

A  A = U 

Law of Contradiction 

A  A = 

Some of the possible membership functions are: 

(a) the -function: an increasing membership function with straight lines;  

(b) the L-function: a decreasing function with straight lines;  

(c) -function: a triangular function with straight lines;  

(d) the singleton: a membership function with a membership function value 1 for only 

one value and the rest is zero.   

(e) There are many other possible functions such as trapezoidal, Gaussian, sigmoidal or 

even arbitrary. These are much more popular.  

Alpha-Cut Fuzzy Sets 

It is the crisp domain in which we perform all computations with today’s computers.  

Given a fuzzy set ~
A

, the alpha-cut (or lambda cut) set of ~
A

 is defined by 









  )(
~

xxA A  

Note that by virtue of the condition on 
)(

~

xA in above equation, i.e., a common property, 

the set A is now a crisp set.  In fact, any fuzzy set can be converted to an infinite number 

of cut sets. 
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Extension Principle 

In fuzzy sets, just as in crisp sets, one needs to find means to extend the domain of a 

function, i.e., given a fuzzy set ~
A

 and a function f(), then what is the value of function 

f( ~
A

)? This notion is called the extension principle. 

Let the function  f  be defined by 

VUf :  

where U and V are domain and range sets, respectively.  Define a fuzzy set ~
A
U as, 
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Then the extension principle asserts that the function f is a fuzzy set, as well, which is 

defined below: 
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The complexity of the extension principle would increase when more than one member of 

u1 x u2 is mapped to only one member of v; one would take the maximum membership 

grades of these members in the fuzzy set ~
A

.  

 

Hedges 

The linguistic hedge is an operation that modifies the meaning of a term or more 

generally, of a fuzzy set. The distribution of membership of the membership function as 

indicated above can be modified so that the concept captured by the modified fuzzy term 

is stronger (concentrated) or weaker (dilated) than the original term. If A is a fuzzy set 

then the modifier m generates the (composite) term B = m (A). The linguistic hedge 

comprises concentration and dilation. These are discussed below: 

 

 



 5

1 

Concentration:  

The operation of concentration on F set results in a fuzzy subset of F that the reduction in 

the magnitude of the grade of membership of an element in F is relatively small for those 

values which have high membership and relatively large for those which have low 

membership. The operation of concentration is defined by:  

 

CON (F) = F 
p 

con, A (x) = ( A(x) ) 
p

,  where p >1 

      

Dilation: 

The operation of dilation on F set results in a fuzzy subset of F that the increase in the 

magnitude of the grade of membership of an element in F is relatively small for those 

values which have high membership and relatively large for those which have low 

membership. The operation of dilation is defined by: 

 

DIL (F) = F
 q 

dil, A (x) = ( A(x) ) 
q

,  where q <1 

 

Defuzzification is the process of producing a quantifiable result in fuzzy logic. Typically, 

a fuzzy system will have a number of rules that transform a number of variables into a 

"fuzzy" result, that is, the result is described in terms of membership in fuzzy sets. For 

example, rules designed to decide how much pressure to apply might result in "Decrease 

Pressure (15%), Maintain Pressure (34%), Increase Pressure (72%)". Defuzzification 

would transform this result into a single number indicating the change in pressure. The 

simplest but least useful defuzzification method is to choose the set with the highest 

membership, in this case, "Increase Pressure" since it has a 72% membership, and ignore 

the others, and convert this 72% to some number. The problem with this approach is that 
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it loses information. The rules that called for decreasing or maintaining pressure might as 

well have not been there in this case. 

A useful defuzzification technique must first add the results of the rules together in some 

way. The most typical fuzzy set membership function has the graph of a triangle. Now, if 

this triangle were to be cut in a straight horizontal line somewhere between the top and 

the bottom, and the top portion were to be removed, the remaining portion forms a 

trapezoid. The first step of defuzzification typically "chops off" parts of the graphs to 

form trapezoids (or other shapes if the initial shapes were not triangles). For example, if 

the output has "Decrease Pressure (15%)", then this triangle will be cut 15% the way up 

from the bottom. In the most common technique, all of these trapezoids are then 

superimposed one upon another, forming a single geometric shape. Then, the centroid of 

this shape, called the fuzzy centroid, is calculated. The x coordinate of the centroid is the 

defuzzified value. 

CentroidFuzzy =   ( di wI) / (  wI) 

 

T-norm: 

A T-norm is a function T: [0, 1] × [0, 1] → [0, 1] which satisfies the following properties: 

• Commutativity:  T(a, b) = T(b, a)  

• Monotonicity:  T(a, b) ≤ T(c, d) if a ≤ c and b ≤ d  

• Associativity: T(a, T(b, c)) = T(T(a, b), c)  

• The number 1 acts as identity element: T(a, 1) = a  

 

Minimum T-norm is defined by: 

 

  

 

 

Product T-norm is defined by: 
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T-Conorm (S-norm):  

 

• Dual to T-norms under the order-reversing operation which assigns 1 – x to x on 

[0, 1] 

• Generalizes De Morgan's laws 

• Given a T-norm, the complementary Conorm is defined by: 

              

 

Maximum  T-conorm is defined by : 

  

 

Probabilistic sum T-conorm is defined by: 

  

 

Fuzzy Control System 

FL offers several unique features that make it a particularly good choice for many control 

problems: 

 

1. It is inherently robust since it does not require precise, noise-free inputs and can be 

programmed to fail safely if a feedback sensor quits or is destroyed. The output 

control is a smooth control function despite a wide range of input variations.  

2. Since the FL controller processes user-defined rules governing the target control 

system, it can be modified and tweaked easily to improve or drastically alter system 

performance. New sensors can easily be incorporated into the system simply by 

generating appropriate governing rules. 

3. FL is not limited to a few feedback inputs and one or two control outputs, nor is it 

necessary to measure or compute rate-of-change parameters in order for it to be 

implemented. Any sensor data that provides some indication of a system's actions and 

reactions is sufficient. This allows the sensors to be inexpensive and imprecise thus 

keeping the overall system cost and complexity low. 
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4. Because of the rule-based operation, any reasonable number of inputs can be 

processed (1-8 or more) and numerous outputs (1-4 or more) generated, although 

defining the rule base quickly becomes complex if too many inputs and outputs are 

chosen for a single implementation since rules defining their interrelations must also 

be defined. It would be better to break the control system into smaller chunks and use 

several smaller FL controllers distributed on the system, each with more limited 

responsibilities. 

5. FL can control nonlinear systems that would be difficult or impossible to model 

mathematically. This opens doors for control systems that would normally be deemed 

unfeasible for automation. 

 

Fuzzy Logic Control (FLC) is an algorithm. This develops a process control as fuzzy 

relation information on the condition of the process to be controlled and the control 

action. The essence of fuzzy control algorithm is a conditional statement between a fuzzy 

input variable B. 

 

This is expressed by a linguistic implication statement such as :- 

 

A B               (condition A implies condition B), 

 

This may be written as  

 

IF A THEN B  

 

There is an equivalency between this expression and the relation obtained by a Cartesian 

multiplication i.e. 

 

R=A * B  IF A THEN B. 
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A fuzzy variable is expressed through a fuzzy set which in turn is defined by a 

membership function. The fuzzy variable may be continuous or discrete. A continuous 

variable can be quantized and expressed as if it were discrete. 

 

Fuzzy production rules are used for knowledge representation. The general formulation of 

fuzzy production rule is  

 

If Fi (CF = x) then Ci (CF = y) 

 

Where Fi represents the antecedent portion of the rule containing fuzzy quantifiers and Ci 

represents the consequent. The CF values give the confidence measures usually varying 

from 0 to 1. 

 

The Fuzzy Control Logic process, described above, can be illustrated as shown in the 

following diagram: 

                                  

5.3 Fuzzy Numbers 

A fuzzy number is a convex, normalized fuzzy set whose membership function 

is at least segmentally continuous and has the functional value μA(x) = 1 at precisely one 

element .This can further be explained by the following terms in relation to fuzzy 

numbers : 
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 Convex: In Euclidean space, an object is convex if for every pair of points within the 

object, every point on the straight line segment that joins them is also within the 

object. For example, a solid cube is convex, but anything that is hollow or has a dent 

in it is not convex. This can be explained by the figure given below comparing the 

convex and non-convex shapes.  

 

                         

                           

CONVEX FUNCTION                 NONCONVEX FUNCTION 

 

 Normalized: A normalized set is one in which values fixed within a specific range. 

For example, 0 to1 instead of random variations. 

 Continuous: In mathematics, a continuous function is a function for which, 

intuitively, small changes in the input result in small changes in the output. 

 Fuzzy: Being part of the fuzzy set is what makes a fuzzy number an ordinary number 

whose precise value is somewhat uncertain. Thus being fuzzy allows it to have 

approximations. 

 A fuzzy number is a thus quantity whose value is imprecise, rather than being exact like 

single-valued numbers. Any fuzzy number can be thought of as a function whose domain 

is a specified set (usually the set of real numbers, and whose range is the span of non-

negative real numbers between, and including, 0 and 1000. Each numerical value in the 

domain is assigned a specific "grade of membership" where 0 represents the smallest 

possible grade, and 1000 is the largest possible grade. In many respects, fuzzy numbers 

depict the physical world more realistically than single-valued numbers. 

The number has three main properties, the minimum possible value of fuzzy number are 

called Minimum, the maximum possible value - Maximum, and most possible value – 
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Best. The peak, minimum, and maximum, also describe the apex, left corner and right 

corner of the membership function  

Fuzzy numbers can also be called fuzzy sets on which certain restrictions and distinctive 

denotations have been applied: 

For fuzzy set A, 

1. A(x) is a function mapping , often a subset of <, into [0,1] 

2. The value of A(x) is called its membership value in A, denoted by   

3. For some   that is, fuzzy numbers are normalized to 1. The set  

is called the core. If x is a singleton it may be called a vertex. 

4. The membership function A must have C0 continuity; i.e., be connected, have no 

breaks. 

5. The interval for which A(x) > 0, say [a,c], a<·the core< c, is called the support of the 

fuzzy number. In this case, a (c) is called the left (right) support. Some authors allow 

the support to be an open interval. The membership function from a to the core (the 

core to c) must be monotonically increasing (decreasing). 

There are two main ways of representing fuzzy numbers: 

1. By creating a set of pairs 

2. By using a set of Belief graphs. For example, the fuzzy number Z could have the 

following Belief graph: 
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Each fuzzy number has a centroid. It is determined as the balancing point of Belief graph. 

Centroid is used to display fuzzy number in the sheet cell. 

When working with fuzzy numbers and performing fuzzy arithmetic, we should use a 

large universal space because the intervals over which fuzzy numbers are defined, widen 

as arithmetic operations are performed. Also, like traditional numbers, fuzzy numbers can 

be negative or positive, so the universal space should be symmetric around zero.  

Hedges and Fuzzy Numbers 

Fuzzy numbers are most easily specified by using modifying words called hedges. For 

example:  

 

All these dispersions are measured at the 50% confidence level. That is, we are at least 

50% sure that a number belongs to about 2 with a confidence of 500 or greater if it lies 

within 10% of 2, or between 1.8 and 2.2.  

So far we have two ways of representing uncertainties: by confidence levels attached to a 

specific datum, such as the value of some real-world variable; and by the use of fuzzy sets 

of word descriptors. We now consider how to represent an uncertain number.  

Suppose a fuzzy set is given members as all the real numbers. Since there is infinity of 

real numbers, this fuzzy set has infinity of members. As in all fuzzy sets, to each real 

number there will be attached a grade of membership. 
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There are many cases when an input number may be only approximately known, or may 

be subject to uncertainties even if a precise value is available. In these cases, fuzzy 

numbers are useful. Like membership functions, fuzzy numbers have shape .There are 

many cases when an input number may be only approximately known, or may be subject 

to uncertainties even if a precise value is available.  

Fuzzy numbers are also useful when we believe that the true value of a decimal number 

falls within a known range, for example +/- 10%. 

Like membership functions, fuzzy numbers have shape restrictions. Usually, the 

confidence is zero in small numbers, rises to full confidence, and then declines again to 

zero. (Technically, such numbers are called convex.) There may also be special fuzzy 

numbers which start or end up with full confidence, as in some membership functions; 

this is reasonable.  

A fuzzy number can be linear, curvilinear shaped or bell shaped. This is illustrated in the 

figure comparing the various shapes: 

 

Trapezoidal and Triangular functions for fuzzy numbers are separately, being more 

popular as compared to other functions in case of fuzzy numbers. 
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Many functions, like triangular, can further be classified as: 

1. Symmetric functions and, 

2. Asymmetric functions 
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As shown above, some fuzzy number representations can be triangular and trapezoidal. 

Triangular can be symmetric or asymmetric. In symmetric representation, (v, l) are taken 

where v gives the position of the vertex and l gives the support distance where 

perpendicular bisects it. A notation for asymmetric is (a/b/c) where b is the vertex and (a, 

c) gives the support (i.e. the base of the triangle). If the core (like vertex b) is not a single 

value, then it gives rise to trapezoidal fuzzy numbers. It uses the notation (a/b/c/d) with 

[a, d] as support and [b, c] as base. 

Fuzzy numbers define various concepts using partial membership functions. Amongst 

various membership functions, most often used in this case are, triangular and parabolic. 

These are represented by (æ, m, ß) where m is the modal value and  and  represent the 

left and right boundary values. 

 

Triangular Fuzzy Numbers: 

A triangular fuzzy number (TFN) K, is described by a triplet {, m, } where m is the 

modal value of the fuzzy number K, and  and  are its left and right boundary values, 

respectively .K=TFN {, m, } 

 

Parabolic Fuzzy Numbers: 

Parabolic fuzzy number (PFN) is composed of two parabolic segments of the membership 

grades delimited by modal and boundary values. It is described by a triplet PFN {, m, 

} with modal value m, and parameters of the left and right boundaries  and  . K= PFN 

{, m, } 

 

Equations of the Triangular Fuzzy Number:   

            

Equation of the Parabolic Fuzzy Number: 
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Figure Showing a TFN and a PFN: 

 

 

Fuzzy numbers are special fuzzy sets representing uncertain quantitative information. 

They are convex and normal, usually with single modal value. They are also associated 

with some vagueness or fuzziness. For evaluation of uncertainty, relative fuzziness is 

defined as: 

 

 

where more the relative fuzziness, more uncertain A is. 

 

Computations involving fuzzy numbers are carried out in the setting of fuzzy arithmetic. 

It dwells on the extension principle. The extension principle deals with the generalization 

of this mapping to the case of arguments being fuzzy numbers that is B =f (A), where A 

and B are fuzzy numbers. 

If C= f (A, B) then its membership function can be defined by: 



 6

3 

 

 

 

Comparing Fuzzy Numbers 

In computer programming, it is quite common to compare two numbers in various ways. 

For example, we might want to know if some input number X equals some certain value: 

in almost any computer language, we can write an instruction like this:  

If x = 200 then (do something)  

Similarly, we can write a rule to do the same thing:  

Rule:  IF x = 200 THEN (do something)  

In both cases, if x is just slightly off (say x is 199.99) the instruction will not be executed 

and the rule will not fire.  

In fuzzy reasoning, we are often not concerned with precise equality, but would like to be 

able to say  

IF x is approximately 200 THEN (do something)  

The use of fuzzy numbers permits us to do this. This can be done by using approximate 

numerical comparisons like: ~< (approximately less than), ~<= (approximately less than 

or equal to), ~= (approximately equal) and so on..  

Suppose we are comparing two fuzzy numbers, as shown in figure: 
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We see that the two curves cross at two points. The confidence that the comparison holds 

is the greater of the confidences at these intersection points, in this case 600.  

5.4 Fuzzy Inference 

Applications of Fuzzy Logic in simulation and modeling are based on fuzzy inference 

mechanism. A Fuzzy Inferencing System (FIS) uses fuzzy sets to make decisions or draw 

conclusions. Assuming that there is a particular problem that cannot (at all or with 

difficulty) be tackled by conventional methods such as by developing a mathematical 

model, after some process (e.g. knowledge acquisition from an expert in the domain) the 

`base' fuzzy sets that describe the problem are determined. These might be, for example, 

how a doctor describes the temperature of a patient as low, normal or high and that the 

patient's temperature is a factor in the diagnostic process. The rules (usually of an 

IF....THEN.... nature (if-then)) are thus determined. These rules then have to be combined 

in some way referred to as rule composition. Finally conclusions have to be drawn - 

defuzzification.  

A general fuzzy inference system consists of three parts. A crisp input is fuzzified by 

input membership functions and processed by a fuzzy logic interpretation of a set of 

fuzzy rules. This is followed by the defuzzification stage resulting in a crisp output. The 

rule base is typically crafted by an expert.  
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An approach that we can define for a Fuzzy Inferencing System as:  

 the base fuzzy sets that are to be used, as defined by their membership functions;  

 the rules that combine the fuzzy sets;  

 the fuzzy composition of the rules;  

 the Defuzzification of the solution fuzzy set.  

 

There are two types of fuzzy inference systems that can be implemented: 

 Mamdani-type 

 Sugeno-type 

Mamdani-type inference, as defined for Fuzzy Logic Toolbox, expects the output 

membership functions to be fuzzy sets. After the aggregation process, there is a fuzzy 

set for each output variable that needs defuzzification. it is possible, and in many cases 

much more efficient, to use a single spike as the output membership function rather 

than a distributed fuzzy set. This type of output is sometimes known as a singleton 

output membership function, and it can be thought of as a pre-defuzzified fuzzy set. It 

enhances the efficiency of the defuzzification process because it greatly simplifies the 

computation required by the more general Mamdani method, which finds the centroid 

of a two-dimensional function. Rather than integrating across the two-dimensional 

function to find the centroid, you use the weighted average of a few data points.  
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Sugeno-type systems support this type of model. In general, Sugeno-type systems can 

be used to model any inference system in which the output membership functions are 

either linear or constant. 

Before concluding this chapter, it is necessary to discuss some misconceptions about 

Fuzzy Logic. These have been highlighted below.  

(i) Fuzzy logic is the same as "imprecise logic"  

Fuzzy logic is not any less precise than any other form of logic: it is an organized and 

mathematical method of handling inherently imprecise concepts. The concept of 

"coldness" cannot be expressed in an equation, because although temperature is a 

quantity, "coldness" is not. However, people have an idea of what "cold" is, and agree 

that something cannot be "cold" at N degrees but "not cold" at N+1 degrees — a concept 

classical logic cannot easily handle due to the principle of bivalence.  

(ii) Fuzzy logic is a new way of expressing probability 

Fuzzy logic and probability refer to different kinds of uncertainty. Fuzzy logic is 

specifically designed to deal with imprecision of facts (fuzzy logic statements), while 

prob ability deals with chances of that happening (but still considering the result to be 

precise). However, this is a point of controversy. Many statisticians are persuaded by the 

work of Bruno de Finetti that only one kind of mathematical uncertainty is needed and 

thus fuzzy logic is unnecessary. On the other hand, Bart Kosko argues that probability is a 

sub theory of fuzzy logic, as probability only handles one kind of uncertainty. He also 

claims to have proven a theorem demonstrating that Bayes' theorem can be derived from 

the concept of fuzzy subsethood. Lotfi Zadeh, the creator of fuzzy logic, argues that fuzzy 

logic is different in character from probability, and is not a replacement for it. He has 

created a fuzzy alternative to probability, which he calls possibility theory. Other 

controversial approaches to uncertainty include Dempster-Shafer theory and rough sets. 

(iii) Fuzzy logic will be difficult to scale to larger problems 

In a widely circulated and highly controversial paper, Charles Elkan in 1993 commented 

that "...there are few, if any, published reports of expert systems in real-world use that 

reason about uncertainty using fuzzy logic. It appears that the limitations of fuzzy logic 

have not been detrimental in control applications because current fuzzy controllers are 



 6

7 

far simpler than other knowledge-based systems. In future, the technical limitations of 

fuzzy logic can be expected to become important in practice, and work on fuzzy 

controllers will also encounter several problems of scale already known for other 

knowledge-based systems". Reactions to Elkan's paper are many and varied, from claims 

that he is simply mistaken, to others who accept that he has identified important 

limitations of fuzzy logic that need to be addressed by system designers. In fact, fuzzy 

logic wasn't largely used at that time, and today it is used to solve very complex problems 

in the AI area. Probably the scalability and complexity of the fuzzy system will depend 

more on its implementation than on the theory of fuzzy logic.
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CHAPTER 6 

FUZZY SOFTWARE ESTIMATION FRAMEWORK 

 

6.1 Introduction 

In the previous chapters, we have seen the need to provide support for cost estimation 

models to handle uncertainties and vagueness arising out of several practices used in 

software development process. In our project, Software Effort Estimation and Design is 

developed using classical and fuzzy models. During the course of our project, we went 

through various papers and articles so as to select the best possible methodology for 

implementing Fuzzy Software Estimation. The fuzzy models implemented in our 

software are based on the models established and proposed in these papers. Hence, we are 

providing a short overview of the ideas presented by various authors which have been 

used by us in the fuzzy Software Estimation Environment (f-SEE) package. 

 

PAPER 1: 

Estimation of f-COCOMO Model Parameters Using Optimization Techniques 

Leonard J. Jowers, James J. Buckley, and Kevin D. Reilly 

 

Summary 

The paper is concerned with improving the project outcome using COCOMO. It allows 

for uncertainty by use of fuzzy logic. We start with a crisp COCOMO model which 

depends on interpretation of a set of linguistic variables to create a set of crisp 

parameters. There are always a number of parameters in the system whose values are not 

known precisely. These parameters need to be estimated and their estimators contain 

uncertainties. We model these uncertainties using fuzzy numbers and fuzzy arithmetic. It 

is primarily based of the principle of fuzzy extension which effective in COCOMO 

estimation. Thus the COCOMO model changes into a fuzzy COCOMO model. This 

uncertainty in the parameter values computes a larger uncertainty in the COCOMO result. 

 



 6

9 

If a project parameter is fuzzy, the associated COCOMO Model also becomes a fuzzy 

COCOMO Model (f-COCOMO Model) with a fuzzy result i.e: schedule and effort. A 

dictated fuzzy schedule and budget can be used to improve an f-COCOMO Model, or 

plan a project. By application of constraints created by dictated fuzzy results, and back 

propagation, better estimates of project parameters are obtainable. Such a project scenario 

is presented in this paper and the method is applied to demonstrate its use. 

 

There is more than one way in which fuzziness occurs in computation: 

 perception-based (linguistic) and  

 measurement-based (numerical) fuzziness.  

 

Fuzzy Numbers 

Some fuzzy number representations can be triangular and trapezoidal. Triangular can be 

symmetric or asymmetric. In symmetric representation, (v, l) are taken where v gives the 

position of the vertex and l gives the support distance where perpendicular bisects it. A 

notation for asymmetric is (a/b/c) where b is the vertex and (a, c) gives the support (i.e. 

the base of the triangle). If the core (like vertex b) is not a single value, then it gives rise 

to trapezoidal fuzzy numbers. It uses the notation (a/b/c/d) with [a, d] as support and [b, 

c] as base. 

 

Fuzzy arithmetic is primarily based on two methods:  

1. Extension Principle 

If A and B are two fuzzy numbers, then C is calculated as the supremum of the min of 

these two. This is shown in the given equations: 

        

        

         

 

2. Interval arithmetic on alpha cuts. 

Alpha-cuts are slices through a fuzzy set producing crisp (non-fuzzy) sets. 
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Given a fuzzy set ~
A

, the alpha-cut (or lambda cut) set of ~
A

 is defined by 









  )(
~

xxA A  

 

Note that by virtue of the condition on 
)(

~

xA in above equation, i.e., a common property, 

the set A is now a crisp set.  In fact, any fuzzy set can be converted to an infinite number 

of cut sets. 

Alpha cut sets are calculated for the following equations:  

                        

 

Fuzzy COCOMO 

COCOMO II being more popular, is taken into consideration in the paper.the basic 

equations are given as follows: 

 

 

 

In this case, fuzzification is done for all parameters which are inexactly known using the 

TFN values. Another concept implemented in that of inverse problem. 

 

Fuzzy Estimators 

In this paper only one method of fuzzy estimation that is expert opinion is considered. 

Then a value “b” is obtained from experts. This is then fuzzified using triangular fuzzy 

number concept. It is assumed that b1 is the pessimistic value, b 3 is the optimistic value 

and b2 is the most likely value. Thus a TFN is constructed by using b=(b1  /b2 /b3 ) for b. 

This is one approach towards fuzzy estimators. 

 

 The Inverse Problem 
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It can be explained as: 

“Given an effort budget, where should resources be directed to increase possibility of 

staying within budget?" 

 

A research based on Monte Carlo method is done for this problem. And additional 

evaluations are carried out by a defined defuzzification scheme. The Monte Carlo method 

takes as input an incomplete set of parameters (linguistic) and the target fuzzy solution    ( 

ie. the effort and the development time).It then optimizes them in such a way so as to 

resolve the unknown fuzzy parameters and make a complete set available. 
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PAPER 2 

On the Use of Fuzzy Regression in Parametric Software Estimation Models: 

Integrating Imprecision in COCOMO Cost Drivers 

F. Javier. Crespo, Miguel-Ángel Silicia, Juan J. Cuadrado 

 

Summary 

Parametric software estimating models are based on inherently imprecise and uncertain 

input variables. These use mathematical models elaborated from regression techniques to 

obtain effort of development estimates. In this paper, preliminary results on using fuzzy 

inputs to f-regression have been reported. It shows that fuzzy regression is able to obtain 

estimation models with similar predictive properties than existing basic estimation 

models.               

The limitations of COCOMO in crisp set evaluation arises due to the imprecision of the 

limited set of labels and the uncertainty of the human approximate judgments  about 

abstract concepts of the various parameters. In this paper the concept of fuzzy regression 

is shown to overcome the limitations. Fuzzy regression analysis approaches can be 

roughly categorized in two groups: 

1. Classical fuzzy regression –it is based on the assumption that deviations are due to 

the fuzziness of parameters 

2. Fuzziness in the experimental points while using a crisp model. 

In this paper, the second method is implemented. It takes into consideration the 

imperfection in the input assessment. 

The standard COCOMO is given below: 

 

where e is the effort, 

a and b are constants 

and M is the product of the cost drivers  ranked on linguistic ordinal scales, 

it  can be given as: 
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 This paper takes into account the kind and impact of uncertainty of each of these cost 

drivers and calculates an upper bound error for them. Only an upper bound is calculated 

because of diversity of imperfection of different parameters. 

 

The f-regression method  is based on obtaining a coefficient vector a for a given crisp 

model, assuming that experimental points (both inputs and actual outputs) are modeled as 

fuzzy numbers µQ(xi, y) modeled as the product T-norm of the fuzzy numbers 

representing inputs and outputs. Then, a similarity measure Mi(a) with function f (for 

coefficient vector 

a) for a given fuzzy point Qi is defined  as follows: 

 

In addition, an aggregation operator M is used to compute the similarity of a set of fuzzy 

points to a given coefficient vector for function f. Its aggregation operation is given as 

follows: 

 

 

The optimal coefficient vector a* is obtained by random search techniques as described 

by above equation. 

 

Thus, the same ordinal linguistic scale for cost drivers is mapped to different non-regular 

intervals that suggest a loss of information when casting input variables to the numbers. 

 

Another limitation of this paper lies in requiring further research in fuzzy formulation of 

input values, which may eventually result in more accurate models, e.g. cost drivers 

selected in COCOMO are heterogeneous in uncertainty terms, so that different forms of 

membership functions would be required for a more realistic modeling.
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PAPER 3 

f-COCOMO : Fuzzy Constructive Cost Model in Software Engineering 

Fei Zonglian, Liu Xihui 

 

Summary 

In this paper, the fuzzy Constructive Cost Model (f-COCOMO) is presented. This 

involves overcoming the limitations of the existing COCOMO and making it more 

tolerant to imprecision using a domain of Soft Computing called Fuzzy Logic. It shows 

how allowing for uncertainties leads to improved decision making. It provides a 

reasonable estimation of manpower and development time. 

Though the analysis methodology of COCOMO takes the uncertainties of randomness 

into consideration; yet, the uncertainty of fuzziness involved in the process of analysis is 

not taken into account. In these traditional COCOMO models, linguistic values are used 

for representation and user convenience but for calculations, these are converted to 

numerical values. These are crisp values. But for linguistic values, use of fuzzy numbers 

is generally more efficient. 

 

Basic COCOMO implementation 

It gives an equation (l) for estimating the number of Man-Months (MM) required for a 

specified software product in terms of the number of thousands of delivered source 

instructions (KDSI) and equation (2) for calculating the required development time. 

(1) 

 

  (2) 

These equations can be transformed into fuzzy ones to ease the process of decision 

making. This is done by using relational algebra. This is done by first providing intervals 

of values instead of discrete values and then defining the exponential operation for those 

intervals.  
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This is shown in the equation below: 

 

 

 

Intermediate COCOMO implementation 

The intermediate COCOMO has greater accuracy and is suitable for cost estimation in the 

more detailed stages a compared to Basic COCOMO. In this case, 15 additional are 

defined. Instead of assigning discrete values to the natural language values of these 

parameters, they are implemented using intervals in fuzzy logic. This thus led to fuzzy 

adjustment factor. 

 

Fuzzy Decision Making 

In this paper, a comprehensive evaluation system is provided as shown below: 

1. Factor set U={ul ,u2,. . . . ,un}, where ui (i=l, 2,. . ,n) are associated factors 

involved. 

2. Evaluation set V={vl ,v2,. . . . . . ,vm}, where vj (j=l,2,. . . . . . ,m) represent the 

results of evaluation of the system. 

3. Fuzzy relationship matrix(R) 

4. Weight Set (a) 

 

Comprehensive evaluation 

b = a * R, 

Where * gives the composition operator. 

“b” is the result of the evaluation and bj gives the degree of membership. 

 

In the given paper, this concept is explained by taking an example of selection of 

powerful computer. Here “b” is evaluated and it is verified that the result is more 

reasonable due to fuzzy application. 
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PAPER 4 

FULSOME 

Stephen G. MacDonell, Andrew R. Gray, and James M. Calvert 

 

Summary 

This paper discusses the benefits of using fuzzy logic modeling for software metric 

models. Fuzzy Logic has joined both traditional and robust statistical techniques, 

regression and classification tress, case based reasoning and neural networks, model 

based attempts for efficient software development. 

Advantages of using fuzzy logic: 

 using expert knowledge based system  

 using linguistic values before actual values are known 

 allowing less precise estimates for models 

 

Function Point Approach can be implemented using fuzzy logic as it is well documented 

and has quality control. 

Software and guidelines leads to adopting fuzzy logic scheme prominently. 

Conventionally the models fail to predict the software effort before coding, in some cases 

like COCOMO the size measure is transformed before hand .Fuzzy logic implementation 

of software metrics helps by use of single model, ability to cope with small or non 

existent data sets, robustness to data quality and use of fuzzy logic as means of 

communicating project management issues. 

Using a single model through out the entire development model is advantageous as it 

takes linguistic inputs in the form of small or large and gives output as precise crisp 

values .In multiple models the requirements to predict effort is less but it leads to 

fluctuation and inconsistency. 

Effort prediction from a fuzzy logic model can be made in different stages of 

development cycle with different levels of precision. This paper suggests some of the 

levels of precision in estimating development effort 



 7

7 

Fuzzy models can be easily constructed with a small sample of data to validate the 

models 

FULSOME provides software metrics developer using a series of tools like to input data, 

membership function, rule creation, inferencing and online explanation of fuzzy logic. 

Few of the membership functions used are Gaussian, Bell, Trapezoidal, Triangular, 

Sigmoidal, Tnorm, Tconorm and defuzzification strategies. 

This paper has generated an algorithm for membership functions. This involves selecting 

a function and finding the center and making it the center of cluster. This can be 

explained by the following algorithm as given in the paper: 

 

1. Select an appropriate mathematically defined function for the membership functions 

of the variable of interest (i), say fi(z) 

2. Select the number of membership functions that are desired for that particular 

variable, mi functions for variable i 

3. Call each of the mi functions fij([z]) where j = 1. . .mi and [XI is an array of parameters 

defining that particular function (usually a center and width parameter are defined, 

either explicitly or implicitly) 

4. Using one-dimensional fuzzy c-means clustering on the data set find the ma cluster 

centers, from the available data 

5. Sort the cluster centers  into monotonic  

6. Set the membership function center for f a J , generally represented as one of the 

parameters in the array [z], to the cluster center ctJ 

7. Set the membership function widths for fij in [x] such that f t n ( [ c z n , . ..I) = 1, or 

as close as possible for the chosen f(z) where this can not be achieved exactly (for 

example for triangular membership functions each function can be defined using three 

points, a, b, and c where a is the center of the next smaller functions and c is the 

center of the next larger function) 
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PAPER 5 

On Generating FC Fuzzy Rule Systems from Data Using Evolution Strategies 

Yaochu Jin, Member, IEEE, Werner von Seelen, and Bernhard Sendhoff 

 

Summary 

Software sizing is an important management activity for both customer and developer 

that is characterized by uncertainty. Fuzzy system modeling offers a means to capture and 

logically reason with uncertainty. This paper investigates the application of fuzzy 

modeling techniques to two of the most widely used software effort prediction models, 

the Constructive Cost Model and the Function Points model. 

 

SOFTWARE PREDICTION MODELS 

A. Current Methods 

Current methods of software effort prediction include  

1) expert opinion,  

2) 2) analogy, 

3) decomposition and summation , and 

      4) algorithmic models which attempt to relate input cost drivers to output effort (cost) 

 

Algorithmic modeling is preferred by management because the inputs are quantifiable: 

and it is a repeatable process. These models use linear regression to correlate cost drivers, 

based on historical data, to the effort required.   

 

B. Constructive Cost Model 

COCOMO, developed by Boehm while at TRW, is used in three phases. Basic 

COCOMO has two inputs: the mode and LOC estimate (in thousands of delivered source 

code), and produces a nominal effort estimate using the nonlinear equation. 
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Intermediate COCOMO uses the product of 15 adjustment factors [Table 21, determined 

by the user, and the nominal effort (from Basic COCOMO) to produce an adjusted effort 

estimate. 

 

 

C. Function Points 

 Functionality factors in each of five categories are counted and given an expert 

weighting 
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FUZZY MODELING APPROACH 

An alternate approach to the effort prediction problem is to use fuzzy systems that 

perform a mapping between linguistic terms such as “medium complexity” and “high 

cost”. Fuzzy systems are able to capture uncertainty associated with independent input 

variables (cost drivers) and output variables (cost/effort) using fuzzy set theory. Fuzzy 

logic is used as an approximate reasoning technique. 

A fuzzy expert system has three parts:  

 fuzzification of inputs, 

  imprecise reasoning with a fuzzy rule bank, and  

 defuzzification for final output. 

Inputs and outputs can be either linguistic or numeric. Fuzzification involves finding the 

membership of an input variable with a linguistic term. 

Some of the benefits of using fuzzy modeling techniques for software effort prediction: 

 intuitive nature of linguistic inputs and output 

 possible reduction of input variables 

 approximate reasoning ability  
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 better performance early in sizing task  

 reduces dependence on historical data 

 reduces commitment on crisp prediction 

 

Fuzzy COCOMO and Fuzzy Function Points Models 

One way to deal with the imprecision in these models involves in,serting a fuzzy expert 

system to calculate the adjustment factor.  

 

 

A second alternative involves reducing the number of inputs of both models and inserting 

the fuzzy expert system at the top layer. For COCOMO, this would eliminate the equation 

calculation. For functions points, it would eliminate the function points calculation. 
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PAPER 6 

f
2
 COCOMO: Estimating Software Project Effort and Cost 

Allan Caine and Anne Banks Pidduck 

 

Summary 

The Constructive Cost Model, COCOMO, was developed to estimate the effort and cost 

to complete a software project. All business enterprises involved in developing software 

must know their costs to maintain their long-term viability. COCOMO measures the size 

of the project is lines of code. When the size of the project is measured in function points, 

COCOMO uses a function points to lines of code converter. By experimentation, this 

research paper shows that software project data can be analyzed on a programming 

language basis. The different programming languages are reflected in the constants a and 

b. A model can be derived for each programming language by simply separating the data 

on a programming language basis. Suppose we have project data which relates function 

points to project effort. If that data is separated by programming language and analyzed, 

then a function point model, f2 COCOMO, can be derived for each programming 

language. One advantage of this model is that it eliminates the errors introduced by 

arbitrary function point indices and replaces them with constants that are scientifically 

verifiable. 

 

The formula for COCOMO is: 

  

where SM is effort, S is lines of code, EAF is effort adjustment factor and a and b are 

constants. 

 

Similarly for COCOMO II, the formula is: 

  

 

 

 The COCOMO 81 and COCOMO II models both models have a major deficiency that 

they cannot take function points as a direct input. Yet function points are a superior 
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metric to measuring project size compared to lines of code. Instead, a function point 

index is used to convert the function points to an equivalent number of lines of code using 

a standard converter. Unfortunately, the values of these indices are not universally agreed 

upon and any errors in the values of these indices materially affect the estimate of the 

software project effort and consequently the estimated cost of producing the software. 

 

In the model proposed in this paper, function points, EM, W, and possibly other model 

inputs are taken as a direct input. The function point to lines of code converter is not used. 

The box labeled ‘f
2
 COCOMO’ is the mathematical formula, which computes SM2 from 

function points, EM, W, and possibly other model inputs. In this, experiments were 

carried out by re-computing the values of constants a and b in the formula given earlier. 

It uses the Gauss-Newton method. This begins by assuming a form of the solution and 

taking an initial guess of the parameters a and b. Iteratively, the method computes the 

‘goodness-of-fit’ of the current parameters, and computes new and better parameters. As 

it iterates, the method (hopefully) converges upon the ‘correct’ solution. 
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PAPER 7 

Software Cost Estimation with Fuzzy Models 

Petr Musilek, Witold Pcdrycz, Giancarlo Succi, Marek Reformat 

 

Summary 

Estimation of effort/cost required for development of software products is inherently 

associated with uncertainty. This paper deals with a fuzzy set-based generalization of the 

COCOMO model (f-COCOMO).Rather than using a single number, the software size can 

be regarded as a fuzzy set (fuzzy number) yielding the cost estimate also in form of a 

fuzzy set. The paper includes detailed results with this regard by relating fuzzy sets of 

project size with the fuzzy set of effort. The analysis is carried out for several commonly 

encountered classes of membership functions (such as triangular and parabolic fuzzy 

sets). Here the emphasis is on a way of propagation of uncertainty and ensuing 

visualization of the resulting effort (cost). In the simplest augment the model by 

admitting, software systems to belong partially to the three main categories (namely 

embedded, semidetached and organic). In general, these models are based on measuring 

certain size or function related attributes of the software and relating these measurements 

to the cost or effort necessary for its development. 

 

Fuzzy sets (as opposed to standard interval analysis) create a more flexible, highly 

versatile development environment. Firstly, they help articulate the estimates and their 

essence (e.g., by exploiting fuzzy numbers described by asymmetric membership 

functions).Secondly, they generate a feedback as to the resulting uncertainty (granularity) 

of the results. 

The reason  for extending traditional cost estimation models using fuzzy logic stems from 

the vagueness present in all the data entering cost estimation process: size, function 

points, development modes, and other metrics and attributes are matter .of (informed) 

guessing rather than exact measurements. 

In particular, in this paper, the basic COCOMO model is extended. The reason for this 

lies in it being most simple, plausible for extension and availability for database. The 

basic equation used is: 
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 which relates effort E to KDSI,K 

But size of the project, especially during the earlier stages, is matter of estimation. The 

correctness and precision of such estimates are limited. Using fuzzy sets, size of a 

software project can be specified by distribution of its possible values. Fuzzy numbers 

define various concepts using partial membership functions. Amongst various 

membership functions, most often used in this case are, triangular and parabolic. These 

are represented by (æ, m, ß) where m is the modal value and æ and ß represent the left 

and right boundary values. 

 

Equations of the triangular function:      Equations of the parabolic function: 

             

 

Fuzzy numbers are special fuzzy sets representing uncertain quantitative information. 

They are convex and normal, usually with single modal value. They are also associated 

with some vagueness or fuzziness. For evaluation of uncertainty, relative fuzziness is 

defined as: 

 

 

 

where more the relative fuzziness, more uncertain A is. 

 

Computations involving fuzzy numbers are carried out in the setting of fuzzy arithmetic. 

It dwells on the extension principle. The extension principle deals with the generalization 

of this mapping to the case of arguments being fuzzy numbers that is B =f (A), where A 

and B are fuzzy numbers. 

 

If C= f (A, B) then its membership function can be defined by: 
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This principle is extended to give rise to simple fCOCOMO. Here the input variable (size 

K) is a fuzzy set (fuzzy number), so is the effort E and a, b are crisp values. Its extended 

equation is as follows: 

 

Using the above equation and the equation of the triangular function, we get: 

 

This directly estimates effort from size of software. 

Another application is when   the software project may concern a system whose 

membership to one of the three system categories is not obvious. In this case values of a, 

b are also taken as fuzzy sets. This leads to equation as shown below:  

 

 

The methodology of fCOCOMO, as presented in this paper can be applied to other 

models of software cost estimation also. 
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PAPER 8 

COCOMO Cost Model using Fuzzy Logic 

Ali Idri, Alain Abran, Laila Kijri 

 

Summary 

In this paper COCOMO’81 and in particular its intermediate model is studied with view 

to its implementation using fuzzy logic. 

The intermediate model is emphasized upon because: 

 It is the most widely use version 

 Database for only the simple and intermediate models are available 

 The simple model doesn’t take enough factors for validation 

 Accuracy is greater than the simple model. 

The work effort formula is: 

 

MM=A*SIZE 
B 

∑j=1
15 

Cij 

where MM are man months, SIZE is size of software in KDSI,  

A,B are constants specific to project mode 

Cij is the effort multiplier with jth selecting range and ith cost driver. 

Assignment of linguistic values uses conventional quantization. So no parameter can 

occupy more than class even if it exists at the boundary of 2. This is because values are 

taken as intervals with abrupt discrete change between levels instead of gradual. To 

overcome this, fuzzy sets are used: 

 More general 

 Mimic human linguistic ways 

 Changes are gradual and not abrupt between levels 

Intermediate COCMO is evaluated in same way but effort multipliers are taken as fuzzy 

sets. The gradation is less sensitive to changes in inputs. 

Hence, in this case accuracy sensitive is to changes in inputs. 
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PAPER 9 

On Generating FC Fuzzy Rule Systems from Data Using Evolution Strategies 

Yaochu Jin, Member, IEEE, Werner von Seelen, and Bernhard Sendhoff 

 

Summary 

Sophisticated fuzzy rule systems are supposed to be flexible, complete, consistent, and 

compact (FC3). Flexibility, completeness and consistency are essential for fuzzy systems 

to exhibit an excellent performance and to have a clear physical meaning, while 

compactness is crucial when the number of the input variables increases. However, the 

completeness and consistency conditions are often violated if a fuzzy system is generated 

from data collected from real world applications.  

The structure of the fuzzy rules, which determines the compactness of the fuzzy systems, 

is evolved along with the parameters of the fuzzy systems. Special attention has been paid 

to the completeness and consistency of the rule base. The completeness is guaranteed by 

checking the completeness of the fuzzy partitioning of input variables and the 

completeness of the rule structure. An index of inconsistency is suggested with the help 

of a fuzzy similarity measure, which can prevent the algorithm from generating rules that 

seriously contradict with each other or with the heuristic knowledge.Soft T-norm and 

BADD Defuzzification are introduced and optimized to increase the flexibility of the 

fuzzy system. 

 

Incompleteness 

A common problem concerning adjustment of the membership parameters is that the 

shape of the membership functions is adjusted so drastically that either some of the fuzzy 

subsets lose their corresponding physical meanings, or the fuzzy subsets do not cover the 

whole space of the input variable. This is called Incompleteness. 

The proposed approach is advantageous over the other methods in the following respects. 

1) The fuzzy system is compact and efficient because the number of the fuzzy rules is 

greatly reduced 
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2) The fuzzy system is complete and no seriously conflicting rules will be generated, 

which contributes to the improvement of the generalization ability of the fuzzy system 

and guarantees that the knowledge acquired by the fuzzy rules is physically sound, 

 3) The fuzzy system is expected to exhibit a better flexibility because soft fuzzy 

operators are incorporated and optimized. 

 

Basic Formulas of Fuzzy Systems 

 

 

which is a fuzzy set whose membership function is described by 

 

where means the T-norm operator. Based on sup-star composition, the overall fuzzy 

relation of the fuzzy system in terms of membership function can be written as follows: 

 

The output of a Takagi–Sugeno rule system is in the following form: 

 

The consequent part of the Takagi–Sugeno rules is often simplified to a constant, in 

which case the output of the Takagi–Sugeno rules can be written as follows: 
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Flexible Fuzzy Operators 

The soft T-norm and BADD defuzzifier are very flexible They can be expressed in the 

following 

 

Completeness of the Fuzzy Systems 

A fuzzy system is said to be complete if 

1. Fuzzy partitioning of each input variable is complete; 

2. Rule structure of the fuzzy system is complete. 

 

The over fitting of the fuzzy membership functions results in the following consequences:  

1. Fuzzy partitioning become incomplete 

2. Physical meaning of some fuzzy subsets may be blurred, that is to say, the fuzzy 

subsets lack distinguishability 

 

A fuzzy similarity measure indicates the degree to which two fuzzy sets are equal 

In our approach, the fuzzy similarity measure is used to preserve the completeness of the 

fuzzy partitionings of the input variables and to preserve the distinguishability of the 

fuzzy subsets. For any two fuzzy sets A and B the fuzzy similarity measure is defined by: 

 

where M(A) is called the size of fuzzy set A and can be calculated as follows: 
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A fuzzy rule system may still be incomplete even if the fuzzy partitioning of the input 

variables are complete. This happens when the rule structure is incomplete, i.e., some of 

the fuzzy subsets are not used by the rule system, which is often the case in the course of 

rule structure optimization. 

 

Consistency of the Fuzzy Systems 

Therefore, fuzzy rules are regarded as inconsistent, if 

1. They have very similar premise parts, but possess rather different consequents, 

and 

2. They conflict with the expert knowledge or heuristics.  

Two fuzzy rules may contradict with each other even if they do not have the same 

premise, on the other hand, it is hard to say that two rules are inconsistent if their premise 

parts have little similarity. 

 

Then SRP and SRC of these two rules are defined as follows: 

 

 

where is the total number of the input variables and is the fuzzy similarity measure of 

fuzzy sets and as defined in (13). Then the consistency of rule and is defined by: 
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PAPER 10 

An Approach to Rule-Based Knowledge Extraction 

Yaochu Jin ,Werner von Seelens and Bernhard Sendhoff 

 

Summary 

The extraction of easily interpretable knowledge from the large amount of data measured 

in experiments is well desirable. A fuzzy rule system is first generated and optimized 

using evolution strategies. This fuzzy system is then converted to an RBF neural network 

to refine the obtained knowledge. In order to extract understandable fuzzy rules from the 

trained RBF network, a neural network regularization technique called adaptive weight 

sharing is developed.  

 

Interpretability of a fuzzy system usually involves the following aspects. Firstly, the 

fuzzy partitioning for each input variable of the fuzzy system should be complete and 

different fuzzy subsets in a fuzzy partitioning should be well distinguishable 

 

1. One direct method to achieve this is to limit the range of the parameters of 

membership functions during learning [8]. This can be achieved more flexibly with 

the help of a fuzzy similarity measure 

2. Secondly, the number of fuzzy subsets in a fuzzy partitioning should be limited and 

each fuzzy subset should have one unique membership function, to which a proper 

physical meaning can be assigned.  

3. Thirdly, fuzzy rules in the rule base should be consistent. Traditionally, this means 

that fuzzy rules with the same premise should have the same consequent 

  

A fuzzy system is first generated by virtue of evolution strategies. Then we convert the 

fuzzy system to an RBF neural network for further training to refine the acquired 

knowledge. After this learning stage, the RBF neural network cannot be directly 

converted back to a clearly interpretable fuzzy system because there may be numerous 

fuzzy subsets in a fuzzy partitioning which are hard to distinguish and hard to assign  
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proper linguistic values to. To solve this problem, a network regularization algorithm 

called adaptive weight sharing is developed to train the RBF neural network further so 

that some of the basis functions as well as the output weights in the RBF network share 

certain values. As a result, a well interpretable fuzzy system can again be obtained. This 

method has proved to be successful by simulation studies on the Mackey-Glass time 

series. 

 

Fuzzy System Generation and Optimization 

Using Evolution Strategies Completeness conditions: 

Suppose an input variable of a fuzzy system x is partitioned into M fuzzy subsets 

represented by Al (x), A2 (x), . . . . AM (x) on the universe of discourse U, then the 

partitioning is complete if the following condition holds: 

 

In the optimization of fuzzy systems based on evolutionary algorithms or neural 

networks, it is often the case that either the fuzzy partitionings are incomplete or different 

fuzzy subsets in a fuzzy partitioning lack good distinguishability. To avoid this, we 

require that every two neighbouring fuzzy sets should satisfy the following constraints: 

 

where S(Ai, Ai+l) is called the fuzzy similarity measure between the two fuzzy subsets Ai 

and Ai+l, δ1 and δ2 are two thresholds of the fuzzy similarity measure, where δ1 should be 

greater than zero to keep the fuzzy partitioning complete and δ2 should be sufficiently 

smaller than δ1 to ensure good distinguishability. The fuzzy similarity measure is defined 

by: 

 

where M(.) is called the size of the fuzzy set. If fuzzy set A (x) has a Gaussian 

membership function with center p and width (or variance) 0, then M (A(x)) can be 

calculated as: 
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It is noticed that if S (Ai, Ai+l) equals 1, the two fuzzy sets overlap completely, i.e. Ai and 

Ai+1 are equal. On the other hand, they do not overlap if S (Ai, Ai+l) = 0. 

 

Consistency of fuzzy systems 

It is easy to imagine that two fuzzy rules are inconsistent if they have the same 

if-part but different then-parts. However, we argue that two fuzzy rules may also be 

inconsistent even if their if-parts are different. To evaluate the consistency of two 

arbitrary fuzzy rules, definitions of Similarity of Rule Premise (SRP) and Similarity of 

Rule Consequent (SRC) are given. 

 

Then SRP and SRC between rule i and rule k are defined in terms of the fuzzy similarity 

measure as follows: 

 

where n is the total number of the input variables. The consistency between rule R(i) and 

R(k) can now be defined as: 

 

 

Thus, inconsistency is given by:  

 

where N is the total number of rules. 

 

Since they impose additional restrictions in generating fuzzy systems, they could be 

treated as a means of regularization 
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ES based fuzzy rule generation and optimization 

The quality of the fuzzy system can be evaluated by the following cost function: 

 

 

Conversion of the Fuzzy System to an RBF Network 

The significance of converting fuzzy systems to neural networks lies in two aspects. On 

the one hand, a fuzzy system can be refined taking advantage of the learning ability of 

neural networks. On the other hand, the structure of a neural network can be determined 

and prior knowledge can be incorporated into the network with the help of a fuzzy 

system. 

 

An interpretable fuzzy system and an RBF neural network are equivalent if the following 

conditions hold: 

1. Both the fuzzy system and the neural network have Gaussian basis function  

2. The number of fuzzy rules is equal to the number of receptive field units ( or 

hidden nodes) in the RBF network.  

3. The fuzzy system is either a zero-order Takagi-Sugeno model or a Mamdani 

model. If a Mamdani model is used, the corresponding defuzzification method 

should be the simplified weighted average   

4. The output of the RBF neural network should be normalized. 

5. The receptive field units in the RBF network are allowed to have different 

variances.  

6. Centers and variances from different receptive field units but for the same input 

variable should share certain values, which could construct a complete and well 

distinguishable fuzzy partitioning.  

In this section, we convert the fuzzy system generated by evolution strategies to an RBF 

network for further training using the learning algorithm of the neural network. The final 

input-output relationship of the fuzzy system with n inputs and one output is expressed as 

follows: 
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Consequently, a conventional learning algorithm based on the gradient method can be 

directly applied. 

 

Extraction of Fuzzy Rules by Regularization 

To extract meaningful fuzzy rules from the trained neural network, we introduce here a 

novel weight sharing regularization technique. This technique enables the output weights 

and the parameters of the basis functions of the RBF network to share some certain values 

so that each fuzzy partitioning has a proper number of fuzzy subsets with well 

distinguishable membership functions. 
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PAPER 11 

Design Of Fuzzy Controllers 

Jan Jantzen  

 

Summary 

Fuzzy controllers are used to control consumer products, such as washing machines, 

video cameras, and rice cookers, as well as industrial processes, such as cement kilns, 

underground trains, and robots. Fuzzy control is a control method based on fuzzy logic. 

Fuzzy control can be described simply as ’’control with sentences rather than equations’’. 

Design of a fuzzy controller requires more design decisions than usual, for example 

regarding rule base, inference engine, defuzzification, and data pre- and post processing. 

The approach here is based on a three step design procedure that builds on PID control: 

1. Start with a PID controller. 

2. Insert an equivalent, linear fuzzy controller. 

3. Make it gradually nonlinear. 

 

In a rule based controller the control strategy is stored in a more or less natural language. 

The control strategy is isolated in a rule base opposed to an equation-based description. A 

rule based controller is easy to understand and easy to maintain for a non-specialist end-

user. The computer is able to execute the rules and compute a control signal depending on 

the measured inputs errors and change in errors. 

 

One control scheme is Direct Control where the fuzzy controller is in the forward path in 

a feedback control system. The process output is compared with a reference, and if there 

is a deviation, the controller takes action according to the control strategy. 
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In Feed forward Control, a measurable disturbance is being compensated. It requires a 

good model, but if a mathematical model is difficult or expensive to obtain, a fuzzy 

model may be useful. 

 

 

Fuzzy rules are also used to correct tuning parameters in parameter adaptive control 

schemes (Fig. 3).  A gain scheduling controller contains a linear controller whose 

parameters are changed as a function of the operating point in a preprogrammed way. 

Sensor measurements are used as scheduling variable that govern the change of the 

controller parameters, often by means of a table look-up. 
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Stability concerns the system’s ability to converge or stay close to equilibrium. A stable 

linear system will converge to the equilibrium asymptotically no matter where the system 

states Variables start.  

There are at least four main sources for finding control rules. The most common approach 

to establishing such a collection of rules of thumb is to question experts or operators 

using a carefully organized questionnaire. 

 Based on the operator’s control knowledge- Fuzzy if – then rules can be deduced 

from observations of an operator’s control actions or a log book. The rules 

express input-output relationships. 

 Based on the fuzzy model on the process- This method is restricted to relatively 

low order systems, but it provides an explicit solution assuming that fuzzy 

models of the open and closed loop systems are available. 

 Based on learning- The self-organizing controller is an example of a controller 

that finds the rules itself. Neural networks are another possibility. 

 

Structure of Fuzzy Controller 

There are specific components characteristic of a fuzzy controller to support a design 

procedure. 
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In the block diagram in Fig. 4, the controller is between a preprocessing block and 

a post-processing block. 

 

 

Preprocessor 

A preprocessor, conditions the measurements before they enter the controller. Examples 

of preprocessing are: 

 Quantisation in connection with sampling or rounding to integers; 

 Normalization or scaling onto a particular, standard range; 

 Filtering in order to remove noise; 

 Averaging to obtain long term or short term tendencies; 

 A combination of several measurements to obtain key indicators; and 

 Differentiation and integration or their discrete equivalences. 

A quantizer is necessary to convert the incoming values in order to find the best level in a 

discrete universe. 

 

Fuzzification 

The first block inside the controller is fuzzification, which converts each piece of input 

data to degrees of membership by a lookup in one or several membership functions. The 

fuzzification block thus matches the input data with the conditions of the rules to 

determine how well the condition of each rule matches that particular input instance. 
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Rule Base 

The rules may use several variables both in the condition and the conclusion of the rules. 

The controllers can therefore be applied to both multi-input-multi-output (MIMO) 

problems and single-input-single-output (SISO) problems. 

Rule Format 

Basically a linguistic controller contains rules in the if-then format, but they can be 

presented in different formats. 

1. If error is Neg and change in error is Neg then output is NB 

2. If error is Neg and change in error is Zero then output is NM 

3. If error is Neg and change in error is Pos then output is Zero 

4. If error is Zero and change in error is Neg then output is NM 

5. If error is Zero and change in error is Zero then output is Zero  

6. If error is Zero and change in error is Pos then output is PM 

7. If error is Pos and change in error is Neg then output is Zero 

8. If error is Pos and change in error is Zero then output is PM 

9. If error is Pos and change in error is Pos then output is PB 

 

In case the table has an empty cell, it is an indication of a missing rule, and this format is 

useful for checking completeness.  

 

Connectives 

Here the lines are connected using if-then-else, if and only if The connectives “and” and 

“or” are always defined in pairs, for example, A and B = min (A,B) 

 

Modifiers 

A linguistic modifier, is an operation that modifies the meaning of a term. 

 

Universe 

Elements of a fuzzy set are taken from a Universe of discourse or just universe. 

The universe contains all elements that can come into consideration  
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Membership Function 

Every element in the universe of discourse is a member of a fuzzy set to some grade, 

maybe even zero. The set of elements that have a non-zero membership is called the 

support of the fuzzy set. The function that ties a number to each element  of the universe 

is called the Membership function 

Inference Engine 

The rules reflect the strategy that the control signal should be a combination of the 

reference error and the change in error, a fuzzy proportional-derivative controller. For 

each rule, the inference engine looks up the membership values in the condition of the 

rule. Following are the operations: 

 Aggregation 

 Activation 

 Accumulation 

Defuzzification 

The resulting fuzzy set must be converted to a number that can be sent to the process as a 

control signal. This operation is called Defuzzification. There are several Defuzzification 

methods: 

 Center of gravity 

 Center of Gravity for singleton 

 Bisector of Area 

 Mean of Maxima 

 Left most maximum and right most maximum 

 

Postprocessing 

The postprocessing block often contains an output gain that can be tuned, and sometimes 

also an integrator. 
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Table based controller   

In a table based controller the relation between all input combinations and their 

corresponding outputs are arranged in a table. 

With two inputs and one output, the table is a two-dimensional look-up table. The array 

implementation improves execution speed, without too much searching. 

 

Input output mapping 

The controllers have the input families in the if -column and the output families in the 

then column. The results depend on the choice of design. 
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PAPER 12 

Adaptation of Fuzzy Inferencing: A Survey 

Payman Arabshahi, Robert J. Marks II, and Russell Reed 

 

Summary 

Fuzzy inference has numerous applications, ranging from control to forecasting. A 

number of researchers have suggested how such systems can be tuned during application 

to enhance inference performance. Inference parameters that can be tuned include the 

central tendency and dispersion of the input and output fuzzy membership functions, the 

rule base, the cardinality of the fuzzy membership function sets, the shapes of the 

membership functions and the parameters of the fuzzy AND and OR operations. In this 

paper, an overview of these tuning procedures is given. An extensive bibliography is 

provided of recent literature on the topic. 

A general fuzzy inference system consists of three parts 

 

 

The familiar operations to arrive at the output are as follows. 

1. Perform a pairwise fuzzy intersection T, on each of the membership values of x1 

and x2 in µl 1 and µm2 for every rule with consequent nk, forming activation 

values  

 

Let us assume that the (T-norm) operator T itself is parameterized by a, i.e., T = T 

(a). 
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2. Collect activation values for like output membership functions and perform a 

fuzzy union T_, where T_ = T_(b) 

 

3. These values are defuzzified to generate the output estimated value, f (x1; x2), by 

computing the centroid of the composite membership function µ: 

 

where 

 

Ak and ck are, respectively, the area and centroid of the consequent 

membership function nk. 

 

Adaptation in Fuzzy Inference Systems 

All of the stages of the fuzzy inference system are affected by the choice of certain 

parameters. A list follows.  

A. The Fuzzifier 

The fuzzifier maps the input onto the possibility domain and has the following 

parameters: 

1. The number of membership functions. 

2. The shape of the membership functions (e.g. triangle, Gaussian, etc.) 

3. The Central tendency (e.g. center of mass) and dispersion (e.g. standard 

deviation, bandwidth, or range) of the membership function. 

 

B. The Inference Engine 

The inference engine is the system “decision maker” and determines how the system 

interprets the fuzzy linguistics. Its parameters are those of the aggregation operators. 

which provide interpretation of connectives “AND” and “Or”. 



 1

0

6 

 

C. The Defuzzifier 

The defuzzification stage maps fuzzy consequents into crisp output values. Its design 

requires choice of  

1. The number of membership functions. 

2. The shape of membership functions. 

3. The definition of fuzzy implication, i.e., how the value of the consequents 

from the inference engine impact the output membership functions prior to 

defuzzification. 

4. A measure of central tendency of the consequent altered output membership 

functions. The center of mass is typically used, although use of medians and 

modes can also be used to arrive at the crisp output. 

 

6.2 f-SEE Analysis and Design Models 

The above literature survey was useful in formulating the framework for f-COCOMO 

and Inference Based Analysis Models and the Design Models used in f-SEE. It helped 

us to choose effective default values for the various fuzzy variables used in f-SEE. 

The default rule base provided by us is also based on the study of these papers from 

the literature. We have used two fuzzy number based models and we have also 

developed a skeleton expert system for fuzzy inference based cost estimation. Rule 

Base Editor and Membership Function Editors have been provided to enable the user 

to experiment with values other than the default values. All the membership functions 

in f-SEE are triangular in nature, as they pertain to software engineering practices and 

are widely adopted in the industry. A main reason for this is that they provide a peak, 

singleton value, which allows us to specify a crisp set, if required.
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CHAPTER 7 

FEATURES AND SOFTWARE CONSIDERATIONS FOR f-SEE 

 

7.1 Introduction 

f-SEE is a user-friendly, integrated, graphics-based Software Estimation Environment. 

Developed in Visual C#, it provides the user with over 40 interactive forms. The user is 

prompted accordingly to rectify an input error. f-SEE has two modes of operation: 

1. Analysis 

2. Design 

The modes are selected using Menu Options. The software provides graceful 

degradability in all cases, by means of various error handling mechanisms. In the 

Analysis Mode, the user can feed in the information s/he has about the software and 

employ the models provided for software estimation. The models have been classified at 

three levels- Conventional Models, which include the Basic COCOMO Model, the 

Intermediate COCOMO Model and the Function Point Measure; Fuzzy Models, which 

include the Basic f-COCOMO Model, the Intermediate f-COCOMO Model and the 

Fuzzy Inference Based Estimation Model; and Object-Oriented Models, which includes 

the Class Point Measure. The Conventional Models have been suggested in the 1980s by 

Prof. Barry Boehm of the University of South Carolina. The f-COCOMO Models (Basic 

and Intermediate) have been based on the lines of the model suggested by Musilek et al.  

The Design Mode is a special crucial feature of f-SEE that offers the user design guidance 

and support. This mode of operation allows the user to validate all the membership 

functions of the fuzzy variables used in the inference engine (KLOC, Complexity and 

Effort). It also helps the user to improve his/her membership function. The module checks 

for two main characteristics – Incompleteness and Lack of Distinguishability. 

Incompleteness is exhibited by the fuzzy variable if certain values from its Universe of 

Discourse are left unmapped on the µ-axis. The fuzzy variable exhibits Lack of 

Distinguishability when the physical meaning of the fuzzy subsets defined on the 

Universe of Discourse is blurred. The Design Mode also provides Rule Base Validation. 

Fuzzy Rules are regarded as inconsistent if they have very similar premise parts and 

rather different consequents. Fuzzy membership graphic display is provided in f-SEE for 
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pictorial representation. A Summary Sheet showing a rule-by-rule similarity based report 

is generated by the software. 

 

Major Highlights of f-SEE: 

 It is an easy-to-use, user-friendly, GUI based software package 

 It provides graceful degradability at all times 

 It caters for analysis as well as design in the same environment 

 It serves as a comparator tool for the various estimation models of analysis 

 It can serve in the industry as a deliverable, as well as a research software for 

independent study, thus making it very versatile specially for SMEs who cannot 

afford expensive tools 

 It allows the user to plot all the membership functions associated with the fuzzy 

variables to the scale 

  It also allows the user to save all the validated membership functions to the 

Inference Engine for future use 

 It provides a Membership Function Editor and a Rule Base Editor, thus equipping 

the user with the facility of modifying the inferencing process to suit his/her needs 

 It provides a basic Primer for users who are not well-equipped with the basics of 

Software Engineering and Fuzzy Logic 

Analysis Mode 

Conventional Models 

o Basic COCOMO 

o Intermediate COCOMO 

o Function Point Measure 

 Fuzzy Models 

o Basic f-COCOMO 

o Intermediate f-COCOMO 

o Fuzzy Inference Based Estimation  

 Object-Oriented Models 
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o Class Point Measure 

Design Mode 

 KLOC Validation 

 Complexity Validation 

 Effort Validation 

 Rule Validation 

 

Programming language selection for f-SEE development was a very important 

consideration. We had Java and C# as two major options and we selected Visual Express 

C# environment primarily due to its ease of availability from Microsoft and the emerging 

popularity of .NET platforms. We found several web sites providing reference articles for 

understanding C# language. Although Visual C# has been used for development of f-

SEE, it is not required to deploy f-SEE. Thus, the SME units need not have Visual C# 

installed on their PCs. For deploying f-SEE, we have to first install .NET framework 

(version 2), if it is not already installed e.g. in Windows 98 and Windows ME. However, 

Windows Xp which is being used by several SME units is already .NET framework 

enabled. The executable version installs using setup.exe file. In order to get insight into 

the potentials of f-SEE, several screen shots are included in this report. 
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7.2 UML Diagrams for f-SEE Classes 

We have used the Visual C# environment for developing the software. Over 40 forms 

have been developed, and the environment defines partial classes for these forms 

accordingly. In addition to the forms, we have added two classes for catering to similarity 

operations and Rule Consistency operations. We are providing UML diagrams for these 

two classes. 
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7.3 f-SEE Screen Shots 
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Basic COCOMO 
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Intermediate COCOMO 
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Intermediate COCOMO 
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Intermediate COCOMO 
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Function Point Measure 
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Function Point Measure 
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Basic f-COCOMO 
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Basic f-COCOMO 
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Intermediate f-COCOMO 
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Intermediate f-COCOMO 
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Intermediate f-COCOMO 
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Intermediate f-COCOMO 
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Fuzzy Inference Based Estimation 
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Fuzzy Inference Based Estimation 
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Fuzzy Inference Based Estimation 
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Fuzzy Inference Based Estimation 
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Class Point Measure 
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Class Point Measure  
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KLOC Validation 
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Complexity Validation 
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Effort Validation 
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Rule Base Validation 
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Rule Base Validation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 1

3

6 

 

Rule Base Validation 
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Rule Base Validation 
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Rule Base Validation 
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About f-SEE 
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7.4 f-SEE Source Code File Sizes Summary Details 

  

C:\tap8semprj\fSEE\fSEETap\fSEETap>dir *.cs 

 Volume in drive C has no label. 

 Volume Serial Number is 74A5-A460 

 

Directory of C:\tap8semprj\fSEE\fSEETap\fSEETap 

 

04/22/2007  12:48 AM             3,628 Form1.cs 

04/22/2007  12:36 AM            19,603 Form1.Designer.cs 

04/25/2007  08:15 PM             7,663 Form10.cs 

04/25/2007  07:47 PM             7,558 Form10.Designer.cs 

04/22/2007  09:49 PM             3,657 Form11.cs 

03/21/2007  11:32 PM             2,165 Form11.Designer.cs 

03/25/2007  11:47 AM             1,819 Form12.cs 

03/23/2007  10:14 PM             5,874 Form12.Designer.cs 

03/25/2007  12:04 PM             4,202 Form13.cs 

03/25/2007  12:01 PM            10,467 Form13.Designer.cs 

03/23/2007  10:45 PM             1,773 Form14.cs 

03/23/2007  02:45 PM             9,955 Form14.Designer.cs 

03/23/2007  04:09 PM             6,021 Form15.cs 

03/23/2007  04:09 PM            12,345 Form15.Designer.cs 

03/25/2007  11:46 AM             6,410 Form16.cs 

03/25/2007  11:36 AM             2,048 Form16.Designer.cs 

03/25/2007  11:37 AM             2,187 Form17.cs 

03/25/2007  10:53 AM             7,250 Form17.Designer.cs 

03/24/2007  11:53 AM               745 Form18.cs 

03/24/2007  11:53 AM             5,092 Form18.Designer.cs 

03/25/2007  10:50 AM             2,048 Form19.cs 

03/25/2007  10:50 AM             7,190 Form19.Designer.cs 

04/25/2007  07:38 PM             5,135 Form2.cs 
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03/18/2007  07:50 PM             9,791 Form2.Designer.cs 

03/24/2007  05:03 PM             3,188 Form20.cs 

03/24/2007  04:57 PM            16,652 Form20.Designer.cs 

03/24/2007  05:10 PM             3,554 Form21.cs 

03/24/2007  05:07 PM            18,201 Form21.Designer.cs 

03/24/2007  05:23 PM             4,603 Form22.cs 

03/24/2007  05:23 PM            23,830 Form22.Designer.cs 

03/24/2007  09:57 PM             3,376 Form23.cs 

03/24/2007  09:57 PM            16,761 Form23.Designer.cs 

03/24/2007  10:11 PM               952 Form24.cs 

03/24/2007  10:12 PM             5,113 Form24.Designer.cs 

03/25/2007  11:37 AM             1,843 Form25.cs 

03/25/2007  11:27 AM             9,950 Form25.Designer.cs 

03/25/2007  10:09 PM               336 Form26.cs 

03/25/2007  10:09 PM             1,408 Form26.Designer.cs 

04/26/2007  11:03 AM            11,170 Form27.cs 

03/27/2007  12:16 AM            10,559 Form27.Designer.cs 

03/31/2007  05:59 PM             1,701 Form28.cs 

03/31/2007  05:57 PM             8,256 Form28.Designer.cs 

04/26/2007  11:20 AM             5,500 Form29.cs 

03/27/2007  12:58 AM            10,639 Form29.Designer.cs 

04/22/2007  09:53 PM             2,307 Form3.cs 

03/21/2007  08:13 PM             9,031 Form3.Designer.cs 

03/31/2007  05:59 PM             1,682 Form30.cs 

03/31/2007  05:59 PM             8,268 Form30.Designer.cs 

04/26/2007  11:24 AM             5,414 Form31.cs 

03/27/2007  01:17 AM            10,564 Form31.Designer.cs 

03/31/2007  06:04 PM             1,882 Form32.cs 

03/31/2007  06:02 PM             8,260 Form32.Designer.cs 

04/26/2007  12:54 PM             8,515 Form33.cs 

04/21/2007  09:55 PM            22,292 Form33.Designer.cs 

04/26/2007  12:34 PM            11,365 Form34.cs 
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04/20/2007  08:14 PM            19,316 Form34.Designer.cs 

04/26/2007  11:26 AM            20,120 Form35.cs 

04/26/2007  11:26 AM            22,957 Form35.Designer.cs 

04/26/2007  12:37 PM               862 Form36.cs 

04/20/2007  08:26 PM             5,024 Form36.Designer.cs 

04/26/2007  12:50 PM             6,395 Form37.cs 

04/21/2007  09:53 PM            17,872 Form37.Designer.cs 

04/26/2007  12:38 PM            14,136 Form38.cs 

04/22/2007  12:00 AM            23,110 Form38.Designer.cs 

04/26/2007  12:38 PM               882 Form39.cs 

04/21/2007  11:46 PM             5,039 Form39.Designer.cs 

04/25/2007  07:43 PM             4,544 Form4.cs 

03/19/2007  08:32 PM             9,833 Form4.Designer.cs 

04/26/2007  11:31 AM               536 Form40.cs 

04/26/2007  11:31 AM             5,394 Form40.Designer.cs 

03/22/2007  12:04 AM             3,595 Form5.cs 

03/22/2007  12:04 AM            17,187 Form5.Designer.cs 

03/22/2007  12:04 AM             3,593 Form6.cs 

03/17/2007  04:43 PM            18,516 Form6.Designer.cs 

03/24/2007  05:16 PM             5,114 Form7.cs 

03/24/2007  05:16 PM            24,660 Form7.Designer.cs 

03/22/2007  12:03 AM             3,400 Form8.cs 

03/17/2007  07:07 PM            17,038 Form8.Designer.cs 

04/25/2007  07:44 PM             2,665 Form9.cs 

03/21/2007  11:49 PM             8,612 Form9.Designer.cs 

03/11/2007  10:18 PM               474 Program.cs 

              81 File(s)        652,672 bytes 
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CHAPTER 8 

FUTURE SCOPE 

 

f-SEE is an integrated software package for effort estimation (with design support) for 

software projects Its usefulness in the initial phase of software projects tender bidding 

process is of paramount significance since it computes effort assessment using 

conventional as well fuzzy models. f-SEE uses concepts of fuzzy set representation for f-

COCOMO model. It has also provisions to compare analysis using function point and 

class point conventional models. We discuss the future scope of work along the above 

lines. 

The existing fuzzy model uses the popular triangular representation of fuzzy membership 

functions. It needs to be examined and compared whether the trapezoidal and S/Pi 

representation of membership functions will be more effective or the popular triangular 

membership function is adequate, especially during contract tender bidding process. f-

SEE could be accordingly augmented to represent other forms of fuzzy membership 

functions. 

 

The function point and class point modules use the required data as a user supplied input.  

We have interacted with some software specialists and the opinion was that there should 

be a mechanism to assist the software professionals on this front also. We recommend 

that similar to Rational Rose philosophy of UML modeling, f-SEE could be provided 

with a front end interface. Thus, the existing f-SEE GUI should be tied with the module 

to UML analysis of software thereby providing an extra resource for data input in 

addition to the existing user supplied inputs for function / class point modules. 

 

As suggested by Kitchenham and Heffery, misleading metrics and unsound analyses are 

the causes of concern amongst large software development houses like IBM, Australia. 

We see considerable future applications of f-SEE to expand on the fuzzy rule base 

modeling using AI techniques like evolutionary computing and genetic algorithm. It 

might be argued that because function point and class point approaches are not that useful 
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during the tender bidding process, these may be separated from the f-SEE. However, we 

strongly feel that fuzzy logic rule base could be a great source to overcome the lacuna of 

function point / class point methodologies in future. A work in this direction will be 

useful for software developers as well as outsourcing agencies that can have a joint, 

validated approach for assessing web enabled projects. 

 



 1

4

5 

CHAPTER 9 

REFERENCES 

 

1. Aggarwal K.K., Singh Y., Software Engineering, New Age International Publishers, 

2006 

 

2. Arabshahi P., Marks R.J., Reed R., Adaptation of Fuzzy Inferencing: A Survey, Proc. 

IEEE/Nagoya Univ. Workshop, Learning and Adaptive Systems, Nagoya, Japan, 

Nov. 1993 

 

3. Caine, A., and Pidducks A.B., f
2
 COCOMO: Estimating Software Project Effort and 

Cost, Proceedings of the 6th International Workshop on Economic-Driven Software 

Engineering Research (EDSER-6), Edinburgh, Scotland: IEEE, 2004. 

 

4. Chen W., Saif M., A Novel Fuzzy System with Dynamic Rule Base, IEEE Trans. on 

Fuzzy Systems, Vol. 13, No. 5, pp. 569-582, October 2005 

 

5. Costagaliola G., and Tortora G., Class Point: An Approach for the Size Estimation of 

Object-Oriented Systems, IEEE Trans. On software Engineering, Vol. 31, No. 1,  pp 

52-74, Jan. 2005 

 

6. Fei Z., f-COCOMO: Fuzzy Constructive Cost Model in Software Engineering, IEEE 

International Conference on Fuzzy Systems, pp. 331-337, March, 1992 

 

7. Idri A., Abran A., and Kijri L., COCOMO Cost Model using Fuzzy Logic, 7
th

 

International Conference on Fuzzy Theory & Technology, NJ, 2000 

 

8. Jantzen J., Design of Fuzzy Controllers, Technical University of Denmark, 98-E-864, 

1998 

 



 1

4

6 

9. Javier F.C., Sicilia M.A., and Cuadrado J.J., On the Use of Fuzzy Regression in 

Parametric Software Estimation Models: Integrating Imprecision in COCOMO Cost 

Drivers, accessed at http://www.inf.uc3m.es 

 

10. Jin Y., von Seelen W., and Sendhoff B., Jin Y., An Approach to Rule-Based 

Knowledge Extraction, Proceedings of IEEE International Conference on Fuzzy 

Systems, Vol 2 pp. 1188-1193, May 1998 

 

11. Jin Y., von Seelen W., and Sendhoff B., On Generating FC
3
 Fuzzy rule systems from 

Data Using Evolution Strategies, IEEE Trans. On Systems, Man and Cyberbetics, 

Part B: Cybernetics, Vol. 29, No. 6, June, pp. 376-386, pp. 829-845, Dec. 1999 

 

12. Jowers L.J., James J.B., and Reilly K.D., Estimation of f-COCOMO Model 

Parameters using Optimization Techniques, Oct 2006 

 

13. Kapoor A., Patki T, Khurana S. – Analytical Methodologies in Soft Computing Part-I: 

Exposure to cyber forensic Software tools Part II, Training Report Submitted to DIT, 

July 2005 

 

14. Kapoor A., Pandey P., Fuzzy Implementation of Class Point Approach, Training 

Report Submitted to DIT, July 2006 

 

15. Kitchenham B., and Jeffery D.R., Misleading Metrics and Unsound Analysia, IEEE 

Software, pp. 73-78, Mar-Apr, 2007. 

 

16. Klir G., and Folger T., Fuzzy Sets, Uncertainty and Information, Prentice Hall, 

January 1988 

 

17. MacDonell S.G., Gray A.R., and Calvert J.M., FULSOME: Fuzzy Logic for Software 

Metrics Practitioners and Researchers, ICONIP -1999, Proceedings of International 

conference on Neural Information Processing, IEEE, pp. 308-313, 1999 

http://www.inf.uc3m.es/


 1

4

7 

 

18. Musilek P., Pedrycz  W., Succi G., and Reformat M., Software Cost Estimation with 

Fuzzy Models, ACM SIGAPP Applied computing Review, Vol. 8, Issue 2, 2000 

 

19. Patki Tapasya, and Khurana Swati , Software Cost Estimation and Software 

Obfuscation: A Fuzzy Logic Perspective, Technical Report Submitted to Department 

of Information Technology, New Delhi, July 2006 

 

20. Rajsekaran S., and Pai G.A.V, Neural Networks, Fuzzy Logic, and Genetic 

Algorithms – Synthesis and Applications, Prentice Hall India, 2006 

 

21. Setnes M., Babuska R., Kaymak U., and Nauta Lemke H.R., Similarity Measures in 

fuzzy Rule Base Simplification, IEEE Trans. On Systems, Man and Cybernetics, Part 

B: Cybernetics, Vol. 28, No. 3, June, pp. 376-386, 1998 

 

22. Zadeh, L. A., Fuzzy Sets, Information and Control, (8), pp. 338-353, 1965 

 

23. Zadeh, L. A., A Fuzzy-Algorithmic Approach to the Definition of Complex or 

Imprecise Concepts, Int. Journal Man-machine Studies, (8), pp. 249-291, 1976 

 


