
Exploring Hardware Overprovisioning in
Power-Constrained, High Performance Computing

Tapasya Patki
Dept. of Computer Science
The University of Arizona

tpatki@cs.arizona.edu

David K. Lowenthal
Dept. of Computer Science
The University of Arizona
dkl@cs.arizona.edu

Barry Rountree
Lawrence Livermore
National Laboratory
rountree@llnl.gov

Martin Schulz
Lawrence Livermore
National Laboratory
schulzm@llnl.gov

Bronis de Supinski
Lawrence Livermore
National Laboratory
bronis@llnl.gov

ABSTRACT
Most recent research in power-aware supercomputing has
focused on making individual nodes more efficient and mea-
suring the results in terms of flops per watt. While this
work is vital in order to reach exascale computing at 20
megawatts, there has been a dearth of work that explores
efficiency at the whole system level. Traditional approaches
in supercomputer design use worst-case power provisioning:
the total power allocated to the system is determined by
the maximum power draw possible per node. In a world
where power is plentiful and nodes are scarce, this solution
is optimal. However, as power becomes the limiting factor
in supercomputer design, worst-case provisioning becomes a
drag on performance.

In this paper we demonstrate how a policy of overprovision-
ing hardware with respect to power combined with intelli-
gent, hardware-enforced power bounds consistently leads to
greater performance across a range of standard benchmarks.
In particular, leveraging overprovisioning requires that ap-
plications use effective configurations; the best configuration
depends on application scalability and memory contention.
We show that using overprovisioning leads to an average
speedup of more than 50% over worst-case provisioning.

1. INTRODUCTION
The reality of power-limited supercomputing has begun to
transform the community’s understanding of performance.
The still highly influential standard has been flops measured
on the Linpack benchmark [4]. Flops per watt, epitomized
by the Green 500 [11] list of supercomputers, is a new metric
that may soon carry more importance. However, flops-per-
watt varies widely across applications, and designing a sys-
tem that optimizes it for any single benchmark leads to in-
efficient and suboptimal performance for other benchmarks.

The architecture community has addressed a similar design
problem on single nodes (and embedded systems) by a pro-
cess of overprovisioning hardware [19]. For example, in re-
cent chip designs (e.g., Nehalem), more cores exist on the
processor than can simultaneously run at the highest CPU
clock frequency (due to power constraints). The user (or
system, or hardware) has a choice among several different
combinations of clock frequency and active core counts, with
smaller core counts allowing higher frequencies.

The U.S. Department of Energy’s goal of exascale comput-
ing with 20 megawatts or less means that the power that can
physically be brought to the machine room will constrain fu-
ture systems. Further, typical estimates are that each MW-
year costs $1M so supercomputing centers can only afford
a limited amount of power. Thus, we should also consider
overprovisioning for high-performance computing (HPC).

With such constraints, we can guarantee full power to a
restricted number of nodes (worst case provisioning) or we
must limit the power to more nodes (overprovisioning). While
an overprovisioned supercomputer cannot execute each node
at full power, it could achieve better overall performance
in terms of application execution time than a system with
fewer fully-powered nodes. However, to achieve better per-
formance on overprovisioned systems, we require new strate-
gies to manage applications such that the best overall per-
formance is achieved—while not exceeding the system-wide
power bound. In particular, we must understand how dif-
ferent applications behave under enforced power limitations
and how application configurations influence the utilization
of the available power. For instance, under a power bound,
an application’s scalability characteristics determine whether
we want to use fewer nodes at higher power per node or more
nodes at lower power per node. Future systems are even
likely to go a step further and allow power to be directed to
individual components; e.g., if the code is CPU-bound, then
cores can be run faster while reducing power to memory and
other node componenents.

In this paper we provide, as far as we know, the first exten-
sive study on real hardware that explores how HPC applica-
tions behave under a power bound and how application con-
figurations influence the performance in overprovisioned sys-
tems. We analyze strongly-scaled HPC benchmarks on the

rzmerl cluster at LLNL, which has 162 Intel Sandy Bridge
nodes. We use Intel’s RAPL interface to enable and to en-
force power limits and to study their effects on performance
using several benchmarks.

This paper makes the following contributions:

• We study the effect of a power bound on a set of high
performance computing applications;

• We show that the optimal configuration for a given ap-
plication depends on its parallel efficiency and memory
intensity as well as the particular power bound;

• We show that using overprovisioning leads to an aver-
age speedup of more than 50% over worst-case provi-
sioning on four applications (BT-MZ, LU-MZ, SP-MZ,
and SPhot).

The rest of this paper is organized as follows. Section 2
provides the overall approach for our study. Section 3 in-
troduces Intel’s RAPL interface for power clamping, Sec-
tions 4, 5, and 6 describe our experimental details, baseline
power results, and multiple-node results, respectively. Next,
Section 7 describes related work, Section 8 discusses future
opportunities in overprovisioned supercomputing, and Sec-
tion 9 provides concluding remarks.

2. OVERPROVISIONING
As mentioned above, an overprovisioned system is one in
which we cannot simultaneously power all components at
peak power. Overprovisioned systems will become more
common as we hit what Venkatesh et al. term the uti-
lization wall [35]. We expect that as transistor switching
speeds increase, we will not be able to dissipate the heat
at the same rate. Thus, the fraction of the chip that can
be executed at full speed is monotonically decreasing; the
part of the chip that must remain unused is referred to as
dark silicon [2]. This fact has given rise to dynamic over-
clocking features in modern processor architectures, such as
Intel’s Turbo Boost [15] and AMD’s Turbo CORE [5]. Pro-
cessors are now designed to be overprovisioned with respect
to power— the CPU frequency at which a core executes de-
pends on the number of active cores, and not all cores can
simultaneously run at the highest frequency.

The same idea should be applied to supercomputing. Exas-
cale systems will have a power budget; the current bound
set by DoE is 20 MW. Overprovisioning in the supercom-
puting context means that not all nodes in the facility can
execute at peak power simultaneously. As opposed to worst-
case provisioning, overprovisioning is advantageous because
it can allow, for example, both highly scalable and less scal-
able jobs to perform well. In particular, an application’s
scalability determines whether we should use fewer nodes at
higher power per node or more nodes at lower power per
node. Also, when only a few nodes in the application are on
the critical path, running all nodes at peak power might be
wasteful. In addition, depending on an application’s CPU
and memory usage, we can choose to use fewer cores per
node or to allocate component power within a node (that
is, power to the packages and the memory subsystem) based

on utilization. While overprovisioning means that the super-
computing center buys more compute capacity can be used,
it allows the user to customize the system to an application
and thereby to achieve better performance.

As overprovisioning becomes more common, the HPC com-
munity will need to address the performance challenges that
arise. Power must be scheduled more carefully among the
hardware resources in an HPC cluster. These resources in-
clude the racks in the machine room, the nodes within the
racks, the components within a node and the interconnect;
and, a fixed system-level power-constraint on the cluster
will hierarchically translate to a node-level power-constraint,
possibly in a non-uniform manner.

In order to explore overprovisioning and its effect on ap-
plication performance, we address the following question in
this paper: given a machine with n nodes and c cores per
node, a cluster-level power bound P on the machine, and a
strongly-scaled HPC application, how important is choosing
the optimal configuration? We define a configuration as: (1)
a value for n, (2) a value for c, (3) an amount of power p to
be allocated to each node. The constraint is that the total
power consumed must be no more than the bound P, and
the goal is to minimize application runtime.

We explore this issue through a series of experiments on
a 162 node Intel Sandy Bridge cluster at LLNL and use
Intel’s RAPL interface to enforce various power bounds on
a wide range of HPC applications and benchmarks. Thus,
the cluster is effectively an overprovisioned system.

3. INTEL’S RAPL INTERFACE: RUNNING
AVERAGE POWER LIMIT

The Intel Sandy Bridge processor family supports on-board
power measurement and power clamping at a fine granu-
larity through a novel interface named Running Average
Power Limit (RAPL) [16]. The architecture has four power
domains—Package (PKG), Power Plane 0 (PP0), Power
Plane 1 (PP1) and DRAM. The PKG domain represents
the processor die, and the DRAM domain includes directly
attached memory. PP0 covers mostly the cores, while PP1
covers uncore devices (like the off-chip last-level cache or
the Intel QuickPath Interconnect). The Sandy Bridge archi-
tecture has two processor models, the client (family=0x06,
model=0x2A) and the server (family=0x06, model=0x2D).
The client model supports the PKG, PP0 and the PP1 do-
mains, and the server model supports the PKG, PP0 and
DRAM domains.

A series of Machine Specific Registers (MSRs) implement
RAPL. To access these MSRs, developers can use the msr
kernel module. This module exports a file interface that can
be used to read from or write to the MSRs given appropriate
permissions using the readmsr and writemsr instructions.
The RAPL interface includes the MSR_RAPL_POWER_UNIT read-
only register that exposes the units for power, energy and
time in Watts, Joules and Seconds respectively, at architecture-
specific precision. We use server model Sandy Bridge nodes
with units of 0.125W, 0.0000152J and 0.000977 seconds.

Power Measurement:. Each domain has a 32-bit, read-
only ENERGY_STATUS MSR, which is updated approximately
every millisecond. Because the unit of joules is small, this
is expected to roll over within hours. Average power can be
calculated using this MSR and the elapsed time.

Power Clamping. Each domain has a POWER_LIMIT MSR
that can specify a time window and a maximum average-
power value. The hardware ensures that the average power
over the specified time window does not exceed the power
value. The POWER_INFO set of registers provide information
on the thermal specification power, the lowest power bound
and the largest time window supported. For our system, for
the PKG domain, the lowest power bound is 51W, the ther-
mal specification is 115W, the largest possible time window
is 0.0459 seconds, and the maximum power rating is 180W.

The librapl library. To analyze HPC applications under
a power bound, we developed the librapl library to facil-
itate safe user-space access of Intel’s RAPL MSRs. This
library uses the MPI profiling layer to intercept MPI_Init()
and MPI_Finalize() calls to set up the necessary MSRs.
Thus, we do not modify application source code. The li-
brary can also sample MPI programs at a desired time in-
terval and intercept every MPI call in the application to
gather timing and energy/power information. It further in-
fers the operating frequency for each core using the APERF

and MPERF MSRs [16]. Our library can be downloaded from
https://github.com/tpatki/librapl and is currently in
use at Purdue University, the University of Illinois at Urbana-
Champaign, LLNL, and the University of Arizona.

4. EXPERIMENTAL AND APPLICATION
DETAILS

In all results in this paper, we report power values in Watts
and timing information in seconds. We conduct our exper-
iments on the rzmerl cluster at LLNL, which is a 162-node
Sandy Bridge cluster. Each node is a 062D server model with
two PKG domains, and 8 cores per package. The memory
per node is 32GB. The clock speed is 2.6 GHz, and the max-
imum turbo frequency is 3.3 GHz. The cluster has a 32-node
per job limit. We use MVAPICH2 version 1.7 and compile
all codes with the Intel compiler version 12.1.5. OpenMP
threads were scheduled using the scatter policy by setting
the KMP_AFFINITY environment variable. Power clamping
for PP0 and DRAM was disabled by default. We run all ex-
periments with power clamping on the PKG domain with a
single clamping window and the shortest possible time win-
dow (0.000977 seconds). Thus, we avoid any potential power
spikes that might result when using larger time windows. We
use four PKG power caps: 51 W; 65 W; 80 W; and 95 W.
We run each configuration at least three times to eliminate
noise. We disable Turbo Boost when power capping.

We also run experiments with turbo enabled without using
any RAPL-enforced power bounds. A cap of 115 W in our
results represents this turbo mode. 115 W corresponds to the
thermal limit on the PKG and, when we use turbo mode,
this thermal limit becomes our power cap by default.

Our experiments use a hybrid MPI/OpenMP model. Hy-
brid models have low intra-node communication overhead
and are more flexible in terms of configurations that we can
test. Also, future architectures are likely to have many inte-
grated cores on a single chip (for instance, Intel’s MIC [14]).
Because MPI processes have significant memory and com-
munication overhead, the hybrid model is more likely than
a flat MPI model.

HPC Applications. We used four HPC applications: SPhot
[1] from the ASC Purple suite [20] and BT-MZ, SP-MZ,
and LU-MZ from the NAS suite [3]. SPhot is a 2D pho-
ton transport code that uses a Monte Carlo approach to
solve the Boltzmann transport equation by mimicking the
behavior of photons as they are born in hot matter and
move through different materials. SPhot is a CPU-bound,
embarrassingly parallel application. For our multiple-node
experiments, Nruns was set to 8192. For the single-node
experiments, Nruns was set to 1024. The NAS Multi-zone
parallel benchmarks (NAS-MZ) are derived from Computa-
tional Fluid Dynamics (CFD) applications and are designed
to evaluate the hybrid model. We use all three NAS-MZ
benchmarks: Block Tri-diagonal solver, or BT-MZ; Scalar
Penta-diagonal solver, or SP-MZ; and Lower-Upper Gauss-
Seidel solver, or LU-MZ. We use the Class C inputs.

Synthetic Benchmarks. In order to cover the extreme cases
in the application space, we developed four MPI/OpenMP
synthetic benchmarks. These tests are (1) CPU-bound and
scalable (SC); (2) CPU-bound and not scalable (NSC); (3)
Memory-bound and scalable (SM); (4) Memory-bound and
not scalable (NSM). The CPU-bound benchmarks run a sim-
ple spin loop, and the Memory-bound benchmarks do a vec-
tor copy in reverse order. We control scalability by adding
communication using MPI_Alltoall() (i.e., fewer calls to
MPI_Alltoall() means better scalability).

5. BASELINE POWER RESULTS
We first present details on the effect of power on our appli-
cations to understand the impact of power limitations. We
run our benchmarks on one node, varying the core count
from 4 to 16, to study application characteristics and their
impact on configurations.

Figure 1 shows the average PKG and DRAM power mea-
sured across the two sockets of the node for our benchmarks,
at 4 and 16 cores and in turbo mode. We observe that
some applications are more memory-intensive than others
and hence consume more DRAM power. Examples of these
are BT-MZ, SP-MZ, LU-MZ, and SM. At 16 cores per node,
SP-MZ used 10.3% of its socket power for memory. Simi-
larly, BT-MZ and LU-MZ used about 7-8% of their socket
power for memory. SPhot, on the other hand, is relatively
CPU intensive. We also observe that moving from 4 to 16
cores affects PKG power more than DRAM power. For in-
stance, SPhot used 44.6 W of PKG power at 4 cores and
82.1 W of PKG power at 16 cores; DRAM power increased
from 4.9 W to 5.7 W. Similarly, for BT-MZ, PKG power in-
creased by 93% from 54.5 W to 105.7 W, but DRAM power
only increased by 31%.

https://github.com/tpatki/librapl

0
20

40
60

 SC NSC SM NSM SPhot BT−MZ SP−MZ LU−MZ

Benchmarks

P
ow

er
 (

W
)

Average PKG and DRAM power per socket
 (4 cores per node)

PKG
DRAM

0
40

80
12

0

 SC NSC SM NSM SPhot BT−MZ SP−MZ LU−MZ

Benchmarks

P
ow

er
 (

W
)

Average PKG and DRAM power per socket
 (16 cores per node)

PKG
DRAM

Figure 1: Average PKG and DRAM power con-
sumption per socket

Figure 1 also shows that applications do not always use their
allocated power. While the thermal limit on the PKG in
turbo mode is 115 W, none of the applications actually use
this much power, even when using all 16 cores. Most appli-
cations need between 80 and 90 W, except for BT-MZ, which
uses nearly 106 W when running 16 cores. This important
observation calls for efficient power allocation.

Figure 2 shows the impact of varying the PKG power bound
on the node on application performance at 4 and 16 cores per
node for SPhot and SP-MZ. At 4 cores per node, neither of
the applications uses more than 51 W of PKG power; thus,
in an ideal situation, when Turbo Boost is disabled, applica-
tion performance should be unaffected as we increase power
from 51 W to 100 W. We observe a slight slowdown in per-
formance of about 1-2% for our applications from 51 W to
100 W with 4 cores per node. Since we run each experiment
at least three times to eliminate noise, overhead introduced
by Intel’s RAPL algorithm (which is different at different
power bounds) may cause this slowdown. At 16 cores per
node, our applications benefit from higher power up to 85 W.
Performance improved by 21.3% for SP-MZ and by 17.1%
for SPhot. In turbo mode (115 W), all applications perform
significantly better as they run at a higher CPU frequency.
Performance for SPhot improved more than SP-MZ, primar-
ily because SPhot is CPU-bound and less memory intensive.

Next, we run single-node and multiple-node experiments
with Turbo Boost to determine its effect on configurations.
We collect samples every second with librapl and measure

●

● ● ● ● ● ● ● ● ● ● ●

51 60 70 80 90 100 115

10
0

20
0

30
0

40
0

T
im

e
(s

)

PKG power clamp
 per socket (W)

Impact of varying the
PKG−level power bound

●

SPhot, 4−cores
SP−MZ, 4−cores
SPhot, 16−cores
SP−MZ, 16−cores

Figure 2: Impact of varying the PKG power clamp
on execution time.

the frequency ratio by reading the APERF and MPERF MSRs [16].
Figure 3 shows our results on a single-node with varying
core count on our CPU-bound, scalable synthetic bench-
mark. We multiply the median frequency ratio value from
the samples with the maximum non-turbo frequency (2.6
GHz) to determine the effective turbo frequency. Frequency
ratios vary little across our samples. Our results indicate
that the effective turbo frequency depends on the number
of active cores. Intel documentation [15] confirms this ob-
servation and also mentions that the turbo frequency varies
with temperature. We run our experiments at LLNL, where
the machine room temperature was fairly constant over time
and do not encounter any variation in the turbo frequency
that could be attributed to temperature.

We also run multiple-node experiments with Turbo Boost
enabled and collect frequency samples every second with li-
brapl. In these experiments, we use the same number of
cores per node. All nodes reach the same turbo frequency,
which is stable throughout the application’s execution. All
nodes engage in turbo mode similarly.

Summary. Power utilization varies between applications and
power affects them differently. Thus, multiple-node overpro-
visioning could improve performance.

6. MULTIPLE NODE OVERPROVISIONING
This section presents and analyzes multiple-node results of
the HPC applications and synthetic benchmarks that we
listed in Section 4. Because we could not feasibly run ev-
ery possible configuration and because rzmerl has a 32-node
limit per job, we run experiments with 8 to 32 nodes and
4 to 16 cores per node, in increments of 2. For the scope
of this paper, we assume uniform power allocation per node
and that the applications are perfectly load-balanced.

3.
00

3.
10

3.
20

3.
30

2 4 6 8 10 12 14 16

Results of Intel Turbo Boost
 (Single node)

Number of cores

E
ffe

ct
iv

e
F

re
qu

en
cy

 (
G

H
z)

Figure 3: Turbo Boost on a single node with the
CPU-bound, scalable benchmark.

6.1 Configurations
As discussed in Section 2, we define a configuration as: (1)
a value for number of nodes, n, (2) a value for number of
cores per node, c, and (3) power allocated per node, p, in
Watts. We denote a configuration as (n × c, p). Because
power capping is unavailable on DRAM and PP0, we use p
to represent the PKG power that is allocated to the node.
We measure DRAM power along with PKG power, and our
results report their sum on each socket across all nodes when
we report total power.

For comparison purposes, we define four special configura-
tions: packed-max ; packed-min; spread-max ; and spread-
min. The term packed denotes that a configuration uses
all cores on one node before using an additional node, while
spread denotes that processes are spread as evenly as possi-
ble across all nodes, with 4 being the fewest cores per node
used. When we append max is appended, we use the max-
imum power (i.e., turbo mode) on each node, while min
means we use the minimum power (i.e., clamp at 51 Watts).
In all four special configurations, we continue to add cores
and/or nodes until we reach the global power bound (or until
we cannot add more nodes).

6.2 Results
We run our benchmarks on multiple nodes under various
overprovisioned scenarios. Our cluster of 32 nodes consumed
about 6350 W of power when running all cores as fast as
possible. We investigate four overprovisioned scenarios; in
each we have 32 nodes at our disposal, but power limits of
2500 W, 3000 W, 3500 W, and 4000 W. For comparison
purposes, we also look at the case with unlimited power.

Figure 4 displays the potential speedup that overprovision-
ing can provide. This graph compares the best performance
of any configuration that is under the respective power bound,

compared to using packed-max (which is worst-case provi-
sioning). If no bar exists then packed-max is optimal.

The average speedup of BT-MZ, LU-MZ, SP-MZ, and SPhot
when using overprovisioning compared to worst-case provi-
sioning is 73.8%, 55.6%, 67.2%, and 50.9% for a 2500 W,
3000 W, 3500 W, and 4000 W bound, respectively. Clearly,
overprovisioning can lead to large performance improvements.
For three cases, using a configuration other than packed-max
is best even with unlimited power due to memory contention
that degrades performance when using all cores.

Overprovisioning essentially allows applications to utilize
the machine as a reconfigurable architecture, which allows
for better performance than worst-case provisioning. For
example, consider the global power bound of 3500 W. Here,
SP-MZ executes 2.49 times faster when using the optimal
configuration of (26 × 12, 80) than the packed-max configu-
ration associated with worst-case provisioning, (20×16, 115).
With worst-case provisioning, the facility would only have 20
nodes. We study the potential speedup that overprovision-
ing can support. We leave the question of how to determine
configurations that realize this speedup for future work.

6.2.1 Comparing Different Configurations
Figure 5 shows in-depth results for three of our power bounds
(2500 W, 3500 W, and unlimited) for all applications. The
y-axis represents performance of the four canonical configu-
rations, normalized to the performance of the optimal con-
figuration under the global power bound (higher is better).
The x-axis lists our eight benchmarks. Each figure includes
a table that provides the actual configurations. The figure
also contains the total power consumed (packages and mem-
ory power) and the time taken.

First, the figure shows some applications perform best us-
ing packed configurations compared to the spread configu-
rations and that execution time can vary substantially be-
tween packed and spread configurations. This trend can be
observed across all the benchmarks as well as power bounds.
For example, at a global power bound of 2500 W, the spread-
min configuration for SPhot runs 64.5% slower than packed-
min. For SP-MZ at the same power bound, the spread-max
configuration runs 2.16 times faster than the correspond-
ing packed-max configuration. For SC, the spread-min runs
more than twice as slow when compared to the packed-min
configuration. In addition, for NSC, spread-max runs 2.36
times slower than packed-max.

The difference between the packed-max and packed-min con-
figurations can also be significant. For example, with SPhot
the packed-max configuration runs 29.8% slower than packed-
min at 2500 W because the packed-min configuration uti-
lizes more nodes and thus more total cores at lower power
per node, as can be seen from the corresponding table. For
SP-MZ and BT-MZ, the execution time difference between
the spread-max and spread-min configurations is negligible.
However, for LU-MZ this difference is 8% under a power
bound of 2500 W and 16% under a power bound of 3500
W. When we vary the power bound, the execution time dif-
ference as well as the trend followed by the canonical and
optimal configurations varies. At each global power bound,
the configurations associated with the same canonical form

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

 2500 3000 3500 4000 Unlimited

 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

S
pe

ed
up

Global Power Bound

Maximum speedup due to overprovisioning

1 SC
2 SM
3 NSC
4 NSM
5 SPhot
6 BT−MZ
7 SP−MZ
8 LU−MZ

Figure 4: Speedup due to overprovisioning

can be different with an increase in the nodes and cores. For
example, with SP-MZ packed-max is (12 × 16, 115) at 2500
W and (20 × 16, 115) at 3500 W.

Second, the best configuration is not always one of packed-
max, packed-min, spread-max, or spread-min. For example,
at 2500 W, BT-MZ, SP-MZ, LU-MZ and NSM have an op-
timal configuration that is different than the four canonical
configurations. As the corresponding table shows, the opti-
mal configuration for SP-MZ was (22×8, 80), which was 22%
faster than the fastest canonical configuration, (28 × 4, 51).
Running fewer nodes at higher power per node performs bet-
ter than running more nodes at lower power per node in this
case, as opposed to SPhot.

Third, the best configuration for an application depends on
the particular global power bound. For instance, at a power
bound of 2500 W, the best configuration for SP-MZ is (22×
8, 80). On the other hand, when the power bound is 3500
W, it is (26×12, 80)—one expects more nodes with a higher
power bound, but the number of cores per node is different.

Application characteristics determine whether better execu-
tion times result from using more nodes, with fewer cores per
node and at lower power; or fewer nodes, with more cores
per node, and at a higher power. For instance, SPhot and
BT-MZ always perform better when running more cores per
node, and fewer nodes at higher power (i.e., packed), primar-
ily because they are more CPU intensive than SP-MZ and
LU-MZ. The spread configurations perform better for SP-

MZ and LU-MZ because they are more memory intensive,
and using more cores per node for such applications causes
memory contention. For example, at 2500 W and 3500 W,
the spread configurations are close to optimal for LU-MZ.
Application scalability also plays an important role in deter-
mining the right configuration. SP-MZ, LU-MZ, NSC, and
NSM have an optimal configuration that is neither packed
nor spread, but somewhere in between because running as
few as 4 cores per node and as many nodes as possible under
the power bound increases communication.

6.2.2 Using Fewer Cores
Cases exist in which using fewer total cores results in better
execution time. This result is not unexpected, since simi-
lar results have been shown for worst-case provisioning [9].
For example, as the table corresponding to unlimited power
shows, both SP-MZ and LU-MZ perform better with fewer
total cores with the same PKG-level power bound. With
SP-MZ, the spread-max configuration, (32×4, 115) is about
15% faster than the packed-max, (32 × 16, 115) (which runs
four times as many cores). Two reasons lead to this be-
havior: first, in turbo mode, running fewer cores per node
results in a higher effective turbo frequency; and, second,
memory contention at 16 cores causes performance degra-
dation. However, the optimal configuration is (32×14, 115),
which uses more total cores than the spread-max configu-
ration, but fewer cores per node than the packed-max con-
figuration. The result is significantly better memory perfor-
mance. The optimal configuration runs 72% faster than the
fastest canonical one, which cannot be attributed to turbo

SC SM NSC NSM SPhot BT−MZ SP−MZ LU−MZ

0.
2

0.
4

0.
6

0.
8

1 ● ●

●

●

●

●

●

●

Global Power Bound: 2500 W

Benchmarks

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

●

P−Max
P−Min
S−Max
S−Min
Opt

Bmark Configuration Total Power (W) Time (s)
(n× c, p)

(12 × 16, 115) 2181.29 74.27
(22 × 16, 51) 2388.51 57.24

SPhot (24 × 4, 115) 2459.74 99.18
(32 × 4, 51) 2472.33 94.19
(22 × 16, 51) 2388.51 57.24
(12 × 16, 115) 1974.66 13.88
(20 × 16, 51) 2179.92 11.16

SP-MZ (22 × 4, 115) 2449.71 6.40
(28 × 4, 51) 2337.83 6.34
(22 × 8, 80) 2452.81 5.19
(12 × 16, 115) 2227.95 25.29
(20 × 16, 51) 2350.36 18.61

LU-MZ (22 × 4, 115) 2409.92 15.31
(28 × 4, 51) 2383.34 14.08
(22 × 8, 80) 2412.42 13.95

SC SM NSC NSM SPhot BT−MZ SP−MZ LU−MZ

0.
2

0.
4

0.
6

0.
8

1 ●
●

●

●

●

●

●

●

Global Power Bound: 3500 W

Benchmarks

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

●

P−Max
P−Min
S−Max
S−Min
Opt

Bmark Configuration Total Power (W) Time (s)
(n× c, p)

(18 × 16, 115) 3263.74 49.52
(32 × 16, 51) 3477.62 39.81

SPhot (32 × 4, 115) 3252.82 74.79
(32 × 4, 51) 2472.33 94.19
(32 × 16, 51) 3477.62 39.81
(20 × 16, 115) 3240.22 9.10
(32 × 16, 51) 3494.16 7.26

SP-MZ (32 × 4, 115) 3431.63 4.72
(32 × 4, 51) 2647.40 5.67
(26 × 12, 80) 3497.16 3.65
(18 × 16, 115) 3308.11 16.46
(30 × 16, 51) 3379.74 22.78

LU-MZ (32 × 4, 115) 3492.11 10.37
(32 × 4, 51) 2730.48 12.03
(32 × 8, 95) 3497.34 9.42

SC SM NSC NSM SPhot BT−MZ SP−MZ LU−MZ

0.
2

0.
4

0.
6

0.
8

1

●
●

●

●

●

●

●
●

Unlimited power

Benchmarks

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

●

P−Max
P−Min
S−Max
S−Min
Opt

Bmark Configuration Total Power (W) Time (s)
(n× c, p)

(32 × 16, 115) 5768.41 28.30
(32 × 16, 51) 3477.62 39.81

SPhot (32 × 4, 115) 3252.82 74.79
(32 × 4, 51) 2472.33 94.19
(32 × 16, 115) 5768.41 28.30
(32 × 16, 115) 4978.38 5.45
(32 × 16, 51) 3494.16 7.26

SP-MZ (32 × 4, 115) 3431.63 4.72
(32 × 4, 51) 2647.40 5.67
(32 × 14, 115) 5590.13 2.73
(32 × 16, 115) 5487.03 17.48
(32 × 16, 51) 3608.65 21.43

LU-MZ (32 × 4, 115) 3492.11 10.37
(32 × 4, 51) 2730.48 12.03
(32 × 8, 115) 4458.88 8.59

Figure 5: Multiple node experiments at a global power bound of 2500 W (top), 3500 W (middle) and
unlimited (bottom). The left-hand side shows normalized performance (to the optimal) per benchmark, and
the right-hand side shows the configuration and execution time for each point for SPhot, SP-MZ and LU-MZ.
The last (shaded) row shows the optimal configuration.

mode because having 14 or 16 active cores per node results
in the same effective turbo frequency.

In the case of LU-MZ, though, the effect of turbo mode
as well as reduced memory contention can be seen more
prominently. The optimal configuration, (32 × 8, 115) runs
more than twice as fast as the packed-max, and 17% faster
than the fastest canonical configuration, spread-max.

7. RELATED WORK
To the best of our knowledge, our work is the first study of
HPC on power-constrained clusters and the first to explore
optimal configurations under power bounds in the context
of overprovisioned systems. Little work exists on HPC un-
der a power bound. Rountree et al. [28] were the first to
explore the idea using a dynamic, hardware-enforced power-
bound in the HPC environment and to propose RAPL as an
alternative to DVFS. They also examined power variation
across processors and demonstrated that variation in proces-
sor power translates to variation in processor performance
under a power bound. Springer et al. [32] studied computing
under an energy bound for HPC applications, but this older
work used DVFS instead of power clamping; they also used
only eight single-core nodes and thereby avoided any scaling
issues due to limited on-node memory bandwidth. Femal
and Freeh [10] developed a technique for safe overprovision-
ing, but they focused on sets of CGI programs executed by
web servers in data centers. In contrast, our work is focused
on improving the performance of a single HPC program that
has access to the entire cluster.

Curtis-Maury introduced Dynamic Concurrency Throttling,
which controls the number of active threads that execute
parallel regions to optimize for power and performance dy-
namically [7–9]. Li et al. [21] further extended this work
to hybrid programming models. While these teams looked
at configurations for general power minimization, they did
not consider and study the impact of hardware-enforced or
system-level power bounds on configurations.

Prior work has explored saving power/energy under a time
bound in both the HPC and real-time communities. In the
HPC arena, work has used linear programming to find near-
optimal energy savings with zero time increase [29] as well as
a run-time system that implements these ideas [27]. In the
real-time community, several have used mixed integer linear
programming to solve the DVFS scheduling problem [17,30,
33, 34] but are limited to a single processor. Several other
real-time approaches save energy [24–26,36,37].

Additionally, there also is work in DVFS to trade execution
time for lower power/energy [6, 13] as well as several ana-
lytic models to predict or to understand energy consump-
tion in the context of scalability [12, 22, 31]. There are sev-
eral other DVFS algorithms, including thrifty barriers [23],
CPUMiser [12], and Jitter [18].

Overall, while significant work exists on optimizing or min-
imizing power, our work is the first to study the impact of
power bounds, not only within a node, but also at larger-
scale installations. Thus, we provide a first peek into the
behavior of future generations of supercomputing systems,
where such a scenario will be reality.

Best Configurations (sorted) on a single node, (c, p)

P
ow

er

C
on

su
m

ed
 (

W
)

(16 , 95) (14 , 65) (10 , 115) (12 , 65) (8 , 115) (10 , 51)

90
15

1

Benchmark: SPhot
Node−level Power Bound: 150 W

117.92 s

124.38 s 134.65 s

136.42 s

156.24 s

157.34 s

150 W

Best Configurations (sorted) on a single node, (c, p)

P
ow

er

C
on

su
m

ed
 (

W
)

(8 , 115) (10 , 115) (12 , 95) (14 , 95) (16 , 95) (16 , 65)

10
3

15
1

Benchmark: LU−MZ
Node−level Power Bound: 150 W

277.42 s
281.5 s

307.49 s
309.32 s

315.79 s 324.33 s

150 W

Figure 6: Configurations for SPhot and LU-MZ on
a single node.

8. FUTURE WORK
Future work will proceed in multiple directions. One av-
enue is to investigate nonuniformity in power allocation. In
this paper we studied uniform overprovisioned supercom-
puting. That is, while we showed that using more nodes
with reduced power often leads to better performance, each
node has a uniform configuration. While common for to-
day’s HPC applications, future applications are expected to
be more heterogeneous.

In particular, assigning nonuniform power per node may im-
prove performance, especially if the application exhibits load
imbalance. However, a naive power assignment to each node
(e.g., proportional increase in power based on amount of
work) may produce poor results. For example, consider re-
sults on a single node in Figure 6. For SPhot, using more
cores at lower power is profitable. On the other hand, for
LU-MZ, running fewer cores at higher power is better.

Clearly, if we allocate power to nodes in a nonuniform man-
ner, we should understand how power bounds impact perfor-
mance through a node-level power-performance model. In
past work we have used nonuniform DVFS settings to save
energy with negligible performance loss [27].

A second avenue will develop models to predict the opti-
mal configuration given a system-level power-constraint and
a strongly-scaled application. We envision involve multiple
steps, including (1) developing a single-node model to pre-
dict the optimal number of cores and power allocation for
the components within a node (packages and memory sub-
system) and (2) a model to allocate inter-node power based
on the critical path of the application and its load imbalance.

A third avenue is to study the impact of using dynamic
overclocking techniques such as Turbo Boost. We will ex-
periment with clamping DRAM power and explore how best
to utilize clamping in the PKG domain. RAPL is one of the
technologies that will eventually enable us to schedule power
more intelligently on a power-constrained cluster.

9. CONCLUSION
In this paper we identified an emerging problem in the HPC
arena: how to leverage overprovisioning in HPC installa-
tions. With power becoming a first order design constraint
on our road to exascale, such overprovisioned systems will be
commonplace, i.e., we will no longer be able to fully power
all nodes all the time. In such a scenario, we need to under-
stand how we can configure our applications to best exploit
the overall system while adhering to a global power bound.

Our experiments show that the optimal configuration under
a cluster power bound for a strongly-scaled HPC application
performs much better than the configuration corresponding
to the naive, worst-case provisioned scenario. We also pre-
sented some early results on package power clamping and
discussed its impact on application performance as well as
on configurations. Overall, our experiments show that we
can obtain substantial application speedup when carefully
exploiting overprovisioned systems—over 50% on average.

10. ACKNOWLEDGEMENTS
We would like to extend our thanks to Livermore Computing
and their support staff for providing us with the appropriate
permissions required to access the MSRs. Part of this work
was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.

11. REFERENCES
[1] SPhot- Monte Carlo Transport Code, Lawrence

Livermore National Laboratory.

[2] Ucsd center for dark silicon.
http://darksilicon.org/.

[3] NASA Advanced Supercomputing Division, NAS
Parallel Benchmark Suite v3.3, 2006.

[4] Top500 Supercomputer Sites, November 2012.

[5] AMD. AMD Turbo CORE Technology.

[6] K. W. Cameron, X. Feng, and R. Ge.
Performance-constrained distributed DVS scheduling
for scientific applications on power-aware clusters. In
Supercomputing, Seattle, Washington, November 2005.

[7] Matthew Curtis-Maury, Filip Blagojevic, Christos D.
Antonopoulos, and Dimitrios S. Nikolopoulos.
Prediction-based power-performance adaptation of
multithreaded scientific codes. IEEE Trans. Parallel
Distrib. Syst., 19(10):1396–1410, October 2008.

[8] Matthew Curtis-Maury, James Dzierwa, Christos D.
Antonopoulos, and Dimitrios S. Nikolopoulos. Online
power-performance adaptation of multithreaded
programs using hardware event-based prediction. In
International Conference on Supercomputing, New
York, NY, USA, 2006. ACM.

[9] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic,
Dimitrios S. Nikolopoulos, Bronis R. de Supinski, and
Martin Schulz. Prediction models for

multi-dimensional power-performance optimization on
many cores. In International Conference on Parallel
Architectures and Compilation techniques, New York,
NY, USA, 2008. ACM.

[10] Mark E. Femal and Vincent W. Freeh. Safe
overprovisioning: using power limits to increase
aggregate throughput. In International Conference on
Power-Aware Computer Systems, Dec 2005.

[11] Wu-Chun Feng and Kirk W. Cameron. The Green500
list: Encouraging sustainable supercomputing. IEEE
Computer, 40(12):50–55, 2007.

[12] R. Ge, X. Feng, W. Feng, and K. W. Cameron. CPU
Miser: A performance-directed, run-time system for
power-aware clusters. In International Conference on
Parallel Processing, Xi’An, China, 2007.

[13] Chung-Hsing Hsu and Wu-Chun Feng. A power-aware
run-time system for high-performance computing. In
Supercomputing, November 2005.

[14] Intel. Intel Many Integrated Core Architecture.

[15] Intel. Intel Turbo Boost Technology 2.0.

[16] Intel. Intel-64 and IA-32 Architectures Software
Developer’s Manual, Volumes 3A and 3B: System
Programming Guide, 2011.

[17] Tohru Ishihara and Hiroto Yasuura. Voltage
scheduling problem for dynamically variable voltage
processors. In International Symposium on Low power
Electronics and Design, pages 197–202, 1998.

[18] Nandani Kappiah, Vincent W. Freeh, and David K.
Lowenthal. Just in time dynamic voltage scaling:
Exploiting inter-node slack to save energy in MPI
programs. In Supercomputing, November 2005.

[19] Rakesh Kumar, Dean M. Tullsen, Norman P. Jouppi,
and Parthasarathy Ranganathan. Heterogeneous chip
multiprocessors. IEEE Computer, 38(11):32–38, Nov
2005.

[20] Lawrence Livermore National Laboratory. The ASCI
Purple benchmark codes. http://www.llnl.gov/
asci/purple/benchmarks/limited/code_list.html.

[21] Dong Li, Bronis R. de Supinski, Martin Schulz,
Dimitrios S. Nikolopoulos, and Kirk W. Cameron.
Strategies for energy efficient resource management of
hybrid programming models. IEEE Transaction on
Parallel and Distributed Systems, 2012.

[22] Jian Li and José F. Mart̀ınez. Dynamic
power-performance adaptation of parallel computation
on chip multiprocessors. In 12th International
Symposium on High-Performance Computer
Architecture, Austin, Texas, February 2006.

[23] Jian Li, José F. Mart́ınez, and Michael C. Huang. The
thrifty barrier: Energy-aware synchronization in
shared-memory multiprocessors. In 10th International
Symposium on High Performance Computer
Architecture, Madrid, Spain, February 2004.

[24] Bren Mochocki, Xiaobo Sharon Hu, and Gang Quan.
A realistic variable voltage scheduling model for
real-time applications. In Proceedings of the 2002
IEEE/ACM International Conference on
Computer-Aided Design, 2002.

[25] Bren Mochocki, Xiaobo Sharon Hu, and Gang Quan.
Practical on-line DVS scheduling for fixed-priority
real-time systems. In 11th IEEE Real Time and

http://darksilicon.org/
http://www.llnl.gov/asci/purple/benchmarks/limited/code_list.html
http://www.llnl.gov/asci/purple/benchmarks/limited/code_list.html

Embedded Technology and Applications Symposium,
2005.

[26] M. Angels Moncuśı, Alex Arenas, and Jesus Labarta.
Energy aware EDF scheduling in distributed hard real
time systems. In Real-Time Systems Symposium,
December 2003.

[27] B. Rountree, D. Lowenthal, B.R. de Supinski,
M. Schulz, V. Freeh, and T. Bletch. Adagio: Making
DVS Practical for Complex HPC Applications. In
International Conference on Supercomputing, June
2009.

[28] Barry Rountree, Dong H. Ahn, Bronis R. de Supinski,
David K. Lowenthal, and Martin Schulz. Beyond
DVFS: A First Look at Performance under a
Hardware-Enforced Power Bound. In IPDPS
Workshops, pages 947–953. IEEE Computer Society,
2012.

[29] Barry Rountree, David K. Lowenthal, Shelby Funk,
Vincent W. Freeh, Bronis de Supinski, and Martin
Schulz. Bounding energy consumption in large-scale
MPI programs. In Supercomputing, November 2007.

[30] H. Saputra, M. Kandemir, N. Vijaykrishnan, M.J.
Irwin, J.S. Hu, C.-H. Hsu, and U. Kremer.
Energy-conscious compilation based on voltage
scaling. In Joint Conference on Languages, Compilers
and Tools for Embedded Systems, 2002.

[31] Rob Springer, David K. Lowenthal, Barry Rountree,
and Vincent W. Freeh. Minimizing execution time in
MPI programs on an energy-constrained,
power-scalable cluster. In ACM Symposium on
Principles and Practice of Parallel Programming,

March 2006.

[32] Robert C. Springer IV, David K. Lowenthal, Barry
Rountree, and Vincent W. Freeh. Minimizing
execution time in MPI programs on an
energy-constrained, power-scalable cluster. In ACM
Symposium on Principles and Practice of Parallel
Programming, March 2006.

[33] Vishnu Swaminathan and Krishnendu Chakrabarty.
Investigating the effect of voltage-switching on
low-energy task scheduling in hard real-time systems.
In Asia South Pacific Design Automation Conference,
January 2001.

[34] Vishnu Swaminathan and Krshnendu Chakrabarty.
Real-time task scheduling for energy-aware embedded
systems. In IEEE Real-Time Systems Symposium,
November 2000.

[35] Ganesh Venkatesh, Jack Sampson, Nathan Goulding,
Saturnino Garcia, Vladyslav Bryksin, Jose
Lugo-Martinez, Steven Swanson, and Michael Bedford
Taylor. Conservation cores: reducing the energy of
mature computations. In ASPLOS, 2010.

[36] Yumin Zhang, Xiaobo Sharon Hu, and Danny Z.
Chen. Task scheduling voltage selection for energy
minimization. In Proceedings of the 39th annual
Design Automation Conference, 2002.

[37] Dakai Zhu, Rami Melhem, and Bruce R. Childers.
Scheduling with dynamic voltage/speed adjustment
using slack reclamation in multi-processor real-time
systems. IEEE Transactions on Parallel and
Distributed Systems, 2003.

	Introduction
	Overprovisioning
	Intel's RAPL Interface: Running Average Power Limit
	Experimental and Application Details
	Baseline Power Results
	Multiple Node Overprovisioning
	Configurations
	Results
	Comparing Different Configurations
	Using Fewer Cores

	Related Work
	Future Work
	Conclusion
	Acknowledgements
	References

