
A RELATIONAL MODEL FOR SOFTWARE PROTECTION METRICS

Qing Ju, Tapasya Patki, Christian Collberg

Department of Computer Science
University of Arizona

ABSTRACT

Software obfuscation and tamper-proofing algorithms have
been widely deployed to protect the intellectual property as-
sociated with distributed software and to guard against unin-
tended usage. It has been found that these algorithms tend
to make programs larger, slower and raise caching concerns.
This paper addresses the relative performance aspects of a few
popular software protection algorithms and attempts to define
security metrics.

Index Terms— obfuscation, tamperproofing, perfor-
mance metrics

1. INTRODUCTION

The holy grail of software protection research is to be able to
determine, for every algorithm proposed, the amount of secu-
rity it adds. It is conjectured that no algorithm will protect a
program for an indefinite length of time. The security met-
ric we instead would like is time-to-crack — i.e. how much
longer will it take a cracker to get to the asset we want to
protect after a particular algorithm has been applied, com-
pared to the amount of time he would need to crack an unpro-
tected program? Unfortunately, such a metric would require a
model of cracker behavior and abilities, something we don’t
have. Even given such a model, there is such a wide range of
cracker abilities that such a model would likely be useless for
practical purposes.

Even though time-to-crack has remained an illusive met-
ric, it’s been observed in practice that the more powerful a
protection algorithm is, the more performance penalty it in-
curs. The literature is replete with algorithms which incur
anywhere from a factor 2 to a factor 2000 slowdown. These
papers still are not able to weigh this significant performance
overhead against some reasonable metric of the security the
algorithm affords.

In this paper we will take a step towards a relational
model of software protection metrics. We won’t pretend we
can say “algorithm A slows down an attacker by 10% while
adding a performance overhead of 30%”. Instead, our goal is
to be able to say “Algorithm A is better than algorithm B.” In
particular, we start by identifying some protection primitives
that common algorithms make use of in order to confuse or

slow down an attacker. We will then say “Algorithms A and
B both make use of primitive P . If we adjust the parameters
of A and B so that they perform the same number of P oper-
ations, then they ought to afford the same level of protection.
If A has lower performance penalty than B we say that A is
better than B with respect to P .”

A consequence of this strategy is that there may be many
cases where two algorithms A and B are not comparable, sim-
ply because they make use of completely different kinds of
protection primitives. If we still want to compare A and B
we are going to have to analyze the primitives they use to
determine which ones afford the most protection. That will
sometimes be feasible, in particular when we expect crackers
to employ a particular type of attack. So, for example, we
might be able to say “Algorithm A makes use of primitive P1

and algorithm B makes use of primitive P2. P1 makes the
attack we’re expecting harder to perform than P2. A and B
have similar performance overhead. Thus, A is better than
B.”

So, in order to embark on building a relational software
protection metric we need to do the following:

1. settle on a set of interesting protection algorithms,

2. examine their implementation to identify the basic pro-
tection primitives they employ,

3. settle on simple benchmarks,

4. implement the algorithms and apply them to the bench-
marks,

5. fix the parameters of the algorithms so that they afford
the same level of protection (i.e. execute the same num-
ber of protection primitives), and

6. run performance evaluations.

Ideally, we would be able to pick benchmarks that are
common in the literature, such as the SPEC benchmarks, and,
ideally, we’d have complete implementations of the protec-
tion algorithms that can be applied to these benchmarks. Un-
fortunately, this is neither reasonable nor, ultimately, desir-
able. Software protection algorithms are notoriously difficult
to implement and there exist no freely available reference im-
plementations. Also, the actual performance overhead that



these algorithms incur depend heavily on how and where in
the code they are applied. An algorithm which “happens” to
add a heavy-weight protection primitive in the middle of a
tight loop will incur a significant overhead, an overhead that
another implementation might not. For these reasons, we’ve
chosen to work on trivial, synthetic, benchmarks and to hand-
apply the protection algorithms to these benchmarks. The re-
sult is that we’re measuring the relative performance impact
of the basic protection primitives rather than of particular al-
gorithm implementations.

In this paper we are going to consider three algorithms.
These are the Horne’s algorithm, the Cappaert’s algorithm,
and the Aucsmith’s algorithm. They make use of the follow-
ing primitives:

• code swap

• hash functions

• xor blocks

• encryption/decryption blocks

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the obfuscation and tamper-proofing algo-
rithms that we are considering for analysis and discuss im-
plementation issues. Equivalence metrics for obfuscation and
tamperproofing algorithms are discussed in section 3. Section
4 discusses the experimental setup and presents the results of
our study.

2. SOFTWARE PROTECTION ALGORITHMS

In this paper, we will talk about two main categories of soft-
ware protection algorithms- tamperproofing and obfuscation.
Software tamperproofing is a way to ensure that the program
executes as intended, even when an adversary tries to change
the execution [4]. Obfuscation means to transform a program
p into pi that is functionally equivalent but hard to compre-
hend and extract logic from. Here, the information that we
want to protect may be a new algorithm, a cryptographic key
or a license check that the adversary wants to remove. Based
on its approach, an obfuscator could be classified as static ob-
fuscator or dynamic obfuscator.

A static obfuscator applies code transformations to the
program prior to its execution. This makes it difficult for
an adversary to collect information about the program stati-
cally, i.e. without running it. Dynamic obfuscators transform
programs continuously at runtime, keeping them in constant
flux. Dynamic obfuscation tries to counter dynamic attacks
by making the code and the execution path change as the pro-
gram runs. In this paper, we focus on dynamic obfuscation
algorithms. These have been discussed in [4, 5]. A dynamic
obfuscator typically runs in two phases. In the first phase, at
compile time, obfuscators initialize the program and then add
a runtime code transformer. In the second phase, at run-time,

Fig. 1. Horne’s Algorithm

this transformer is invoked with the correct arguments. As a
result, a dynamic obfuscator turns a normal program into a
self-modifying one.

2.1. Horne’s Algorithm

A technique for software tamperproofing is called introspec-
tion, which means the program is augmented to compute a
hash over a code region to compare to an expected value.
Horne’s algorithm is an example of introspection [6, 7]. It
uses a number of checkers to check whether the program has
been tampered with. Each checker is responsible for a set
of functions from the program, referred to as intervals. The
checkers hash the value of the interval it is responsible for,
and check for tampering. This is shown in figure 1. A disad-
vantage with hashing is that the hash values are large integer
constants that are uncommon in regular programs, and this
may not be stealthy enough. Horne’s algorithm uses a very
clever way of hiding the constants. The idea is to construct
the hash function in such a way that, unless the code has been
hacked, the function always hashes to zero. This yields much
more natural code:

h = hash(start, end);
if (h) abort ();

uint32 hash(addr_t start, addr_t end, uint32 C){
uint32 h = 0;
while (start < end) {
h = C * (*start + h);
start ++;
}

return h;
}

A code segment of our implementation of Horne’s Algorithm
is shown below. Here, the asm intructions serve as a synthetic
benchmark, and these have been used in all our implementa-
tions. Here, func1() first calls func2(), which would even-
tually call func3(). And interval1START and interval1END
are the starting and ending address of func2(). intervalK is a
constant 3. If the hash value is not 0, the program will exit.

void func1() {
asm("push %ax");
asm("inc %ax");
asm("inc %ax");



Fig. 2. Cappaert’s Algorithm

Fig. 3. Aucsmith’s Algorithm

...
asm("inc %ax");
asm("pop %ax");
if (hash(interval1START,interval1END,
intervalK))
{exit();}
func2();

}

2.2. Cappaert’s Algorithm

A common technique for dynamic obfuscation is through en-
cryption. The basic idea is simple: encrypt the program at
obfuscation time, store the key in the executable, decrypt and
execute at runtime. In this technique, where we store the key
in the executable is more important than the strength of the en-
cryption algorithm itself. Cappaert’s algorithm [3] is a good
example of this. To begin with, the whole program except the
main function is encrypted. When a function call is made, the
function is decrypted, executed, and re-encrypted at the time
of return. However, this would leave the current call chain in
clear. To avoid this, the first thing that a function has to do
once it has been called is to encrypt the routine that called it.
In this way, Cappaert’s algorithm makes sure that at any point
there are at most two functions in cleartext. Figure 2 depicts
how the algorithm works.

2.3. Aucsmith’s Algorithm

Another technique for dynamic obfuscation is through code
splitting. Obfuscators move code around to alter the control
flow at run-time. Aucsmith’s algorithm [1, 2] is such an exam-
ple. It is also the first known dynamic obfuscation algorithm,
which was published in 1996. Aucsmith’s algorithm consists
of three steps. First, the algorithm splits the program into
pieces, cyclically moves them around, and xors them with
each other. Second, the algorithm uses simple encryption to
keep fewer pieces of the program in the clear. Finally, the

algorithm builds up a network of protected routines checking
each other. Figure 3 gives an overview of this algorithm.

The sample code that we implemented for Aucsmith’s Al-
gorithm is shown below. The section of code of firsttime could
be executed at obfuscation time, it uses xor and swap to set up
the initial configuration. ALIGN is a macro that makes sure
that every cell is the same size. The construct &&cell0 is a
gcc extension to C called labels-as-values. It takes the ad-
dress of a local label that can be stored in a variable. We use
this construct here to make the jump-array next. After exe-
cuting cell0, it xor the left half cells to the right half cells and
then jump to the corresponding cell in the right half.

if (firsttime) {
//Initial Configuration
xor(&&cell5,&&cell2,CELLSIZE);
xor(&&cell0,&&cell3,CELLSIZE);
swap(&&cell1,&&cell4,CELLSIZE);

}
char* next[] ={&&cell0,&&cell1,&&cell2,

&&cell3,&&cell4,&&cell5};
goto *next[0];
align0: ALIGN
cell0:

printf("cell0\n");
xor(&&cell0,&&cell3,3*CELLSIZE);
goto *next[3];

For each of our algorithms, we had a common setup in which
a generator converted an original input file into a protected
output file based upon a set of input parameters and the algo-
rithm. This protected output file was compiled, executed and
profiled. Table 1 depicts the input parameters for each of the
algorithms.

Table 1. Metrics
Algorithms Input Parameters
Horne #checkers, progsz
Cappaert #fns, progsz
Aucsmith #cells, cellsz

3. EQUIVALENCE METRICS

To be able to compare the performance of these algorithms,
there is a need to establish equivalence in terms of security.
Possible metrics include the amount of data that is touched,
the amount of data that is protected by the algorithm (i.e.
amount of data not in the clear), or the number of operations
carried out. We discuss these ideas in this section. Table 2
shows the values corresponding to each of these algorithms
for these metrics.

3.1. Number of Operations

As shown in the table, Cappaert’s algorithm has approxi-
mately 5 operations per function. These include the methods
to obtain the key, and the encryption and decryption routines.
The hash routine in the Horne’s algorithm and the xor block in



Table 2. Metrics
Horne Cappaert Aucsmith

#reads progsz × #checkers
2 5× progsz − 4×progsz

#fns 2×#cells(#cells×cellsz
2 )

#writes 0 4× progsz − 4×progsz
#fns #cells(#cells×cellsz

2 )

#operations #checkers 5×#fns− 4 #cells
data not in the clear 0 (#fns− 1)× progsz

#fns (#cells− 1)× cellsz

the Aucsmith’s algorithm are the other operations considered.
All these operations have the same cost, hence equivalence
can easily be achieved by setting number of checkers to the
number of cells, and the number of functions to approxi-
mately one-fifth of the number of cells. All three algorithms
can be compared on the basis of this metric.

3.2. Data touched

The amount of data touched can be defined as the number of
memory reads plus the number of memory writes. These have
been shown in the table. Now, equivalence can be easily es-
tablished by fixing a program size, adding the reads and writes
and equating them. For Horne’s and Aucsmith’s algorithms,
this is achieved by setting number of checkers to the number
of cells. For the Cappaert’s algorithm, as the number of func-
tions increases, the choices to establish equivalence become
very limited. Only Horne’s anf Aucsmith’s algorithms can be
compared based upon this metric.

3.3. Data not in the clear

Another possible metric is the amount of data that is not in the
clear, i.e. the amount of data that has been protected from the
adversary. Note that for the Horne’s algorithm, this is 0. Thus,
by setting the number of functions to be equal to the number
of cells, we can use this metric to compare the Aucsmith’s
and the Cappaert’s algorithms.

4. EXPERIMENTAL SETUP AND RESULTS

We carried out our profiling on an Intel dual-core, 1.86 GHz
processor with Fedora Core 9, with a cache size of 2048
KB. To configure OProfile for this setup to account for cache
misses, we used the LLC MISSES event [8].

4.1. Observations

Figures 4 - 6 show the results that we obtained. It can be
noted that our implementation of Aucsmith’s algorithm was
slower. This was expected as Aucsmith’s algorithm moves a
lot of code around as opposed to the Horne’s algorithm which
hashes across intervals and checks for tamperproofing. When
compared on the basis of number of operations, Cappaert’s
algorithm was quite fast, as the desired security could be ob-
tained only by using one-fifth of functions than the number of

cells or checkers. This trend is also observed when we com-
pare Aucsmith and Cappaert on the basis of data not in the
clear. Aucsmith is much slower due to poor caching involved
and because of jump statements. Cappaert’s algorithm tends
to be faster due to a significant amount of cache reuse across
functions.

5. CONCLUSIONS AND FUTURE WORK

Section 4 presented our performance results based on two
possible metrics. Although Aucsmith’s algorithm appears to
be slow based on these metrics, it is important to note that
these metrics may not be sufficient to determine and compare
the performance of the algorithms. Future work includes ex-
ploring other metrics that would capture the notion of security
more naturally. Also, it is important to compare the same set
of algorithms based on different metrics, leading to better in-
sight into relative performance. Authors are already exploring
some of these ideas.

6. REFERENCES

[1] D. Aucsmith. Tamper resistant software: An implemen-
tation. In Information Hiding, First International Work-
shop, Cambridge, U.K., Springer-Verlag. Lecture Notes
in Computer Science, 1174:317–333, May 1996.

[2] D. Aucsmith and G. Graunke. Tamper resistant methods
and apparatus. United States Patent 5892899, Assigned
to Intel Corporation (Santa Clara, CA), Apr. 1999.

[3] J. Cappaert, N. Kisserli, D. Schellekens, and B. Preneel.
Self-encrypting code to protect against analysis and tam-
pering. In 1st Benelux Workshop on Information and Sys-
tem Security, 2006.

[4] C. Collberg, G. Myles, and J. Nagra. Surreptitious Soft-
ware. 2008.

[5] C. Collberg, C. Thomborson, and D. Low. A Taxonomy
of Obfuscating Transformations. Technical Report 148,
Department of Computer Science, University of Auck-
land, New Zealand, July 1997.

[6] B. Horne, L. Matheson, C. Sheehan, and R. E. Tarjan.
Dynamic selfchecking techniques for improved tamper



Fig. 4. Timing based on Number of Operations

Fig. 5. Timing based on Data touched



Fig. 6. Timing based on Data Not in the Clear

resistance. Security and Privacy in Digital Rights Man-
agement, ACM CCS-8 Workshop DRM 2001, Philadel-
phia, PA, USA, Nov. 2001.

[7] W. G. Horne, L. R. Matheson, C. Sheehan, and R. E. Tar-
jan. Software selfchecking systems and methods. United

States Application 20030023856, Assigned to InterTrust
Technologies Corporation, Jan. 2003.

[8] IA-32 Intel Architecture Software Developers Manual.
Intel Corporation, 2001.


