

Tapasya Patki, Hussain Al-Helal, Jacob Gulotta, Jason Hansen, Jonathan Sprinkle

Thm (Kelly): If all you have is a hammer, look out for your thumb, and all that.

Corollary: If everyone has a hammer, then you will not use anyone else's nails.

Electrical and Computer Engineering

hlpthrottle

waypointlogger

Electrical and Computer Engineering

Command and Control

- Lots of decision makers, looking at tactical data, making command decisions.
- Lots of monitors
- Lots of data
- Lots of decisions to make

Types?

- Tactical actors (manned/unmanned components)
- GUI elements (human interfaces)
- Vignettes (tactical tests)

Example vignette:

 A UAV is sent to a location to look for blue trucks. After a blue truck is spotted, the UAV reports its location. The C2 staff tell that UAV to "track" the blue truck. The UAV then stays as close as it can.

Example problems:

- What kind of UAV is it? What kinematic/dynamic properties does it have?
- What connection/network settings do I use? Am I communicating via TCP/IP, or something more primitive?

^{*} From an unpublished manuscript by Balogh, et al.

Electrical and Computer Engineering

The integrative modeling part...

Electrical and Computer Engineering

time: double double

double

double

yaw: double

double W:

double

VX:

pitch: double

double

double double

double

double

UAVGSOp

Patki, et al. "Integrative Modeling...Heterogeneous Simulation"

UAV

- A realistic model of the STARMAC was created using Blender
- Rendered model used to represent UAV during simulation
- Multiple instances of the rendered model can be used to simulate swarms of rotorcraft

- The GME Paradigm: what gets generated?
- Camera models: where are things executed?
- Vehicle dynamics: where does the logic live?

Electrical and Computer Engineering

- In the "domain" of heterogeneous simulation
 - Every player has their own domain
 - That domain has the correct tools, etc., for doing development
- There are lots of hard pieces
 - Hard for domain-experts to understand middleware programming
 - Hard for middleware programmers to understand domain concepts
 - Hard for anyone to install everyone else's tools...
- But, major benefits, if pieces can be integrated easily
 - Allows *immediate* work on domain-problems, deferring integration work until later
 - Permits domain-specific work to use the tools of the domain
 - Showcases the power of code generation (when used by Jedi appropriately)

(a) Vector field showing spiral path following.

- We were able to stand up a significant demo within 3 months of (beginning) to install the software
- Our work concentrated on developing domain-specific pieces to improve visualization and design-time analysis
- The modeling infrastructure supported our development in the appropriate level of abstraction for future integration
- Future Work
 - More advanced control algorithms (mesh travel/stability)
 - More advanced code generation (autogenerate vignette scripts, etc.)

We're always looking for good graduate students!

http://www.ece.arizona.edu/~sprinkjm/research/c2wt/

