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Abstract

This paper is an academic experience report describ-
ing the use by researchers at the University of Arizona
of a domain-specific language developed by the Institute
for Software Integrated Systems (at Vanderbilt Univer-
sity). The domain in question is heterogeneous, dis-
tributed simulation of quad-rotor unmanned aerial ve-
hicles (UAVs) as they respond to command and con-
trol requests from a human operator. We describe in
detail how our individual designs of the controller and
guidance laws for the UAV, its rendering and position
updates, on-board sensors, and the various commands
to delegate mission-critical behaviors, all interact using
the ISIS-developed modeling language. We then discuss
the outlook for this domain (heterogeneous system sim-
ulation and integration) for domain-specific languages
and models, specifically for unmanned vehicle control
and interaction.1

1 Introduction

Large projects with decentralized development face
a critical issue in holistic system simulations. Main-
taining a single simulation strategy, which may even
include the use of proprietary tools and/or shared net-
work drives, is quite difficult to achieve, and can lead
to poor software engineering practices where elements
are developed outside the simulation toolchain. These
elements must be rewritten or adapted to fit inside the
tools used by the project. Such practices are prone to
problems that are subtle, such as mismatched models of
computation, as well as problems that are widespread,
such as software bugs while porting.

Many systems require development and design in

1A preliminary version of this paper was presented at the 8th
OOPSLA Workshop on Domain-Specific Modeling [8].

proprietary tools (e.g., MATLAB/Simulink for the do-
main of control systems), and may take advantage of
sophisticated models of computation available in such
tools. Other portions of the system may depend on
logic that is best expressed as a switch statement in
C/Java, or may be run as an applet (e.g., human con-
trol through a command and control interface). How
to integrate these portions of the system with various
components written in other languages is best done
through middleware, and many standard middlewares
exist for such applications. However, for an expert in
control, or discrete event simulation, middleware pro-
gramming can be a treacherous and confusing addition
to their own algorithms.

The simulation of these systems built with heteroge-
nous tools, components, models of computation, and
operating systems is a nontrivial task that is best tack-
led by a middleware expert. However, there exists the
bootstrapping issue of confirming that all programmers
for each component follow a styleguide, or include stan-
dard header files with standard object definitions. En-
forcing such a styleguide early in the process can often
lead to the ‘chicken-and-egg’ problem where experts
cannot start working on their algorithms because they
do not have a testing infrastructure, while infrastruc-
ture developers cannot develop the middleware because
they do not have a set of algorithms to design around.

To address this issue for the specific domain of multi-
vehicle command and control (C2), Balogh and oth-
ers [1] developed the HLA paradigm. Starting with
a suite of tools that could utilize the infrastructure,
and with a few examples, we began an experiment to
continue leading-edge implementation of interactions
between components, with the intention of integrat-
ing the components into an advanced demo that drew
from many different simulation, design, and visualiza-
tion tools. Importantly, we were able to do our com-
ponent designs and simulations independently of the
anticipated middleware, infrastructure, and global sim-
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ulation strategy. Although it was known a priori that
HLA was the likely candidate, this strategy enabled
users to operate without that assumption2. Integra-
tion of these various components was somewhat trivial,
which is a great result for the domain-specific model-
ing language, as it reduced the complexity of the expert
developers significantly.

The scope of this paper does not include motivat-
ing the development of this HLA modeling language,
nor a detailed description of the HLA middleware used.
Readers interested in these details can refer to [1]3. In
fact, there were many design and application domain
choices made by the authors of the domain-specific lan-
guage we use in this paper which we do not justify. We
instead present this application example which shows
the tremendous amount of heterogeneous simulation,
design, and rendering that the use of this domain per-
mitted in the period of just three months. For this
paper’s scope, we are most interested in the following
qualities of a modeling language:

• the ability to specify tool-independent data struc-
tures;

• the ability to compose data structures with other
data structures;

• the ability to synthesize “glue code” between var-
ious tools and software architectures;

• the ability to prototype component behaviors
without running middleware as part of the test;

• the ability to use existing domain-specific tools
and environments for design of models, and re-use
those models in those tools at runtime; and

• the ability to have a single, unifying modeling lan-
guage that permits all of the above.

In this paper, we describe our experience with us-
ing this domain-specific modeling language, specifically
with its advancement of our design and simulation
agenda from the perspective of “what would we have to
do if we did not have the modeling language to help?”
We first describe the tools which were at our disposal
for design, simulation, and visualization. We next dis-
cuss the various implementations of component func-
tionality. Finally, we describe the integrated demon-
stration, and how we envision our future work based
on the capabilities of this modeling environment.

2In fact, early application domain choices utilized the ICE
middleware by ZeroC.

3The maturity of the project and the short timeline for this
workshop do not permit an in-print citation of the work.



 
 





























 
 
 
 








 
 


Figure 1. GME Model in the HLA paradigm,
which describes an interaction between the
UAV and the UAVGSOp. Note that New Waypoint
information is passed to the UAV from the
ground station, and the UAV publishes its
position for interested parties. The object-
oriented structure of those messages are
present in the UML class diagram represen-
tation.

2 Modeling Language Description

The High Level Architecture (HLA) [3] is a
DoD/IEEE standard that will be utilized to facilitate
the reuse and interoperation among various simulation
tools. Through HLA, it is possible for distributed col-
laborative development of complex simulation applica-
tion across platforms. In the concept of HLA, a federa-
tion is the set of interacting simulations involved, while
a single HLA-compliant simulation program is called a
federate. In common applications, a federation consists
of several functional components including:

• simulations, which are generally federates, that
contain all object representation;

• Runtime Infrastructure (RTI), which acts as a dis-
tributed operating system for federation. The ser-
vices implemented in RTI enable the exchange of
data among simulations. There are various imple-
mentations of RTI available, either free or licensed.
The one applied in the project is the Portico 8.0
(see http://www.porticoproject.org/); and

• the interface to RTI, which is consistent with HLA
runtime interface specification. It standardizes the
communication between federates and the RTI im-
plementation.

A federation may also contain components like Data
Collector and Passive Viewer and Interfaces to Live
Participants, which may further extend the functional-
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Figure 3. The model of interactions, in the HLA paradigm. Models describing the runtime parameters
for simulation, logging, and network interactions are in the left-hand side of the figure. The right
hand side concentrates on messages sent back and forth between various components (UAV, Ground
Station, etc.), including the commands used by various components. Finally, the rightmost portion
of the figure shows the various objects that are passed by the RTI, including the sending/receiving
streams of the network simulator.






































Figure 2. Object Hierarchy

ity of the whole system. The definition of HLA in-
cludes three parts: HLA Interface Specification,
HLA Object Models and HLA Rules. In the project
concerned, various heterogeneous tools are intended to
be integrated under the HLA. Specifically, we are to
use following tools collaboratively:

• MATLAB/Simulink

• OMNeT++ [9]

• CPN Tools [4]

• DEVSJAVA [7]

• 3D-Viewers.

To simplify and unify the simulation of a hetero-
geneous system, the Generic Modeling Environment
(GME) [5] is applied. GME is a configurable mod-
eling environment developed by the Institute for Soft-
ware Integrated Systems (ISIS) at Vanderbilt Univer-
sity. Through its Model-Integrated Computing (MIC)
philosophy [6] it provides a GUI environment for cre-
ating Domain-Specific Modeling Languages (DSML).

Utilizing the HLA modeling paradigm, users are able
to create federates of different simulations, while the re-
alization of each federate may vary significantly. The
domain model created using HLA paradigm specifies
the structure and interconnection of all its components
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in the federate. The model interpreter, transforms this
structure into configuration files used by the HLA im-
plementation (RTI).

In brief, the HLA paradigm provides the following
abilities:

• layout of interaction models of various compo-
nents;

• middleware-independent specification of data
structures for messaging; and

• specification of runtime parameters for the overall
simulation.

Basic interactions among federates within the
project can be shown in Figure 1. CPNFederate,
ControlStationConsole, UAVOperator, UAV, etc. are
heterogeneously implemented federates which can in-
teract within HLA. For example, the UAV federate is
developed by MATLAB/Simulink and CPNFederate
is done by CPNTools. In Figure 1, data trans-
ferred among certain federates include toTruck, toUAV,
UAVWaypoint. The structure of these data are specified
within a larger diagram shown in Figure 3. Figure 3
is the Object and the Interaction Diagram, denoting
all the structure of all allowed interconnection in the
whole federation.

3 Rendering

The aim of a simulation is to accurately replicate
a real-life or hypothetical scenario, including its visu-
alization. Tools that permit the high-fidelity design
and simulation of a complex vehicle do not always pro-
vide an equivalent high-fidelity rendering of that vehi-
cle, so there exists a need to enhance this visualization
through external tools.

The visualization is performed through Google
Earth, where our UAV’s position is indicated by
scrolling the map (i.e., we do not see the UAV, but
we see what the UAV sees). The object we are track-
ing (a truck) is visible only when it is in our field of
view. Thus, changes in altitude (and attitude) affect
whether or not we can see the truck. The HLA imple-
mentation pushes the data values for the UAV’s state
to Google Earth in accordance with the progression of
simulated time.

4 Controller

We use the STARMAC as the UAV model in this
project. It is a quadrotor UAV developed by a group at
Stanford University. [2] provides both the description

of its dynamics and a demonstration of its abilities. For
easy visualization and considering the feature of Math-
work design tools (such as a graphical block diagram-
ming tool and a customizable set of block libraries),
Simulink was widely used as the modeling language for
designing the controllers.

In order to respond to the assorted command and
control messages of the Ground Station, the Simulink
controller can switch between various control laws. A
top level view of the modified Simulink block diagram
can be found in Figure 5. Both the spiral search and
tracking controllers can be seen on the left, with an
input flag that specifies which one should be active.

If we want to search some area to locate the truck,
we can set the UAV to the spiral search mode. When
we choose “spiral” as the search pattern for the UAV,
it spirals outward from the location where it received
the Ground Station message to switch to spiral search
mode. In order to let the UAV follow the spiral ideally,
the algorithm takes the UAV position as an input, and
returns the velocity desired. A typical response can be
found in Figure 4(a).

The tracking controller for the STARMAC was
achieved using a proportional controller across the mo-
tor voltage command and setting up feedback loops
around translational acceleration, velocity, and posi-
tion. As sometimes the detected object’s position up-
dates will come in a relatively large time interval, such
as one second or more, the controller should always
try to use the newest waypoint to calculate the desired
direction. The tracking velocity is decided by the hor-
izontal distance between the UAV and the truck. If
the distance is too large, we will set the speed of UAV
to the maximum value; If the distance is small enough
for us to see the truck in the camera, the UAV speed
will slow down to a value similar to the truck speed; in
this way once the truck changes its direction, the over-
shoot of UAV will be tolerable. The worst case is when
we reached the newest truck waypoint, we still can’t
see anything in the camera. In this case, there will be
two choices: the first one is that the Ground Station
should set the UAV mode back to spiral search mode;
the second is that let the UAV will climb in altitude,
so the camera will be able to have a larger view. The
response of tracking a truck which is running in a step
to the north east can be found in Figure 4(b).

Those plots above are important because the design
and simulation was done inside the Mathworks tool-
box, it contains the function to generate plots, utiliz-
ing summing and add feedback blocks, and the whole
design is based on the UAV model. If we want to do
the design the system in Matlab Simulink and then ex-
port them to C/C++, some error will occur because
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Figure 5. An overview diagram of controller model. Note that the switching controller on the left side
of the figure represents the hybrid feature of the controller, whether the vehicle is flying the spiral
search pattern, or the tracking pattern.

of some sutle change in modeling environment. With
the integration of MATLAB/Simulink into the HLA in-
frastructure, the same model generated from the design
and analysis can also be used as executable models.

5 Ground Feature Detection

For unmanned vehicles outfitted with a camera
sensor, one potential application is unmanned, au-
tonomous surveillance. The UAV could be given an
instruction as, for example, “find the blue trucks in
this area.” Analyzing the output image from a camera
is a crucial operation for the UAV to complete this task.
It would have to determine, first, whether or not there
was a blue truck in its field of view and then report the
rough location of that truck in some meaningful way
based on the image and its present state.

In order to closely emulate an actual implementation
it is necessary to have a picture. However, simulation
has a major drawback with respect to the sensor: there
is no image to be directly analyzed. Therefore a soft-
ware workaround is required to determine whether an
object of interest is contained within the image. Taking
advantage of the fact that knowledge of the simulation
world is absolute, it is possible to bypass the image
analysis phase. Instead of locating an object via the
camera’s image, an algorithm (given the known posi-
tion of an object) can report where that object would
appear in the image, if at all. This is done with a simple
coordinate transformation from one reference frame to
another, then scaling and approximating the new co-
ordinates. From there the final task of meaningfully
reporting the “detected” location is identical as if the
pixel location came from an actual picture. Such an ap-
proach allows easy transition from canned simulation
data to data obtained from analysis.

The process starts by feeding the algorithm the po-
sition of an object from the RTI in x,y,z coordinates.
Additional required data are the x,y,z coordinates of

the UAV, its roll-pitch-yaw orientation, and the intrin-
sic parameters of the camera. The most important
properties of the camera are its focal length, the size of
the CCD, and the resolution. The parameters are set
such that the area the camera sees is roughly equiv-
alent to the area displayed in the Google Earth plu-
gin used for visualization. That is to say if the object
can be seen using the Google Earth plugin then it can
be detected by the camera. Given these settings, the
algorithm produces the i,j pixel coordinates that rep-
resent where in the picture the specified object lies.
Finally the pixel coordinates are reverse transformed,
using the state data of the UAV at the time the picture
was taken, and reported as an approximate location for
the object. In practice only the latter portion is neces-
sary because there will be an image actually available
for analysis.

To accomplish this, the RTI and MAT-
LAB/Simulink must communicate with one another.
The RTI provides MATLAB the x,y,z coordinates
of the object and UAV while Simulink provides the
state and orientation data directly to the camera
(i.e., not published through the RTI). The camera
parameters are fixed and so are simple constants.
All the calculations are carried out in MATLAB. An
overview of the process can be seen in Figure 6.

6 Integration

Section 2 describes how the GME Environment was
used to develop an application model with the help
of the HLA paradigm. The UAV and the Ground
Station federates and the associated interactions were
discussed, including how the UAV is controlled through
Simulink. Target detection was discussed in Section 5,
and requires state information of the UAV as well as
information regarding the target’s location.

Now with each of these pieces developed, simu-
lated, and tested individually, we integrated them into
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Figure 6. Overview of GPS target identification scheme, given that no image processing is available.
If the object is in the field of view (FoV), it is passed along to the targeting component to report
location.

a demonstration. To do this, we followed the overall
structure as described in Figure 7. With Portico as
the RTI infrastructure, we used a Java implementation
of a Ground Station which allows human command
input into the simulation. These commands include
direction for the UAV to search for a target, fly to a
waypoint, track a target, etc.

A separate Java application allows the user to cre-
ate a path for the target by drawing arbitrary lines
on a screen, that are then translated into latitude and
longitude. The application keeps track of the latitude
and longitude of each point on the path. Importantly,
each point on the path represents a particular time at
which the truck is at that point. The time is deter-
mined by assuming a new point is sent every second.
This information about the location of the target is
then published, for the MATLAB component discussed
in Section 5 to relay information about a target being
acquired.

These Java-based components express basic control-
flow, and also have their own GUI, utilizing Java’s user-
interface libraries. For the physical-system simulation,
the Simulink models discussed in Section 4 are called,
which publish updated position information. This po-
sitional information, as well as location of the target,
are read by the Google Earth visualization component,
and visualized for the benefit of the Ground Station
human operator. The final result is an integrated demo
that can be run from a Windows .bat file, reducing the
possibility of human error in starting up components
in the wrong order, or forgetting to pass in parameters.
Such an automation for running the demonstration also
reduces the effort required to run tests to confirm that
certain tools (e.g., MATLAB) are properly integrated

into the demonstrator’s machine.

7 Results and Analysis

We successfully integrated several demonstrations
that showed our various technical contributions. De-
pending on the number of interactions that we utilized
in each demonstration model, about 5000 lines of code
were generated for the entire set of federates available.
This included the standard “getter” and “setter” meth-
ods for various objects, but more importantly the “pub-
lish” and “subscribe” methods were provided, reduc-
ing the complexity of programming for domain experts.
For the Simulink interaction, some hand-editing of the
model is required to integrate, i.e., replacing the state
reading and writing blocks with HLA reading and writ-
ing blocks. This is important not just for information
exchange, but also to prevent Simulink from advancing
more rapidly than other portions of the simulation, and
thus not synchronizing data with other components.

Based on the amount of generated code discussed
in Section 7, it would require a significant amount of
human effort to code the various integration points for
each tool. The HLA modeling language provided an
integration point for each software tool we needed, as
well as many others that we did not need. This not
only provides a late-stage integration freedom, but also
gives a design freedom, where alternative tools can be
explored in parallel tested upon integration for selec-
tion of the optimal behavior. In addition to the raw
effort of programming the interaction points, there is
significant effort required to understand how the tools
could interact with the middleware. Thankfully, this
task has already been done by the HLA modeling lan-
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Figure 7. Integrated Schema of the Federation Execution

guage designers.
There are, however, several areas in which the tool

can be improved. As of now, the integration of com-
ponents running on different machines is performed
through shared drives. This could be improved to use
TCP/IP across a network. To mitigate this shortcom-
ing, such integration is currently performed through
code generation, so a better integration solution will
be transparent to the users.

Another area for improvement is the integration
with MATLAB/Simulink, which currently requires
some user editing the MATLAB/Simulink model to in-
clude the generated interfaces to HLA. We leave this
solution up to the language designers, though one pos-
sible approach is to generate a library of blocks that can
be used, and then updates to models in these blocks
will automatically update any simulation models.

8 Conclusions and Future Work

In under three months, the authors were able to inte-
grate a new demonstration of C2 behaviors, including
new controllers for the quad-rotor vehicle, new com-
mands sent to the vehicles, new models of the demon-
stration, and summary simulations that verify behav-
ior on a new installation of the infrastructure. In
three months following that initial proof of concept, ad-
vanced capabilities such as camera-in-the-loop tracking
and search patterns could be tested and debugged as
standalone applications, and integrated in the space of
a few days. These summary simulations are important
for a distributed team, as they confirm to other team
members that various functional components are be-
having correctly, and also confirm to those teams that
they can run the simulation tools required.

Our future work includes utilizing this structure in
the development of high-level control algorithms for
managing a group of vehicles that co-operatively search
for some target(s) over some area. This would be an
implementation of mixed-initiative control. The key is-
sues would involve ensuring a stable formation and gen-
erating optimal search algorithms. The UAVs would
depart as a group in response to a command, and would
separate mid-way to perform individual search opera-
tions spanning the entire search area, as in Figure 8.
Dividing the search space optimally, avoiding collisions
and reporting back appropriate information would re-
quire the inclusion of intelligent real-time algorithms in
the controller. Mesh stability is a good model to obtain
a stable formation, as it attenuates disturbances act-
ing on one vehicle as they propagate to other vehicles.
Thus the UAVs travel in a mesh. This calls for decen-
tralized control laws and intelligent search strategies.

DSMs present a significant advantage in the high-
level specification of system interaction, especially
when the generation of the software that produces their
interaction (i.e., the “glue-code” that holds an interac-
tion together) is computational, and not a case-by-case
design. We believe that future uses of domain-specific
modeling environments in this domain will further en-
able experts in control, visualization, computer vision,
etc., to put experiments of system-level simulations to-
gether more easily than a brute-force integration strat-
egy.
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(a) Dynamic simulation of STARMAC spiral search mode
in simulink.

(b) Dynamic simulation of STARMAC following a truck in
Simulink.

Figure 4. The controller design in Simulink,
is able to do component-scale simulation and
analysis. In (a) a simulation of the UAV spiral
searching mode is shown. In (b) a simulation
of the controller from an initial condition near
the truck is shown.
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