
CSc 553

Principles of Compilation

6 : Malloc Algorithms

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Dynamic Memory Allocation

Suppose we want to write a program that keeps track of a
company’s employees. The information for each employee will
be kept in a structure:

1 a structure is created when an employee is hired, and
2 deleted when the employee is fired or quits.

How should the structures be allocated and freed?

Static allocation

In assembly code, use the .word directive. Memory is
allocated before the program runs.

Requires allocating the maximum number of employee
structures.
Not all may be used, wasting space.
Increasing the maximum requires reassembling the program.

This is not what we want.

Stack allocation

Use a stack, similar to stack frames for subroutines.

A stack supports push and pop.
A stack is a First-In-First-Out data structure.
Employees must quit or be fired in the reverse order in which
they were hired.

This is not what we want.

Dynamic Heap Allocation

We need a fully dynamic memory allocation strategy.
Employees can quit or be fired in any order relative to their
hiring.

The data structure used to provide general memory allocation
such as this is called a heap. It’s not the same type of heap
you learned about (or will learn about) in a data structures
course (those heaps were used to implement a priority queue).
Our heap is simply a data structure for keeping track of
memory.

Run-time Meory Organization

The memory of a running program is divided into three
segments:

text: the program instructions
stack: stack frames for subroutines
heap: program data, both static and dynamic.

0
Text

Data

Stack
∞

The stack grows downward from the highest address.

Run-time Meory Organization. . .

The heap grows upward from the top of the text. Initially the
heap contains the static data from the program, and one big
free region to hold dynamic data. Once this space is used up,
the operating system is invoked to increase the size of the
heap by moving the boundary up towards the stack.

Each program has its own heap and stack.

When the stack and heap collide your program runs out of
memory.

Heap Organization

The heap starts with one big free region, but after the
program has been running for a while it will probably be
divided into some regions that are being used by the program,
and some that are not (employees have been hired and fired).
In the following, shaded regions of memory are in-use (they
contain data that are
being used by the program). Blank regions are not in-use (free).

Addresses

Java Example

class Employee {String name; int salary;}
class Database {
public static void main () {

Employee dil = new Employee("Dilbert",60000);

Employee al = new Employee("Alice",70000);

Employee wal = new Employee("Wally",50000);

Employee boss = new Employee("PHBoss",100000);

wal = null; dil = null;

Employee cat = new Employee("Catbert",200000);

} }

Java Example. . .

cat

e
a
p

bosswalal

H
"Alice"

70000

"PHBoss"

100000

dil bosswalal

60000

"Dilbert" "Alice"

70000

"Wally"

50000

"PHBoss"

100000

H
e
a
p

dil bosswalal

H
e
a
p

"Alice"

70000

"PHBoss"

100000

"Catbert"

200000

dil

Pascal/C/. . . Example

program P;

record Employee String name; int salary; end

begin

Employee dil = new Employee("Dilbert",60000);

Employee al = new Employee("Alice",70000);

Employee wal = new Employee("Wally",50000);

Employee boss = new Employee("PHBoss",100000);

displose(wal); dispose(dil);

Employee cat = new Employee("Catbert",200000);

end.

Pascal/C/. . . Example. . .

cat

60000

"Dilbert" "Alice"

70000

"Wally"

50000

"PHBoss"

100000

H
e
a
p

"Alice"

70000

"PHBoss"

100000

H
e
a
p

dil bosswalal

"Alice"

70000

"PHBoss"

100000

H
e
a
p

bosswalal

dil bosswalal

"Catbert"

200000

dil

Heap Organization. . .

Addresses

When the OS increases the size of the heap, more free
memory is added to the right of this picture.

When the program wants memory from the heap, we must
allocate some from one of the free regions. For each free
region we need to know its starting address and its size.

Heap Organization. . .

Where should this information be kept? In an array? This has
the same problems as allocating the employee structures
themselves in an array. A linked-list called the free list is a
better choice. Since the regions we are linking are free space,
we can put the linked-list structures in the free regions.

Heap Organization. . .

Think of each free region as a structure. Different regions are
different sizes, so the structures have different sizes, but all
begin with a standard header. The header contains the links
for making the linked-list of free regions, and the size of the
region.

The previous picture of memory looks like the following with
the free-list added.

Addresses

Malloc

Memory is allocated from the heap via

malloc(int size)

where size is the number of bytes needed. malloc returns
the address of (a pointer to) a region of free memory of at
least size bytes.

malloc returns 0 (NULL) if there isn’t a big enough free
region to satisfy the request.

Malloc. . .

malloc searches the free list for a free region that’s big
enough, removes it from the free list, and returns its address.

malloc(40)40 4020 30 50

Malloc. . .

If the region is bigger than requested, malloc takes what is
needed from the end of the region and leaves the rest (the
beginning) on the free list.

36malloc(36)20 30 5035

20 3035 14

Malloc. . .

If what is left is too small to hold a header malloc simply
returns the entire region. The program that called malloc will
get more memory then it asked for, but that doesn’t matter.

50malloc(46)20 30 5035

20 3035

Malloc. . .

A doubly-linked-list is often used to make insertion and
deletion easier.

/
20 30 5040

Malloc. . .

malloc should return a word-aligned region that can store
integers. The easiest way to do this is to start with the heap
word-aligned, and always allocate memory in multiples of the
word size.

malloc(37)40 4020 30 50

Malloc. . .

What happens if the program asks for 50 bytes, but then
writes 60 bytes to the region? The last 10 bytes overwrite the
first 10 bytes of the next region. This will corrupt the free list
if the next region is free (and probably crash the program if it
is not).

30

Globals: YX Z

*X = "very long string....."

40 20

H
e
a
p

Very long string... 30

???

40 20

H
e
a
p

Malloc. . .

For this reason it’s a good idea to have a magic number in the
free list node headers. This is a distinctive value that malloc
checks when traversing the free list, and complains if the value
changes (which indicates the list is corrupted). For example,
put a field in the header whose value is always 0xfeedface.

0xfeedface

20 30 5040
0xfeedface 0xfeedface 0xfeedface

Fragmentation

There may be many regions big enough to satisfy a request.
Which one should be used? First, why does it make a
difference? Consider a heap that has two free regions,
separated by allocated memory. Each region contains 50
bytes. malloc can’t satisfy a request for 100 bytes, even
though there is enough total free memory.

50 50

Fragmentation. . .

Why not move the shaded region out of the way, by copying
its contents to the beginning of the heap?

50 50

⇓
100

Fragmentation. . .

This is called memory compaction, and doesn’t work in
general because it changes the address of memory previously
returned by malloc. Most programs cannot handle this.

Compact

90

40 20

H
e
a
p

Globals: YX Z

30

H
e
a
p

Globals: YX Z

Fragmentation. . .

Memory fragmentation is what occurs when the free space is
in regions too small to be useful. We want our allocation
scheme to avoid fragmentation, if possible.

Note that there is no fragmentation with stack allocation
because the free space is always in one big piece.

Without compaction it is impossible to avoid fragmentation
entirely.

Memory Allocation Schemes—Best-fit

malloc returns the smallest region that’s big enough to
satisfy the request.

This favors small regions over large regions, leaving large
regions for large requests.

Unfortunately, it leaves lots of very tiny, useless regions
because it always chooses the region whose size is closest to
the request.

malloc(31)40 4020 30 50

Memory Allocation Schemes—Worst-fit

malloc returns the biggest region that satisfies the request.
This avoids the ”lots of tiny regions” problem. The idea is
that the amount ”left over” is likely to be big enough to
satisfy a subsequent request. This tends to produce free
regions of about the same size.

18

32

20 3040

20 30 5040 malloc(31)

Example I

Example: suppose the free list has regions of size 10, 15, 20,
25, and 30 bytes, and malloc is called to allocate a region of
size 12.

1510 302520

Both of these algorithms require searching the entire free list,
which can be expensive. They also cannot prevent
fragmentation.

Example I — Best-Fit

Best-fit will allocate from the 15-byte region, leaving a region
of 3 byte. Probably will return all 15 bytes as the 3-byte
region is too small to hold a node structure.

2010 3025

10 30252015

malloc(12) Best−Fit

Example I — Worst-Fit

Worst-fit will allocate from the 30-byte region, leaving a
region of 18 bytes.

18252015

malloc(12) worst−Fit

10 30252015

10

Example II

Suppose the free list has two regions of size 20 and 15 and
the allocations are 10 then 20: which algorithm wins?

???

20 15

malloc(20)

malloc(10) Worst−Fit

Worst−Fit

10 1520 5

5

Best−Fit

malloc(20)

malloc(10)

Best−Fit

20 15

Example II/b

Who wins if the allocations are 8, 12, then 10?

5

20 15

7

Best−Fitmalloc(12)

78

???

malloc(8)

Worst−Fit

15

malloc(12)

12

20 15

Worst−Fit

15

malloc(10)

Worst−FitBest−Fitmalloc(8)

Best−Fitmalloc(10)

20

Memory Allocation Schemes—First-fit

To avoid searching the entire list First-fit allocates space from
the first region on the free list that is big enough. It has the
side-effect of leaving lots of small regions at the front of the
list, while the larger are at the end.

32malloc(31)20 30 5040

20 30 508

Memory Allocation Schemes—Next-fit

Next-fit works like First-fit except that it starts searching at
the region following the last region allocated. It tends to leave
average-sized regions.

40208 6

malloc(31) 32

next

20 3040 40

next

20 308 40 malloc(21) 24

next

Example III

Suppose the free list has two regions of size 20 and 15, and
the allocations are 10 then 10. Who wins?

10

20 15

15

Next−Fit

Next−Fit

malloc(10)

malloc(10)

10

5

20 15

15

malloc(10)

malloc(10)

First−Fit

First−Fit

10 15

Free

The routine

free(void *address)

is used to release memory when it is no longer needed (e.g. an
employee quits or is fired).

The address parameter is a pointer to the region to be freed,
and it must have previously been returned by malloc.

In C the type "void *" means a pointer to an unspecified
type (it can be a pointer to anything, much like a reference to
an object of type "Object" in Java).

Free. . .

free inserts the region into the free list. It must fill in the
header to do so, but this introduces a problem. How does free
determine the size of the region? It is only given its address,
not its size. One solution is to store the size elsewhere, such
as in an array.

A simple solution is to put a hidden header on allocated
regions. This header contains the size of the region, and is
stored in memory just before the allocated region.

I call it ”hidden” because it is not seen by the program that
called malloc; malloc returns the address of the first byte
after the hidden header.

Free. . .

Free subtracts the size of the hidden header from the address
it is given to get the address of the hidden header.

1 malloc must account for the hidden header by adding its size
to the amount of memory requested.

2 It’s a good idea to have a (different) magic number in the
hidden header.

3 It’s probably easiest to use the same header as the linked-list,
although not the most space efficient.

Free. . .

22 bytes

0xfeedface

30

30
0xbeadbabe

malloc(20)

0xfeedface 0xfeedface 0xfeedface

20 5040

Free. . .

There is a significant problem with this simple implementation
of free. Consider the following memory status:

An employee quits, making an allocated region free:

CA B

Note that there are now three consecutive free regions
(A,B,C), without any allocated regions between them. They
should be coalesced into one large free region:

Free. . .

Free needs to find the two regions on either side (A,C) of the
region being freed (B), and if either is also free, merge it with
the current region into a single region.

1 How does free find adjacent regions? One option is to keep the
free list sorted by address. When a region is freed insert it into
the correct place in the list, then check to see if the free
regions before and after it on the list are adjacent.

Free. . .

2 How are two regions coalesced? The one with the higher
address is merged into the one with the lower address.

3 Increment the size of the lower region by the size of the higher
region (including the size of the higher region’s header).

4 Remove the higher region from the free list.

Putting it all together

Each free region of memory contains a header with the
following fields:

1 Links for the doubly-linked free list
2 Size of region (including header)

Each allocated region of memory contains a hidden header:
1 Size of region (including hidden header)

Malloc(size)

1 Add size of hidden header to size.

2 Round size up to a whole number of words.

3 Use Next-fit to search free list for first free region of at least
size bytes.

4 Start search using pointer kept in global variable.

5 Check magic numbers as you go.

6 If there isn’t a free region big enough, return 0 (NULL).

7 If free region isn’t exactly size bytes, compute how much is
left- over (excess).

Malloc(size)

8 If excess is at least the size of a header plus one word:

Address of allocated region = address of free region + excess

else

Remove free region from free list
Address of allocated region = address of free region

9 Put size of allocated region into hidden header at the start of
the region.

10 Return address of first byte after hidden header.

11 Update starting search pointer to next region on free list.

Free(address)

1 Subtract size of hidden header from address to get hidden
header’s address.

2 Check magic number in hidden header.

3 Use size in hidden header to fill in free-list node header at
start of region.

4 Insert free region into sorted free list. The pointer to the start
of the free list is stored in a global variable.

Free(address)

5 If previous region on free list is adjacent to new free region:

1 Coalesce by adding size of higher region (including header) to
size of lower region.

2 Remove higher region from free list.
3 Also coalesce subsequent region on free list if it is adjacent.

More Algorithms

There are many different memory allocation algorithms. Many
optimize the amount of space used for the header.

Binning: keeps separate lists for regions of the same size.
Good if the program allocates and frees lots of
regions of the same size (e.g. employee
structures).

Small cells:

8

16

32

64

Heap:

128 512

Large cells:

4

More Algorithms. . .

Bit map: if regions are of the same size (blocks), keep a bit
map instead of a free list. One bit per block: 1
means allocated, 0 means free. One word of the bit
map represents 32 blocks. Index of bit in bit map is
the index of the region in the ”array” of regions.

Garbage collection: if a program does not have a pointer to a
particular region of memory, that memory cannot be
accessed by the program and can be automatically
added to the free list. The programmer allocates
memory, but never calls free. Examples: Lisp, Java

Readings and References

Read Scott, pp. 369–380.

