The Somewhat Simplified Solitaire Algorithm

Lester I. McCann

mccann@cs.arizona.edu

Computer Science Department The University of Arizona Tucson, AZ

ACM SIGCSE Nifty Assignments Panel March 4, 2006

Who Is This Guy?

Who Is This Guy?

Best-selling Author Neal Stephenson

http://www.nealstephenson.com

What Has He Written?

(among others)

(c) 1999

A Combination of Historical& Modern-Day Fiction

(c) 1999

- A Combination of Historical& Modern-Day Fiction
- Threads Joined By Cryptography

(c) 1999

- A Combination of Historical& Modern-Day Fiction
- Threads Joined By Cryptography
- And After ~ 800 pages . . .

(c) 1999

- A Combination of Historical& Modern-Day Fiction
- Threads Joined By Cryptography
- And After ~ 800 pages . . .
- ... The Pontifex Transform Is
 Used

Pontifex == **Solitaire**

www.schneier.com

- In reality, Pontifex is really security expert Bruce Schneier's Solitaire cryptosystem.
- Schneier describes it in Cryptonomicon's appendix

Solitaire? A Cryptosystem??

Solitaire? A Cryptosystem??

No, not that Solitaire ...

Bruce Schneier's Solitaire

 So named because it is based on manipulations of playing cards

Bruce Schneier's Solitaire

- So named because it is based on manipulations of playing cards
 - Who would question an innocent deck of cards?

As Tested on MythBusters!

by Ricky Jay, (c) 1977

Bruce Schneier's Solitaire

- So named because it is based on manipulations of playing cards
 - Who would question an innocent deck of cards?
 - ...OK, we'll ignore that.

Bruce Schneier's Solitaire

- So named because it is based on manipulations of playing cards
 - Who would question an innocent deck of cards?
 ...OK, we'll ignore that.
- Sender and Receiver begin with matched decks
- Each application of Solitaire generates a sequence of keystream values, each in the range [1..26]
- Roughly:
 - Plaintext + keystream = Ciphertext
 - Ciphertext keystream = Plaintext

Step 1: Exchange 'A' Joker with Following Card

Step 2: Exchange 'B' Joker with Following Two Cards

Step 3: "Triple Cut"

Step 4: Needs More Words Than I Have Space!

Step 5:

Step 5: 1st Card's Value

Step 5: 1st Card's Value + 1 ⇒ Index

Step 5: 1st Card's Value + 1 ⇒ Index ⇒ Keystream Value = 4

Encryption

```
Plaintext:
                       N
                           9
                               6 20
       Letter Values:
                      14
                                     25
Keystream Sequence:
                       4
                      18
              Sums:
                          11
                              10
                                  21
                                      30
              Wrap:
                      18
                              10
                          11
                                  21
                                       4
          Ciphertext:
```

Decryption

```
Ciphertext:
                       R K
       Letter Values:
                      18
                          11
                              10 21
Keystream Sequence:
                       4
                           2
                               4
                                 20
                      14
         Differences:
                           9
              Wrap:
                           9
                      14
                               6
                                  20
                                      25
           Plaintext:
```

- Schneier has links to implementations in \sim 12 languages

- Schneier has links to implementations in \sim 12 languages
- My Standard Adjustments:
 - Steps 1 and 2: No special bottom-of-deck behavior
 - Have students assume that the deck is circular

- Schneier has links to implementations in \sim 12 languages
- My Standard Adjustments:
 - Steps 1 and 2: No special bottom-of-deck behavior
 - Have students assume that the deck is circular
 - Use a different deck; for example:
 - Half-deck (only two suits)
 - Pinochle deck (need to add jokers)

- Schneier has links to implementations in \sim 12 languages
- My Standard Adjustments:
 - Steps 1 and 2: No special bottom-of-deck behavior
 - Have students assume that the deck is circular
 - Use a different deck; for example:
 - Half-deck (only two suits)
 - Pinochle deck (need to add jokers)
 - → Unwise cryptographically ... but so what?

Adoption Issues

- Skill Prerequisites:
 - List Manipulation
 - Char ⇔ ASCII
 - Text File I/O (?)

Adoption Issues

- Skill Prerequisites:
 - List Manipulation
 - Char ⇔ ASCII
 - Text File I/O (?)
- Implementation Decisions:
 - Arrays or Linked Lists?
 - o Card Representation?
 - Must state be retained?

Adoption Issues

- Skill Prerequisites:
 - List Manipulation
 - Char ⇔ ASCII
 - Text File I/O (?)
- Implementation Decisions:
 - Arrays or Linked Lists?
 - o Card Representation?
 - Must state be retained?

... Applicable to CS0, CS1, CS2,

So Why Is This "Nifty"?

- Flexible Can assign entire system or just parts
- Provides a gentle introduction to cryptosystems
- Encourages distributed testing (message exchange)
- Would be a fun algorithm to animate

So Why Is This "Nifty"?

- Flexible Can assign entire system or just parts
- Provides a gentle introduction to cryptosystems
- Encourages distributed testing (message exchange)
- Would be a fun algorithm to animate

Just might encourage students to read a novel!

Image Credits

- Neal Stephenson: Bela Bollobas
- Bruce Schneier: dk.compulenta.ru
- Stephenson book covers: barnesandnoble.com
- Klondike: AisleRot 2.10.0 / Jonathan Blandford
- Cards As Weapons: amazon.com
- Card Images: david.bellot.free.fr
- UA Campus: The UA Computer Science Webcam

Any Quick Questions?

mccann@cs.arizona.edu

These full—screen PDF slides were created in LATEX using the prosper class.