
3-1

Polymorphism &
A Few Java Interfaces
 Rick Mercer

3-2

Outline

w Describe Polymorphism
w Show a few ways that interfaces are used

—  Respond to user interaction with a GUI with
ActionListener

—  Compare objects with Comparator
—  Tag types to have writeable/readable objects with

Serializable

—  Create our own icons with Icon
—  Play audio files with AudioClip

3-3

Polymorphism
http://www.webopedia.com/TERM/p/polymorphism.html

w In general, polymorphism is the ability to appear in
many forms

w In object-oriented programming, polymorphism
refers to a programming language's ability to
process objects differently depending on their data
type (class)

w Polymorphism is considered to be a requirement of
any true object-oriented programming language

3-4

Polymorphism from mercer

 To understand polymorphism, take an example of a
workday at Franklin, Beedle, and Associates. Kim
brought in pastries and everyone stood around
chatting. When the food was mostly devoured, Jim, the
president of the company, invited everyone to “Get
back to work.” Sue went back to read a new section of
a book she was editing. Tom continued laying out a
book. Stephanie went back to figure out some setting
in her word-processing program. Ian finished the
company catalog.

3-5

Polymorphism

Jeni met with Jim to discuss a new project. Chris began
contacting professors to review a new manuscript. And
Krista continued her Web search to find on whether
colleges are using C++, Python, or Java. Marty went
back to work on the index of his new book. Kim
cleaned up the pastries. Rick's was just visiting so he
went to work on the remaining raspberries.

3-6

Polymorphic Messages

w 10 different behaviors with the same message!
w The message “Get back to work” is a

polymorphic message
—  a message that is understood by many different

types of object (or employees in this case)
—  but responded to with different behaviors based

on the type of the employee: Editor, Production,
Marketing, …

3-7

Polymorphism

w Polymorphism allows the same message to be
sent to different types to get different behavior

w In Java, polymorphism is possible through
—  inheritance

• Override toString to return different values that are
textual representations of that type.

—  interfaces
• Collections.sort sends compareTo messages to

objects that must have implemented Comparable<T>

3-8

Polymorphism

w The runtime message finds the correct method
—  same message can invoke different methods
—  the reference variable knows the type

aString.compareTo(anotherString)
anInteger.compareTo(anotherInteger)
aButton.actionPerformed(anEvent)
aTextField.actionPerformed(anEvent)
aList.add(anObject)
aHashSet.add(anObject)

3-9

The Java Interface

w An interface describes a set of methods
—  NOT allowed: constructors, instance variables
—  static variables and methods are allowed

w Interfaces must be implemented by a class
—  646 classes implement >= 1 interfaces (in '02)

w Typically, two or more classes implement the
same interface
—  Type guaranteed to have the same methods
—  Objects can be treated as the same type
—  May use different algorithms / instance variables

3-10

An interface we'll use soon

w An interface, a reference type, can have
—  static variables and method headings with ;
public int size(); // no { }

w Methods are implemented by 1 or more classes
w Example interface

 public interface ActionListener {
 public void actionPerformed(ActionEvent theEvent);
 }

3-11

Multiple classes implement
the same interface

w To implement an interface, classes must have
all methods specified as given in the interface

private class Button1Listener implements ActionListener {

 public void actionPerformed(ActionEvent theEvent) {
 // Do this method when button1 is clicked
 }
}

private class Button2Listener implements ActionListener {

 public void actionPerformed(ActionEvent theEvent) {
 // Do this method when button2 is clicked
 }
}

3-12

The Comparable interface
A review for most

w Can assign an instance of a class that implements
and interface to a variable of the interface type

 Comparable str = new String("abc");
 Comparable acct = new BankAccount("B", 1);
 Comparable day = new Date();

w Some classes that implement Comparable
 BigDecimal BigInteger Byte ByteBuffer Character
CharBuffer Charset CollationKey Date Double
DoubleBuffer File Float FloatBuffer IntBuffer
Integer Long LongBuffer ObjectStreamField
Short ShortBuffer String URI

w Comparable defines a “natural ordering”

3-13

Interface Comparable<T>

w Any type can implement Comparable to determine if
one object is less than, equal or greater than another

 public interface Comparable<T> {
 /**
 * Return 0 if two objects are equal; less than
 * zero if this object is smaller; greater than
 * zero if this object is larger.
 */
 public int compareTo(T other);
 }

3-14

 interface comparator
/**
 * Compares its two arguments for order. Returns a
 * negative integer, zero, or a positive integer as the
 * first argument is less than, equal to, or greater
 * than the second argument. Equals not shown here
 */
 public interface comparator<T> {
 public int compareTo(T other);
 }

w Can specify sort order by objects. In the code below
—  What class needs to be written?
—  What interface must that new class implement?

Comparator<BankAccount> idComparator = new ByID();
Collections.sort(accounts, idComparator);

3-15

Example

import java.util.Comparator;
/**
 A type that can be instantiated and sent as an

argument to help sort the objects using this
strategy: acct1 < acct2 if acct1's ID precedes
acct2's ID alphabetically

 */
import java.util.Comparator;

public class ByID implements Comparator<BankAccount> {

 public int compare(BankAccount b1, BankAccount b2) {
 String id1 = b1.getID();
 String id2 = b2.getID();
 return id1.compareTo(id2);
 }
}

3-16

import java.util.Comparator;
/**
 A type that can be instantiated and sent as an

argument to help sort the objects using this
strategy: acct1 < acct2 if acct1's balance is less
than acct2's balance.

 */
public class ByBalance implements

Comparator<BankAccount> {

 public int compare(BankAccount b1, BankAccount b2) {
 double balance1 = b1.getBalance();
 double balance2 = b2.getBalance();
 return (int) (balance1 - balance2);
 }
}

3-17

Two sorting strategies

 // Sort by ID
 Comparator<BankAccount> idComparator = new ByID();
 Collections.sort(accounts, idComparator);
 // First element has the alphabetically first ID
 System.out.println(accounts.toString());

 // Sort by balance
 idComparator = new ByBalance();
 Collections.sort(accounts, idComparator);
 // First element has the account with the least money
 System.out.println(accounts.toString());

Output:

[A $5.00, B $100.00, C $3,000.00, D $200.00, E $50.00]	
[A $5.00, E $50.00, B $100.00, D $200.00, C $3,000.00]

3-18

class OurIcon implements Icon

Icon myIcon = new LiveCamImage("http://www.cs.arizona.edu/
camera/view.jpg");

 JOptionPane.showMessageDialog(
 null,
 "View from\nthe UofA\nComputer Science\nDepartment",
 "Message",
 JOptionPane.INFORMATION_MESSAGE,
 myIcon);

w Notice the 5th parameter type, class or interface?

public static void showMessageDialog(Component parentComponent,

Object message, String title, int messageType, Icon icon)
throws HeadlessException

3-19

LiveCamImage
public class LiveCamImage implements Icon {

 private BufferedImage myImage;

 public LiveCamImage(String imageFileName) {
 try {
 myImage =
 javax.imageio.ImageIO.read(new URL(imageFileName));
 } catch (IOException e) {
 System.err.println("Could not load" + imageFileName);
 }
 }

 // Control the upper left corner of the image
 public void paintIcon(Component c, Graphics g, int x, int y) {
 g.drawImage(myImage, 2, 2, null);
 }

 // Icon also specifies getIconWidth and getIconHeight
 // See file in InterfaceExamples.zip

3-20

3-21

interface AudioClip

w interface AudioClip has 3 methods
—  loop, play, stop

w The Applet class implements AudioClip
w Supports recording, playback, and synthesis

of sampled audio and Musical Instrument
Digital Interface (MIDI) sequences
—  Can play .au, .aif, .wav, .midi
—  For mp3s, we need something more complex

•  We'll see such a library later

3-22

 AudioClip audioClip = null;
 URL url = null;

 // This assumes songs are in a folder named audio
 // Need "file:" unless you are reading it over the web
 String baseFolder = "file:" + System.getProperty("user.dir")

+ "/media/";

 try {
 url = new URL(baseFolder + "wind.wav");
 audioClip = Applet.newAudioClip(url);
 } catch (MalformedURLException e) {
 System.out.println("bad url " + url);
 }
 audioClip.play();

interface AudioClip

