
1 of 7

CSc 110 Sample Final Exam #1

1. While Loop Simulation
For each call of the function below, write the output that is printed:

def mystery(i, j):

 while (i != 0 and j != 0):

 i = i // j

 j = (j - 1) // 2

 print(str(i) + " " + str(j) + " ", end='')

 print(i)

Function Call Output

mystery(5, 0) _______________________________

mystery(3, 2) _______________________________

mystery(16, 5) _______________________________

mystery(80, 9) _______________________________

mystery(1600, 40) _______________________________

2 of 7

2. Inheritance Mystery
Assume that the following classes have been defined:

class A(B):

 def method2(self):

 print("a 2 ", end='')

 self.method1()

class B(C):

 def __str__(se;f):

 return "b"

 def method2(self):

 print("b 2 ", end='')

 super(B, seld).method2()

class C:

 def __str__(self):

 return "c"

 def method1(self):

 print("c 1 ", end='')

 def method2(self):

 print("c 2 ", end='')

class D(B):

 def method1(self):

 print("d 1 ", end='')

 self.method2()

Given the classes above, what output is produced by the following code?

elements = [A(), B(), C(), D()]

for i in range(0, len(elements)):

 print(elements[i])

 elements[i].method1()

 print()

 elements[i].method2()

 print()

 print()

3. Collections Mystery
Consider the following method:
 def mystery(data, pos, n):

 result = set()

 for i in range(0, n):

 for j in range(0, n):

 result.add(data[i + pos][j + pos])

 return result

 Suppose that a variable called grid has been declared as follows:
 grid = [[8, 2, 7, 8, 2, 1], [1, 5, 1, 7, 4, 7],

 [5, 9, 6, 7, 3, 2], [7, 8, 7, 7, 7, 9],

 [4, 2, 6, 9, 2, 3], [2, 2, 8, 1, 1, 3]]

 which means it will store the following 6-by-6 grid of values:
 8 2 7 8 2 1

 1 5 1 7 4 7

 5 9 6 7 3 2

 7 8 7 7 7 9

 4 2 6 9 2 3

 2 2 8 1 1 3

 For each call below, indicate what value is returned. If the function call results in an error, write "error" instead.

 Function Call Contents of Set Returned

 mystery(grid, 2, 2) ___

 mystery(grid, 0, 2) ___

 mystery(grid, 3, 3) ___

3 of 7

4. List Programming
Write a function named is_unique that takes a list of integers as a parameter and that returns a boolean value

indicating whether or not the values in the list are unique (True for yes, False for no). The values in the list are

considered unique if there is no pair of values that are equal. For example, if a variable called list stores the

following values:

list = [3, 8, 12, 2, 9, 17, 43, -8, 46, 203, 14, 97, 10, 4]

Then the call of is_unique(list) should return True because there are no duplicated values in this list.

If instead the list stored these values:

list = [4, 7, 2, 3, 9, 12, -47, -19, 308, 3, 74]

Then the call should return False because the value 3 appears twice in this list. Notice that given this definition, a list of

0 or 1 elements would be considered unique.

5. Collections Programming

Write a function called count_in_area_code that accepts two parameters, a dictionary from names (strings)

to phone numbers (strings) and an area code (as a string), and returns how many unique phone numbers in

the map use that area code. For example, if a map m contains these pairs:

{Marty=206-685-2181, Rick=520-206-6126, Beekto=206-685-2181,

 Jenny=253-867-5309, Stuart=206-685-9138, DirecTV=800-494-4388,

 Bob=206-685-9138, Benson=206-616-1246, Hottline=900-520-2767}

The call of count_in_area_code(m, "206") should return 3, because there are 3 unique phone numbers

that use the 206 area code: Marty/Beekto's number of "206-685-2181", Stuart/Bob's number of "206-685-

9138", and Benson's number of "206-616-1246".

You may assume that every phone number value string in the dictionary will begin with a 3-digit numeric

area code, and that the area code string passed will be a numeric string exactly 3 characters in length. If the

dictionary is empty or contains no phone numbers with the given area code, your function should return 0.

You may create one collection (list, dictionary, set) of your choice as auxiliary storage to solve this problem.

You can have as many simple variables as you like. You should not modify the contents of the dictionary

passed to your function.

4 of 7

6. Programming

 Write a function called same_pattern that returns true or false depending upon whether two strings have the same

pattern of characters. More precisely, two strings have the same pattern if they are of the same length and if two

characters in the first string are equal if and only if the characters in the corresponding positions in the second string

are also equal. Below are some examples of patterns that are the same and patterns that differ (keep in mind that the

method should return the same value no matter what order the two strings are passed).

 1st String 2nd String Same Pattern?

 ------------ -------------- -------------
 "" "" True

 "a" "x" True

 "a" "ab" False

 "ab" "ab" True

 "aa" "xy" False

 "aba" "+-+" True

 "---" "aba" False

 "abcabc" "zodzod" True

 "abcabd" "zodzoe" True

 "abcabc" "xxxxxx" False

 "aaassscccn" "aaabbbcccd" True

 "asasasasas" "xyxyxyxyxy" True

 "ascneencsa" "aeiouuoiea" True

 "aaassscccn" "aaabbbcccd" True

 "asasasasas" "xxxxxyyyyy" False

 "ascneencsa" "aeiouaeiou" False

 "aaassscccn" "xxxyyyzzzz" False

 "aaasssiiii" "gggdddfffh" False

Your function should take two parameters: the two strings to compare. You are allowed to create new strings, but

otherwise you are not allowed to construct extra data structures to solve this problem (no list, set, dictionary, etc).

You are limited to the string functions on the cheat sheet.

7. 2-d Lists
Write a function called find_max that takes a two dimensional list as a parameter and returns the number of the row

that sums to the greatest value. For example if you had the following list of lists:
list = [[1, 2, 3], [2, 3, 3], [1, 3, 3]]

 The first row would be 6, the second 8 and the third 7. The function would therefore return 1.

You can assume the passed in list of lists has at least one row and one column. You cannot assume that it is square.

8. Critters
Write a class Ostrich that extends the Critter class from the Critters assignment, including its get_move and

get_color methods. An Ostrich object first stays in the same place for 10 moves, then moves 10 steps to either

the WEST or the EAST, then repeats. In other words, after sitting still for 10 moves, the ostrich randomly picks to go

west or east, then walks 10 steps in that same direction. Then it stops and sits still for 10 moves and repeats.

Whenever an Ostrich is moving (that is, whenever its last call to get_move returned a direction other than

DIRECTION_CENTER), its color should be white ("white"). As soon as it stops moving, and initially when it first

appears in the critter world, its color should be cyan ("cyan"). When randomly choosing west vs. east, the two

directions should be equally likely.

 You may add anything needed (fields, other methods) to implement the above behavior appropriately. All other

critter behavior not discussed here uses the default values.

5 of 7

9. Classes and Objects

Suppose that you are provided with a pre-written class Date as

described at right. (The headings are shown, but not the method

bodies, to save space.) Assume that the fields, constructor, and

methods shown are already implemented. You may refer to them

or use them in solving this problem if necessary.

Write an instance method named compare that will be placed inside

the Date class to become a part of each Date object's behavior.

The compare method accepts another Date as a parameter and

compares the two dates to see which comes first in chronological

order. It returns an integer with one of the following values:

 a negative integer (such as -1) if the date represented by

this Date comes before that of the parameter

 0 if the two Date objects represent the same month and

day

 a positive integer (such as 1) if the date represented by

this Date comes after that of the parameter

For example, if these Date objects are declared in client code:

sep19 = Date(9, 19)

dec15 = Date(12, 15)

temp = Date(9, 19)

sep11 = Date(9, 11)

The following boolean expressions should have True results.

sep19.compare(sep11) > 0

sep11.compare(sep19) < 0

temp.compare(sep19) == 0

dec15.compare(sep11) > 0

Your method should not modify the state of either Date object (such

as by changing their day or month field values).

Each Date object stores a single

month/day such as September 19.

This class ignores leap years.

class Date:

 # Constructs a date with

 # the given month and day.

 def __init__(self, m, d):

 self.__ month = m

 self.__ day = d

 # Returns the date's day.

 def get_day(self)

 # Returns the date's month.

 def get_month(self)

 # Returns the number of days

 # in this date's month.

 def days_in_month(self)

 # Modifies this date's state

 # so that it has moved forward

 # in time by 1 day, wrapping

 # around into the next month

 # or year if necessary.

 # example: 9/19 -> 9/20

 # example: 9/30 -> 10/1

 # example: 12/31 -> 1/1

 def next_day()

 # your method would go here

6 of 7

Solutions

1. While Loop Simulation

Function Call Output
mystery(5, 0)

mystery(3, 2)

mystery(16, 5)

mystery(80, 9)

mystery(1600, 40)

5

1 0 1

3 2 1 0 1

8 4 2 1 2 0 2

40 19 2 9 0 4 0

2. Inheritance Mystery
b
c 1

a 2 c 1

b
c 1

b 2 c 2

c

c 1
c 2

b
d 1 b 2 c 2
b 2 c 2

3. Collections Mystery
 Function Call Contents of Set Returned

 mystery(grid, 2, 2) [6, 7]

 mystery(grid, 0, 2) [1, 2, 5, 8]
 mystery(grid, 3, 3) [1, 2, 3, 7, 9]

4. List Programming
def is_unique(list):

 for i in range(1, len(list)):
 for j in range(i, len(list)):
 if (list[i - 1] == list[j]):

 return False

 return True

5. Collections Programming
def count_in_area_code(numbers, area_code):

 unique_numbers = set()
 for name, phone in numbers.items():
 if (phone[0:3] == area_code):

 unique_numbers.add(phone)
 return len(unique_numbers)

7 of 7

6. Programming

 def same_pattern(s1, s2):

 if (len(s1) != len(s2)):

 return False

 for i in range(0, len(s1)):

 for j in range(i + 1, len(s1)):

 if (s1[i] == s1[j] and s2[i] != s2[j]):

 return False

 if (s2[i] == s2[j] and s1[i] != s1[j]):

 return False

 return True

7. 2d Lists

def find_max(lis):

 max_sum = 0

 max_row = 0

 for i in range(0, len(lis)):

 cur_sum = 0

 cur_row = i

 for j in range(0, len(lis[i])):

 cur_sum += lis[i][j]

 if cur_sum > max_sum:

 max_sum = cur_sum

 max_row = cur_row

 return max_row

8. Critters
class Ostrich(Critter):

 def __init__(self):
 self.__hiding = True
 self.__steps = 0

 self.__west = randint(0, 1) == 0

 def get_color(self):

 if (self.__hiding):
 return "cyan"
 else:

 return "white"

 def get_move(self):

 if (self.__steps == 10):
 self.__steps = 0 # Pick a new direction and re-set the steps counter
 self.__hiding = not self.__hiding

 self.__west = randint(0, 1) == 0

 self.__steps += 1

 if (self.__hiding):
 return DIRECTION_CENTER
 elif (self.__west):

 return DIRECTION_WEST
 else:
 return DIRECTION_EAST

9. Classes
def compare(other):

 if (self.__month < other.__month or (self.__month == other.__month and
 self.__day < other.__day)):
 return -1

 elif (self.__month == other.__month and self.__day == other.__day):
 return 0
 else:

 return 1

