
1 of 8

CSc 110 Midterm 2 Sample Exam #2

1. List Mystery

Consider the following function:

def list_mystery(a):

 for i in range(len(a) – 2, 0, -1):

 if (a[i + 1] <= a[i - 1]):

 a[i] += 1

Indicate in the right-hand column what values would be stored in the list after the function list_mystery executes if the

integer list in the left-hand column is passed as a parameter to it.

Original Contents of List Final Contents of List

a1 = [42]

list_mystery(a1)

a2 = [1, 8, 3, 6]

list_mystery(a2)

a3 = [5, 5, 5, 5, 5]

list_mystery(a3)

a4 = [10, 7, 9, 6, 8, 5]

list_mystery(a4)

a5 = [1, 0, 1, 0, 0, 1, 0]

list_mystery(a5)

2 of 8

2. Reference Semantics Mystery

The following program produces 4 lines of output. Write the output below, as it would appear on the console.

 def main():

 x = 0

 a = [0] * 4

 x += 1

 mystery(x, a)

 print(str(x) + " " + str(a))

 x += 1

 mystery(x, a)

 print(str(x) + " " + str(a))

 def mystery(x, a):

 x += 1

 a[x] += 1

 print(str(x) + " " + str(a))

3 of 8

3. Assertions

For the following function, identify each of the three assertions in the table below as being either ALWAYS true,

NEVER true or SOMETIMES true / sometimes false at each labeled point in the code. You may abbreviate these

choices as A/N/S respectively.

def assertions(n):
 x = 2

 # Point A
 while (x < n):
 # Point B
 if (n % x == 0):
 n = n // x
 x = 2

 # Point C
 Else:
 x += 1

 # Point D

 # Point E
 return n

 x > 2 x < n n % x == 0

Point A
Point B
Point C
Point D
Point E

4 of 8

4. File Processing

Write a function named find_first_match that accepts as its parameters an input file name and a list of String

keywords representing a list of keywords in a search. Your function will read lines from the input file and should

return the line number of the first line in the file that contains one or more words from keywords. If none of the

keywords are found in the file, your function should return a -1. The search should be case-insensitive, so if a

keyword was "banana", the line "yummy baNAna split" would be considered a line that contains the keyword. Your

function should also match whole words only, so if the only keyword in the list was "ball", the line "football game"

would not be considered a match.

For example, consider the following input file saved in sidewalk.txt, consisting of 6 lines:

Let us leave this place where the smoke blows black

And the dark street winds and bends.

Past the pits where the asphalt flowers grow

We shall walk with a walk that is measured and slow,

And watch where the chalk-white arrows go

To the place where the sidewalk ends.

The following table shows some calls to your function and their expected results.

List Call / Returned Value
k1 = ["place", "winds"] find_first_match(“sidewalk.txt”, k1) returns 1
k2 = ["dinosaur", "PITS", "pots"] find_first_match(“sidewalk.txt”, k2) returns 3
k3 = ["chalk", "row", "g", "ends"] find_first_match(“sidewalk.txt”, k3) returns -1
k4 = ["to"] find_first_match(“sidewalk.txt”, k4) returns 6

You may assume that none of the words in the keywords list contain spaces, i.e. all keywords are single whole words,

and the list contains at least one element. Do not modify the elements of the keywords list.

5 of 8

5. List Programming

Write a function named zero_out that accepts two lists of integers a1 and a2 as parameters and replaces any

occurrences of a2 in a1 with zeroes. The sequence of elements in a2 may appear anywhere in a1 but must appear

consecutively and in the same order. For example, if variables called a1 and a2 store the following values:

a1 = [1, 2, 3, 4, 1, 2, 3, 4, 5]

a2 = [2, 3, 4]

The call of zero_out(a1, a2) should modify a1's contents to be [1, 0, 0, 0, 1, 0, 0, 0, 5].

Note that the pattern can occur many times, even consecutively. For the following two lists a3 and a4:

a3 = [5, 5, 5, 18, 5, 42, 5, 5, 5, 5]

a4 = [5, 5]

The call of zero_out(a3, a4) should modify a3's contents to be [0, 0, 5, 18, 5, 42, 0, 0, 0, 0].

You may assume that both lists passed to your function will have lengths of at least 1. If a2 is not found in a1, or if

a1's length is shorter than a2's, then a1 is not modified by the call to your function. Please note that a1's contents are

being modified in place; you are not supposed to return a new list. Do not modify the contents of a2.

6 of 8

6. Programming

Write a function coin_flip that accepts as its parameter an input file name. Assume that the input file data

represents results of sets of coin flips that are either heads (H) or tails (T) in either upper or lower case, separated by at

least one space. Your function should consider each line to be a separate set of coin flips and should output to the

console the number of heads and the percentage of heads in that line, rounded to the nearest tenth. If this percentage

is more than 50%, you should print a "You win" message. For example, consider the following input file:

H T H H T

T t t T h H

 h

For the input above, your function should produce the following output:

3 heads (60.0%)

You win!

2 heads (33.3%)

1 heads (100.0%)

You win!

The format of your output must exactly match that shown above. You may assume that input file contains at least 1

line of input, that each line contains at least one token, and that no tokens other than h, H, t, or T will be in the lines.

7 of 8

Solutions

1. List Mystery
Call
a1 = [42]

list_mystery(a1)

a2 = [1, 8, 3, 6]

list_mystery(a2)

a3 = [5, 5, 5, 5, 5]

list_mystery(a3)

a4 = [10, 7, 9, 6, 8, 5]

list_mystery(a4)

a5 = [1, 0, 1, 0, 0, 1, 0]

list_mystery(a5)

Final Contents of List
[42]

[1, 8, 4, 6]

[5, 6, 5, 6, 5]

[10, 8, 10, 7, 9, 5]

[1, 1, 1, 1, 0, 2, 0]

2. Reference Semantics Mystery
2 [0, 0, 1, 0]

1 [0, 0, 1, 0]

3 [0, 0, 1, 1]

2 [0, 0, 1, 1]

3. Assertion
 x > 2 x < n n % x == 0

Point A NEVER SOMETIMES SOMETIMES

Point B SOMETIMES ALWAYS SOMETIMES

Point C NEVER SOMETIMES SOMETIMES

Point D ALWAYS SOMETIMES SOMETIMES

Point E SOMETIMES NEVER SOMETIMES

4. File Processing

def find_first_match(file_name, keywords):
 lines = open(file_name).readlines()
 line_num = 0
 for line in lines:
 words = line.split()
 line_num += 1
 for word in words:
 for i in range(0, len(keywords)):
 if (keywords[i].lower() == word.lower()):
 return line_num
 return -1

8 of 8

5. List Programming

def zero_out(a1, a2):

 for i in range(0, len(a1) – len(a2)):

 count = 0

 for j in range(0, len(a2)):

 if (a1[i + j] == a2[j]):

 count += 1

 if (count == len(a2)): # found it

 for j in range(0, len(a2)):

 a1[i + j] = 0

6. Programming
def coin_flip(file_name):
 lines = open(file_name).readlines()
 for line in lines:

 upper_line = line.upper()
 heads = 0
 total = 0

 for flip in upper_line:
 total += 1
 if (flip == "H"):

 heads += 1

 percent = 100 * heads / total

 rounded = round(10 * percent) / 10
 print(str(heads)+ " heads (" + str(rounded) + "%)")
 if (percent > 50):

 print("You win!")
 print()

