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CSC 110, Autumn 2016 
Programming Assignment #3: Doodle (20 points) 

Due: Tuesday, September 13, 2016, 11:30 PM 

Based on an assignment from the University of Washington by Stuart Reges and Marty Stepp 

Program Description: 

This assignment covers parameters and graphics.  Turn in Python files named doodle.py and cafewall.py. 

To run this assignment, you must download the file drawingpanel.py from the Homework section of the class 

web page and save it in the same folder as your code.  Do not turn in drawingpanel.py. 

Part A: Doodle (2 points): 

For the first part of this assignment, turn in a file doodle.py that draws a figure using the DrawingPanel 

provided in class.  You may draw any figure you like that is at least 100 x 100 pixels, contains at least three 

shapes, uses at least two distinct colors, is your own work, and is not highly similar to your figure for Part B.  

Your program also should not have any infinite loops and should not read any user input.  Your score for Part A 

will be based solely on external correctness as just defined; it will not be graded on internal correctness. 

Part B: CafeWall (18 points) 
For the second part of this assignment, 

turn in a file named cafewall.py that 

draws several instances of the Café Wall 

illusion. In this optical illusion, the rows 

appear not to be straight even though they 

are.  Your program should exactly 

reproduce the image at left. 

This image has several levels of structure.  

Black and white squares are used to form 

rows and rows are combined to form 

grids.  The output has two free-standing 

rows and four grids.   

The overall drawing panel is size 650 x 400.  Its background is gray and the squares are black and white.  A 

blue X covers each black square. 

The six figures on the grid should have the following properties: 

Description (x, y) position Number of pairs Size of each box 2nd row offset 

upper-left (0, 0) 4 20 N/A 

mid-left (50, 70) 5 30 N/A 

lower left (10, 150) 4 25 0 

lower middle (250, 200) 3 25 10 

lower right (425, 180) 5 20 10 

upper right (400, 20) 2 35 35 

If there is no visible difference to the naked eye between the expected output and your output, it is considered 

correct.  (If your figure looks the same but has "thicker" black lines, you may be re-drawing the same shapes 

multiple times.) 

 

http://en.wikipedia.org/wiki/Caf%C3%A9_wall_illusion
http://en.wikipedia.org/wiki/Caf%C3%A9_wall_illusion
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Implementation Guidelines for Part B: 

To receive full credit on Part B, you are required to have two particular functions described below.  These 

functions use a great deal of parameter passing and perform the program's complex numeric computations. 

1. Function to draw a row 

Your first function should draw a single row. Notice that we specify each row 

in terms of how many pairs of black/white boxes it has.  Your function 

doesn’t have to be able to produce a row that has a different number of black versus white boxes.  The boxes are 

specified using a single size measure because each should be a square.  Different rows have different sizes, 

positions, and so on.  Therefore, your function should accept several parameters so that it is possible to call it 

many times to draw the many different rows on the screen. 

2. Function to draw a grid 
Once you have completed the function that produces one row, write another function that 

produces a grid of rows. Grids are composed of a series of pairs of rows where the second 

row is offset a certain distance in the x direction relative to the first.  

Each grid is a square, which is why a single value (number of pairs) indicates the number of 

rows and columns.  A single box size is again used because each box should be a square.  The offset indicates 

how far the second row should be shifted to the right in each pair.  The figure in the lower-left has no offset at 

all.  The grid in the upper-right is offset by the size of one of the boxes, which is why it has a checkerboard 

appearance.  The other two grids have an offset that is in between, which is why they produce the optical 

illusion. 

Each pair of lines in the grid should be separated by a certain distance, revealing the gray background 

underneath.  This is referred to as the “mortar” that would appear between layers of brick if you were to build a 

wall with this pattern.  The mortar is essential to the illusion.  Your program should use 2 pixels of separation 

for the mortar, but you should introduce a program constant that would make it easy to change this value to 

something else. 

Place the following statement at the top of your Python files, so that your code can use graphics: 

from drawingpanel import *    # so that I can use Graphics 

Development Strategy (How to Get Started): 

This program does not require as many lines of code as past ones.  However, the numeric computations and 

parameters are not simple.  You might be overwhelmed with the amount of detail you have to handle all at once.  

As famous computer scientist Brian Kernighan once said, "Controlling complexity is the essence of computer 

programming."  To make things easier, begin with a smaller piece of the problem. 

Write your code in stages, repeatedly making small improvements.  Start by having your first function draw 

only the upper-left row, then generalize it by adding one parameter at a time.  For example, add parameters to 

change the x/y position.  Test the parameter by passing different values.  Once it works, move on to the next. 

Style Guidelines: 

For this assignment you are limited to the language features discussed in lectures 1 - 7. 

We require at least the two functions named previously.  You may use additional functions if you like.  You 

may receive a deduction if your functions accept too many parameters or unnecessary parameters.  An 

"unnecessary" parameter in this case is one whose value is redundant with another's or could be computed using 

others' values. 

Give meaningful names to functions, variables, and parameters.  Follow Python’s naming standards as specified 

in lecture.  Limit the lengths of your lines to fewer than 100 characters.  Include meaningful comment headers 

at the top of your program and at the start of each function. 


