
CSc 110, Autumn 2016
Lecture 5: Loop Figures and Constants

Adapted from slides by Marty Stepp and Stuart Reges

Can you write this in Python?

Nested for loop exercise
• Make a table to represent any patterns on each line.

....1

...2

..3

.4

5

• To print a character multiple times, use a for loop.

for j in range(1, 5):

print(".") # 4 dots

line # of dots

1 4

2 3

3 2

4 1

5 0

-1 * line

-1

-2

-3

-4

-5

-1 * line + 5

4

3

2

1

0

Nested for loop solution

• Answer:
for line in range(1, 6):

for j in range(1, (-1 * line + 5 + 1)):

print(".", end='')

print(line)

• Output:
....1

...2

..3

.4

5

Drawing complex figures

• Use nested for loops to produce the following output.

• Why draw ASCII art?
• Real graphics require a lot of finesse

• ASCII art has complex patterns

• Can focus on the algorithms

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

Development strategy

• Recommendations for managing complexity:

1. Design the program (think about steps or methods needed).

• write an English description of steps required

• use this description to decide the functions

2. Create a table of patterns of characters

• use table to write your for loops

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

1. Pseudo-code

• pseudo-code: An English description of an algorithm.

• Example: Drawing a 12 wide by 7 tall box of stars

print 12 stars.

for (each of 5 lines) :

print a star.

print 10 spaces.

print a star.

print 12 stars.

* *
* *
* *
* *
* *

Pseudo-code algorithm

1. Line
• # , 16 =, #

2. Top half
• |

• spaces (decreasing)
• <>

• dots (increasing)
• <>

• spaces (same as above)
• |

3. Bottom half (top half upside-down)

4. Line
• # , 16 =, #

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

Methods from pseudocode

def main():

line()

top_half()

bottom_half()

line()

def top_half():

for line in range(1, 5):

contents of each line

def bottom_half() {

for line in range(1, 5):

contents of each line

def line():

...

2. Tables

• A table for the top half:
• Compute spaces and dots expressions from line number

line spaces dots

1 6 0

2 4 4

3 2 8

4 0 12

line spaces line * -2 + 8 dots 4 * line - 4

1 6 6 0 0

2 4 4 4 4

3 2 2 8 8

4 0 0 12 12

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

3. Writing the code

• Useful questions about the top half:
• Number of (nested) loops per line?

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

Partial solution

Prints the expanding pattern of <> for the top half of the figure.

def top_half():

for line in range(1, 5):

print("|", end="")

for space in range(1, line * -2 + 9):

print(" ", end="")

print("<>", end="")

for dot in range(1, line * 4 - 3):

print(".", end="")

print("<>", end="")

for space in range(1, line * -2 + 8):

print(" ", end="")

print("|")

Class constants and scope

Scaling the mirror
• Let's modify our Mirror program so that it can scale.

• The current mirror (left) is at size 4; the right is at size 3.

• We'd like to structure the code so we can scale the figure by changing
the code in just one place.

#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

#============#

| <><> |

| <>....<> |

|<>........<>|

|<>........<>|

| <>....<> |

| <><> |

#============#

Constants

• constant: A fixed value visible to the whole program.

• value should only be set only at declaration; shouldn't be reassigned

• Syntax:
• Just like declaring a normal variable:

name = value

• name is usually in ALL_UPPER_CASE

• Examples:
DAYS_IN_WEEK = 7

INTEREST_RATE = 3.5

SSN = 658234569

Constants and figures

• Consider the task of drawing the following scalable figure:

+/\/\/\/\/\/\/\/\/\/\+

| |

| |

| | Multiples of 5 occur many times
| |

| |

+/\/\/\/\/\/\/\/\/\/\+

+/\/\/\/\+

| |

| | The same figure at size 2
+/\/\/\/\+

Repetitive figure code

def main():

draw_line()

draw_body()

draw_line()

def draw_line():

print("+", end="")

for i in range(1, 11):

print("/\\", end="")

print("+")

def draw_body():

for line in range(1, 6):

print("|", end="")

for spaces in range(1, 21):

print(" ", end="")

print("|")

Adding a constant
HEIGHT = 5

def main():

draw_line()

draw_body()

draw_line()

def draw_line():

print("+", end="")

for i in range(1, HEIGHT * 2 + 1):
print("/\\", end="")

print("+")

def draw_body():

for line in range(1, HEIGHT + 1):
print("|", end="")

for spaces in range(1, HEIGHT * 4 + 1):

print(" ", end="")

print("|")

Complex figure w/ constant

• Modify the Mirror code to be resizable using a constant.

A mirror of size 4:
#================#

| <><> |

| <>....<> |

| <>........<> |

|<>............<>|

|<>............<>|

| <>........<> |

| <>....<> |

| <><> |

#================#

A mirror of size 3:

#============#

| <><> |

| <>....<> |

|<>........<>|

|<>........<>|

| <>....<> |

| <><> |

#============#

Loop tables and constant
• Let's modify our loop table to use SIZE

• This can change the amount added in the loop expression

#================# #============#

| <><> | | <><> |

| <>....<> | | <>....<> |

| <>........<> | |<>........<>|

|<>............<>| |<>........<>|

|<>............<>| | <>....<> |

| <>........<> | | <><> |

| <>....<> | #============#

| <><> |

#================#

SIZE line spaces dots

4 1,2,3,4 6,4,2,0 0,4,8,12

3 1,2,3 4,2,0 0,4,8

Partial solution
SIZE = 4;

Prints the expanding pattern of <> for the top half of the figure.
def top_half() {

for line in range(1, SIZE):
print("|", end="")

for space in range(1, line * -2 + (2*SIZE) + 1):
print(" ", end="")

print("<>", end="")

for dot in range(1, line * 4 - 3):
print(".", end="")

print("<>", end="")

for space in range(1, line * -2 + (2*SIZE) + 1):
print(" ", end="")

print("|")

Observations about constant

• The constant can change the "intercept" in an expression.
• Usually the "slope" is unchanged.

SIZE = 4;

for space in range(1, line * -2 + (2 * SIZE)):

print(" ", end="")

• It doesn't replace every occurrence of the original value.

for dot in range(1, line * 4 – 4 + 1):

print(".", end="")

