CSc 110, Autumn 2016

Lecture 5: Loop Figures and Constants
Adapted from slides by Marty Stepp and Stuart Reges

Can you write this in Python?

Fondludg L51d10.w 7

it main(vod)

)

it count 3

for (count = 13 counT< =500 count++)
printf ("I will not Throw paper dirplanes n I:ILZIES.");

Nested for loop exercise

* Make a table to represent any patterns on each line.

.1 line | # of dots -1 * line -1 * line + 5
.2 1 4 -1 4
.o 3 2 3 -2 3
54 3 2 -3 2
4 1 -4 1
5 0 -5 0

* To print a character multiple times, use a for loop.

for jJ 1n range(l, 5):
print (".") # 4 dots

Nested for loop solution

* Answer:
for line 1n range(l, 6):
for j in range(l, (-1 * line + 5 + 1)):
print (".", end="'")
print (line)

* Qutput:
|
c.o.2
.. 3
.4
5

Drawing complex figures

* Use nested for loops to produce the following output.

* Why draw ASCII art?
* Real graphics require a lot of finesse f================%
* ASCII art has complex patterns
e Can focus on the algorithms

Development strategy

* Recommendations for managing complexity:

1. Design the program (think about steps or methods needed).

* write an English description of steps required

* use this description to decide the functions f========s=======i
| <><> |
| <>L L L. |

2. Create a table of patterns of characters | <> <>

* use table to write your for loops (<> <>
<> e e <> |
| <> ... <> |
| <>. L. <> |
| <><> |

f================f

1. Pseudo-code

* pseudo-code: An English description of an algorithm.

* Example: Drawing a 12 wide by 7 tall box of stars

print 12 stars.

for (each of 5 lines) :
print a star.
print 10 spaces.
print a star.

print 12 stars.

R R e A A g b i i b g ¢
* *
* *
* *
* *
* *
* *

IR A i A g b i i ¢

Pseudo-code algorithm

1. Line
e #,16=, #

2. Top half
.

e spaces (decreasing)
. <>

e dots (increasing)
. <>

* spaces (same as above)

3. Bottom half (top half upside-down)

4. Line
e #,16=, #

Methods from pseudocode

def

def

def

def

main () :
line ()

top half ()
bottom half ()
line ()

top half ():
for line in range(l, 5):
contents of each line

bottom half () {
for line in range(l, 5):
contents of each line

line () :

Bl

2. Tables

* A table for the top half:

* Compute spaces and dots expressions from line number

line |spaces |line*-2+8 |dots |4 *line -4
1 6 6 0 0

2 4 4 4 4

3 2 2 8 8

4 0 0 12 12

3. Writing the code

* Useful questions about the top half:
 Number of (nested) loops per line?

Partial solution

Prints the expanding pattern of <>
def top half():
for line in range(l, 5):
print (" | ", end:" ")

for space in range(l, line *
print (" ", end:"")

print ("<>", end="")

for dot in range(l, line * 4
print(".", end="")

print ("<>", end="")
for space in range(l, line *

print(" n, end:nn)

print("l")

for the top half of the figure.

-2 + 9):

-2 + 8):

Class constants and scope

Scaling the mirror

* Let's modify our Mirror program so that it can scale.
e The current mirror (left) is at size 4; the right is at size 3.

* We'd like to structure the code so we can scale the figure by changing

Constants

* constant: A fixed value visible to the whole program.
 value should only be set only at declaration; shouldn't be reassigned

* Syntax:
 Just like declaring a normal variable:
name = value

* name is usually in ALL_UPPER_CASE

* Examples:
DAYS IN WEEK = 7
INTEREST RATE = 3.5
SSN = 658234569

Constants and figures

* Consider the task of drawing the following scalable figure:

+/N/NININININININN/ N+

| |
| |
| | Multiples of 5 occur many times
| |
| |
+/N/N/N/N/N/N/N/N/N/\+

+/N/N/N/\+
| |

| | The same figure at size 2

+/\N/\N/\/\+

Repetitive figure code

def main () :

def

def

draw line()
draw body ()
draw line()

draw line() :

print("_l_", end:"")

for i in range(l, 11):
print("/\\", end:nn)

print ("+")

draw body () :
for line in range(l, 6):
print (" | ", end:" ")
for spaces in range(l, 21):
print (" ", end:" ")

print (n | n)

Adding a constant

HEIGHT = 5

def

def

def

main () :

draw line ()
draw body ()
draw line()

draw line():

print("_l_", end:"")

for i in range(l, HEIGHT * 2 + 1):
print("/\\", end:nn)

print ("+")
draw body () :
for line in range(l, HEIGHT + 1):
print (" | ", endzﬂ ")
for spaces in range(l, HEIGHT * 4 + 1):
print (" ", endzll ")

print (n | n)

Complex figure w/ constant

* Modify the Mirror code to be resizable using a constant.
A mirror of size 3:

A mirror of size 4: N —
PSS oo
| <> <> | | <> L <>
| <> <> (<> <>
<>ttt <> | [<>, <>
| <> it i e <> | | <>l .<>
| <t e e e e e <> | | <S> |
| <>..0.0.<3> | e —
| <><> |

ff================#

Loop tables and constant

* Let's modify our loop table to use SIZE
* This can change the amount added in the loop expression

SIZE | line spaces dots
4 1,2,3,416,4,2,0 0,4,8,12
3 1,2,3 4,2,0 0,4,8

p================4 p============#

| <> | | <><> |

| <> <> | | <> <> |

| D <> | [<>........ <> |

<> i ittt e e e <> [<>........ <> |

<> i i it i e oo <> | <> <> |

| <> ... <> | <><> |

| <>l | f============¢f

| <><> |

fommmmmmmmmmmmaay

Partial solution

SIZE = 4;

Prints the expanding pattern of <> for the top half of the figure.
def top half () {
for line in range(l, SIZE):

print (" | ", endzﬂ ")
for space in range(l, line * -2 + (2*SIZE) + 1):
print (" ", endzﬂ ")

print ("<>", end="")

for dot in range(l, line * 4 - 3):
print (".", end="")

print("<>", end:"")
for space in range(l, line * -2 + (2*SIZE) + 1):

print(" n, end:nn)

print (u | u)

Observations about constant

* The constant can change the "intercept" in an expression.
* Usually the "slope" is unchanged.

SIZE = 4;

for space in range(l, line * -2 + (2 * SIZE)):

print(" ", end:"")

* It doesn't replace every occurrence of the original value.

for dot in range(l, line * 4 - 4 + 1):
print (u . ", end=" n)

