
CSc 110, Autumn 2016
Lecture 6: Parameters

Adapted from slides by Marty Stepp and Stuart Reges

Promoting reuse

• Programmers build increasingly complex applications
• Enabled by existing building blocks, e.g. methods

• The more general a building block, the easier to reuse

• Abstraction: focusing on essential properties rather than
implementation details

• Algebra is all about abstraction
• Functions solve an entire class of similar problems

Redundant recipes

• Recipe for baking 20 cookies:
• Mix the following ingredients in a bowl:

• 4 cups flour
• 1 cup butter
• 1 cup sugar
• 2 eggs
• 40 oz. chocolate chips ...

• Place on sheet and Bake for about 10 minutes.

• Recipe for baking 40 cookies:
• Mix the following ingredients in a bowl:

• 8 cups flour
• 2 cups butter
• 2 cups sugar
• 4 eggs
• 80 oz. chocolate chips ...

• Place on sheet and Bake for about 10 minutes.

Parameterized recipe

• Recipe for baking 20 cookies:
• Mix the following ingredients in a bowl:

• 4 cups flour
• 1 cup sugar
• 2 eggs
• ...

• Recipe for baking N cookies:
• Mix the following ingredients in a bowl:

• N/5 cups flour
• N/20 cups butter
• N/20 cups sugar
• N/10 eggs
• 2N oz. chocolate chips ...

• Place on sheet and Bake for about 10 minutes.

• parameter: A value that distinguishes similar tasks.

Redundant figures

• Consider the task of printing the following lines/boxes:

* *

* *
* *

A redundant solution

def main():

line_of_13()

line_of_7()

line_of_35()

box10x3()

box5x4()

def line_of_13():

for i in range(1, 14):

print("*", end="")

print()

def line_of_7():

for i in range(1, 8):

print("*", end="")

print()

def line_of_35():

for i in range(1, 36):

print("*", end="")

print()

...

 This code is redundant.

 Would variables help?
Would constants help?

 What is a better solution?

 line - A function to draw a

line of any number of stars.

 box - A function to draw a

box of any size.

Parameterization

• parameter: A value passed to a function by its caller.

• Instead of line_of_7, line_of_13, write line to draw any length.

• When declaring the function, we will state that it requires a parameter for the number of

stars.

• When calling the function, we will specify how many stars to draw.

main line *******
7

line *************13

Declaring a parameter

Stating that a function requires a parameter in order to run

def <name> (<name>):

<statement>(s)

• Example:
def say_password(code):

print("The password is: " + code)

• When say_password is called, the caller must specify the code to print.

Passing a parameter

Calling a function and specifying values for its parameters

<name>(<expression>)

• Example:

say_password(42)

say_password(12345)

Output:

The password is 42

The password is 12345

Parameters and loops

• A parameter can guide the number of repetitions of a loop.

chant(3)

def chant(times):

for i in range(0, times):

print("Just a salad...")

Output:
Just a salad...

Just a salad...

Just a salad...

How parameters are passed

• When the function is called:
• The value is stored into the parameter variable.
• The function's code executes using that value.

chant(3)

chant(7)

def chant(times):

for i in range(0, times):

print("Just a salad...")

37

Common errors

• If a function accepts a parameter, it is illegal to call it without passing
any value for that parameter.

chant() # ERROR: parameter value required

• The value passed to a function must be of a type that will work.
chant(3.7) # ERROR: must be of type int if it

is used as a range bound

• Exercise: Change the stars program to use a parameterized
function for drawing lines of stars.

Stars solution

Prints several lines of stars.

Uses a parameterized method to remove redundancy.

def main():

line(13)

line(7)

line(35)

Prints the given number of stars plus a line break.

def line(count):

for i in range(0, count):

print("*", end="")

print()

Multiple parameters
• A method can accept multiple parameters. (separate by ,)

• When calling it, you must pass values for each parameter.

• Declaration:
def <name>(<name>, ..., <name>):

<statement>(s)

• Call:
<name>(<exp>, <exp>, ..., <exp>)

Multiple parameters example

def main():

printNumber(4, 9)

printNumber(17, 6)

printNumber(8, 0)

printNumber(0, 8)

def printNumber(number, count):

for i in range(0, count):

print(number, end="")

print()

Output:

444444444

171717171717

00000000

• Modify the stars program to draw boxes with parameters.

Stars solution

Prints several lines and boxes made of stars.

Third version with multiple parameterized methods.

def main():

line(13)

line(7)

line(35)

print()

box(10, 3)

box(5, 4)

box(20, 7)

Prints the given number of

#stars plus a line break.

def line(count):

for i in range(0, count):

print("*", end="")

print()

Prints a box of stars of the given size.

def box(width, height):

line(width)

for line in range(0, height - 2):

print("*", end="")

for space in range(0, width - 2):

print(" ", end="")

print("*")

line(width)

Strings as parameters

say_hello("Allison")

teacher = "Bictolia"

say_hello(teacher)

def sayHello(name):

print("Welcome, " + name)

Output:

Welcome, Allison

Welcome, Bictolia

• Modify the stars program to use string parameters. Use a function
named repeat that prints a string many times.

Stars solution

Prints several lines and boxes made of stars.

Fourth version with String parameters.

def main():

line(13)

line(7)

line(35)

print()

box(10, 3)

box(5, 4)

box(20, 7)

Prints the given number of

stars plus a line break.

def line(count):

repeat("*", count)

print()

Prints a box of stars of the given size.

def box(width, height):

line(width)

for line in range(height – 2):

print("*", end="")

repeat(" ", width - 2)

print("*")

line(width)

Prints the given String the given

number of times.

def repeat(s, times):

for i in range(0, times):

print(s, end="")

Value semantics

• value semantics: When numbers and strings are passed as
parameters, their values are copied.
• Modifying the parameter will not affect the variable passed in.

def strange(x):

x = x + 1

print("1. x = " + x)

x = 23

strange(x)

print("2. x = " + x)

...

Output:

1. x = 24

2. x = 23

A "Parameter Mystery" problem

def main():

x = 9

y = 2

z = 5

mystery(z, y, x)

mystery(y, x, z)

def mystery(x, z, y):

print(str(z) + " and " + str(y - x))

