
CSc 110, Autumn 2016
Lecture 10: Advanced if/else; Cumulative sum

Adapted from slides by Marty Stepp and Stuart Reges

Factoring if/else code

• factoring: Extracting common/redundant code.
• Can reduce or eliminate redundancy from if/else code.

• Example:
if (a == 1):

print(a)

x = 3

b = b + x

elif (a == 2):

print(a)

x = 6

y = y + 10

b = b + x

else: # a == 3
print(a)

x = 9

b = b + x

print(a)

x = 3 * a

if (a == 2):

y = y + 10

b = b + x

Relational expressions
• if statements use logical tests.

if (i <= 10) { ...

• These are boolean expressions.

• Tests use relational operators:

Operator Meaning Example Value

== equals 1 + 1 == 2 true

!=

<>

does not equal 3.2 != 2.5

3.2 <> 2.5

true

< less than 10 < 5 false

> greater than 10 > 5 true

<= less than or equal to 126 <= 100 false

>= greater than or equal to 5.0 >= 5.0 true

Logical operators

• Tests can be combined using logical operators:

• "Truth tables" for each, used with logical values p and q:

Operator Description Example Result

and and (2 == 3) and (-1 < 5) False

or or (2 == 3) or (-1 < 5) True

not not not (2 == 3) True

P q p and q p or q

True True True True

True False False True

False True False True

False False False False

p not p

True False

False True

Evaluating logical expressions
• Relational operators have lower precedence than math; logical

operators have lower precedence than relational operators
5 * 7 >= 3 + 5 * (7 – 1) and 7 <= 11

5 * 7 >= 3 + 5 * 6 and 7 <= 11

35 >= 3 + 30 and 7 <= 11

35 >= 33 and 7 <= 11

True and True

True

• Relational operators cannot be "chained" as in algebra
2 <= x <= 10

True <= 10 (assume that x is 15)

• Instead, combine multiple tests with and or or

2 <= x and x <= 10

True and False

False

Logical questions

• What is the result of each of the following expressions?

x = 42

y = 17

z = 25

• y < x and y <= z
• x % 2 == y % 2 or x % 2 == z % 2
• x <= y + z and x >= y + z
• not(x < y and x < z)
• (x + y) % 2 == 0 or not((z - y) % 2 == 0)

• Answers: True, False, True, True, False

Cumulative algorithms

Adding many numbers

• How would you find the sum of all integers from 1-1000?

This may require a lot of typing
sum = 1 + 2 + 3 + 4 + ...

print("The sum is " + str(sum))

• What if we want the sum from 1 - 1,000,000?
Or the sum up to any maximum?
• How can we generalize the above code?

Cumulative sum loop

sum = 0
for i in range(1, 1001):

sum = sum + i

print("The sum is " + str(sum))

• cumulative sum: A variable that keeps a sum in progress and is updated
repeatedly until summing is finished.

• The sum in the above code is an attempt at a cumulative sum.

• Cumulative sum variables must be declared outside the loops that update them, so
that they will still exist after the loop.

Cumulative product

• This cumulative idea can be used with other operators:

product = 1

for i in range(1, 21):

product = product * 2

print("2 ^ 20 = " + str(product))

• How would we make the base and exponent adjustable?

input and cumulative sum

• We can do a cumulative sum of user input:

sum = 0;

for i in range(1, 101):

next = int(input("Type a number: "))

sum = sum + next

}

print("The sum is " + str(sum))

Cumulative sum question

• Modify the Receipt program from lecture 2
• Prompt for how many people, and each person's dinner cost.
• Use functions to structure the solution.

• Example log of execution:
How many people ate? 4
Person #1: How much did your dinner cost? 20.00
Person #2: How much did your dinner cost? 15
Person #3: How much did your dinner cost? 30.0
Person #4: How much did your dinner cost? 10.00

Subtotal: $75.0

Tax: $6.0

Tip: $11.25

Total: $92.25

Cumulative sum answer

This program enhances our Receipt program using a cumulative sum.

def main():

subtotal = meals()

results(subtotal)

Prompts for number of people and returns total meal subtotal.

def meals():

people = float(input("How many people ate? "))

subtotal = 0.0; # cumulative sum

for i in range(1, people + 1):

person_cost = float(input("Person #" + str(i) +

": How much did your dinner cost? "))

subtotal = subtotal + person_cost; # add to sum

return subtotal

...

Cumulative answer, cont'd.

Calculates total owed, assuming 8% tax and 15% tip

def results(subtotal):

tax = subtotal * .08

tip = subtotal * .15

total = subtotal + tax + tip

print("Subtotal: $" + str(subtotal))

print("Tax: $" + str(tax))

print("Tip: $" + str(tip))

print("Total: $" + str(total))

if/else, return question

• Write a function count_factors that returns
the number of factors of an integer.
• count_factors(24) returns 8 because

1, 2, 3, 4, 6, 8, 12, and 24 are factors of 24.

• Solution:
Returns how many factors the given number has.
def count_factors(number):

count = 0
for i in range(1, number + 1):

if (number % i == 0):
count += 1 # i is a factor of number

return count

