
CSc 110, Autumn 2016
Lecture 12: while Loops,

Fencepost Loops, and Sentinel Loops
Adapted from slides by Marty Stepp and Stuart Reges

A deceptive problem...

• Write a method print_letters that prints each letter from a
word separated by commas.

For example, the call:
print_letters("Atmosphere")

should print:
A, t, m, o, s, p, h, e, r, e

Flawed solutions

• def print_letters(word):

for i in range(0, len(word)):

print(word[i] + ", ", end='')

print() # end line

• Output: A, t, m, o, s, p, h, e, r, e,

• def print_letters(word):

for i in range(0, len(word)):

print(", " + word[i], end='')

print() # end line

• Output: , A, t, m, o, s, p, h, e, r, e

Fence post analogy

• We print n letters but need only n - 1 commas.

• Similar to building a fence with wires separated by posts:

• If we use a flawed algorithm that repeatedly places a post + wire, the last post

will have an extra dangling wire.

for length of fence :

place a post.

place some wire.

Fencepost loop

• Add a statement outside the loop to place the initial "post."
• Also called a fencepost loop or a "loop-and-a-half" solution.

place a post.

for length of fence – 1:

place some wire.

place a post.

Fencepost method solution

• def print_letters(word):

print(word[0])

for i in range(1, len(word)):

print(", " + word[i], end='')

print() # end line

• Alternate solution: Either first or last "post" can be taken out:

def print_letters(word):

for i in range(0, len(word) - 1):

print(word[i] + ", ", end='')

last = len(word) – 1

print(word[last]) # end line

while loops

Categories of loops

• definite loop: Executes a known number of times.
• The for loops we have seen are definite loops.

• Print "hello" 10 times.
• Find all the prime numbers up to an integer n.
• Print each odd number between 5 and 127.

• indefinite loop: One where the number of times its body repeats is not
known in advance.

• Prompt the user until they type a non-negative number.
• Print random numbers until a prime number is printed.
• Repeat until the user has typed "q" to quit.

The while loop

• while loop: Repeatedly executes its
body as long as a logical test is true.

while (test):
statement(s)

• Example:

num = 1 # initialization
while (num <= 200): # test

print(str(num) + " ", end='')
num = num * 2 # update

output: 1 2 4 8 16 32 64 128

Example while loop

finds the first factor of 91, other than 1

n = 91

factor = 2

while (n % factor != 0):

factor += 1

print("First factor is " + str(factor))

output: First factor is 7

• while is better than for because we don't know how many times we will
need to increment to find the factor.

• sentinel: A value that signals the end of user input.

• sentinel loop: Repeats until a sentinel value is seen.

• Example: Write a program that prompts the user for text until the
user types "quit", then output the total number of characters typed.
• (In this case, "quit" is the sentinel value.)

Type a word (or "quit" to exit): hello
Type a word (or "quit" to exit): yay
Type a word (or "quit" to exit): quit
You typed a total of 8 characters.

Sentinel values

Solution?

sum = 0

response = "dummy" # "dummy" value, anything but "quit"

while (response != "quit"):

response = input("Type a word (or \"quit\" to exit): ")

sum += len(response)

print("You typed a total of " + str(sum) + " characters.")

• This solution produces the wrong output. Why?
You typed a total of 12 characters.

The problem with our code

• Our code uses a pattern like this:
sum = 0
while (input is not the sentinel) :

prompt for input; read input.
add input length to the sum.

• On the last pass, the sentinel’s length (4) is added to the sum:
prompt for input; read input ("quit").
add input length (4) to the sum.

• This is a fencepost problem.
• Must read N lines, but only sum the lengths of the first N-1.

A fencepost solution

sum = 0.
prompt for input; read input. # place a "post"

while (input is not the sentinel):
add input length to the sum. # place a "wire"
prompt for input; read input. # place a "post"

• Sentinel loops often utilize a fencepost "loop-and-a-half" style
solution by pulling some code out of the loop.

Correct code

sum = 0

pull one prompt/read ("post") out of the loop

response = input("Type a word (or \"quit\" to exit): ")

while (response != "quit"):

sum += len(response) # moved to top of loop

response = input("Type a word (or \"quit\" to exit): ")

print("You typed a total of " + str(sum) + " characters.")

Sentinel as a constant
SENTINEL = "quit";

...

sum = 0

pull one prompt/read ("post") out of the loop

response = input("Type a word (or \"" + SENTINEL + "\" to exit): ")

while (response != SENTINEL):

sum += len(response) # moved to top of loop

response = input("Type a word (or \"" + SENTINEL + "\" to exit): ")

print("You typed a total of " + str(sum) + " characters.")

