CSc 110, Autumn 2016

Lecture 13: Random Numbers

Adapted from slides by Marty Stepp and Stuart Reges

```
int getRandNumber()
{
    return 4;  // chosen by fair dice roll.
              // guaranteed to be random.
}
```

http://xkcd.com/221/
Randomness

- Lack of predictability: don't know what's coming next

- Random process: outcomes do not follow a deterministic pattern (math, statistics, probability)

- Lack of bias or correlation (statistics)

- Relevant in lots of fields
 - Genetic mutations (biology)
 - Quantum processes (physics)
 - Random walk hypothesis (finance)
 - Cryptography (computer science)
 - Game theory (mathematics)
 - Determinism (religion)
Pseudo-Randomness

• Computers generate numbers in a predictable way using a mathematical formula

• Parameters may include current time, mouse position
 • In practice, hard to predict or replicate

• True randomness uses natural processes
 • Atmospheric noise (http://www.random.org/)
 • Lava lamps (patent #5732138)
 • Radioactive decay
The Random class

- A random object generates pseudo-random numbers.
 - Class random is found in random
    ```python
    from random import *
    ```

<table>
<thead>
<tr>
<th>Method name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>random()</td>
<td>returns a random float in the range ([0, 1)) in other words, 0 inclusive to (\text{max}) exclusive</td>
</tr>
<tr>
<td>randint((min, max))</td>
<td>returns a random integer in the range ([\text{min}, \text{max})) in other words, \text{min} to (\text{max}-1) inclusive</td>
</tr>
</tbody>
</table>

- Example:

  ```python
  from random import *
  random_number = randint(1, 10)  # 1–9
  ```
Generating random numbers

• To get a number in arbitrary range \([min, max]\) inclusive:

 \[
 \text{randint}(min, max)
 \]

 • Where size of range is \((max - min)\)

• Example: A random integer between 4 and 10 inclusive:

 \[
 n = \text{randint}(4, 11)
 \]
Random and other types

- `random` function returns a float between 0.0 - 1.0
 - Example: Get a random GPA value between 1.5 and 4.0:
    ```python
    random_gpa = random() * 2.5 + 1.5
    ```

- Any set of possible values can be mapped to integers
 - code to randomly play Rock-Paper-Scissors:
    ```python
    r = randint(0, 3)
    if (r == 0):
        print("Rock")
    elif (r == 1):
        print("Paper")
    else:  # r == 2
        print("Scissors")
    ```
Random question

- Write a program that simulates rolling two 6-sided dice until their combined result comes up as 7.

 2 + 4 = 6
 3 + 5 = 8
 5 + 6 = 11
 1 + 1 = 2
 4 + 3 = 7

You won after 5 tries!
Random answer

Rolls two dice until a sum of 7 is reached.
From random import *

def main():
 tries = 0
 sum = 0
 while (sum != 7):
 # roll the dice once
 roll1 = randint(1, 7)
 roll2 = randint(1, 7)
 sum = roll1 + roll2
 print(str(roll1) + " + " + str(roll2) + " = " + str(sum))
 tries += 1
 print("You won after " + str(tries) + " tries!")
Random question

- Write a program that plays an adding game.
 - Ask user to solve random adding problems with 2-5 numbers.
 - The user gets 1 point for a correct answer, 0 for incorrect.
 - The program stops after 3 incorrect answers.

4 + 10 + 3 + 10 = \underline{27}
9 + 2 = \underline{11}
8 + 6 + 7 + 9 = \underline{25}
Wrong! The answer was 30
5 + 9 = \underline{13}
Wrong! The answer was 14
4 + 9 + 9 = \underline{22}
3 + 1 + 7 + 2 = \underline{13}
4 + 2 + 10 + 9 + 7 = \underline{42}
Wrong! The answer was 32
You earned 4 total points
Random answer

Asks the user to do adding problems and scores them.
from random import *

def main():
 # play until user gets 3 wrong
 points = 0
 wrong = 0
 while (wrong < 3):
 result = play() # play one game
 if (result == 0):
 wrong += 1
 else:
 points += 1

 print("You earned " + str(points) + " total points.")
Random answer 2

Builds one addition problem and presents it to the user.
Returns 1 point if you get it right, 0 if wrong.

def play():
 # print the operands being added, and sum them
 operands = randint(2, 6)
 sum = randint(1, 11)
 print(sum, end='')

 for i in range(2, operands + 1):
 n = randint(1, 11)
 sum += n
 print(" + " + str(n), end='')

 print(" = ", end='')

 # read user's guess and report whether it was correct
 guess = input()
 if (guess == str(sum)):
 return 1
 else:
 print("Wrong! The answer was " + str(total))
 return 0