
CSc 110, Autumn 2016
Lecture 19: lists as Parameters

Adapted from slides by Marty Stepp and Stuart Reges

List reversal question

• Write code that reverses the elements of a list.

• For example, if the array initially stores:

[11, 42, -5, 27, 0, 89]

• Then after your reversal code, it should store:

[89, 0, 27, -5, 42, 11]

• The code should work for a list of any size.

• Hint: think about swapping various elements...

Algorithm idea

• Swap pairs of elements from the edges; work inwards:

index 0 1 2 3 4 5

value 11 42 -5 27 0 89

index 0 1 2 3 4 5

value 89 42 -5 27 0 11

index 0 1 2 3 4 5

value 89 0 -5 27 42 11

index 0 1 2 3 4 5

value 89 0 27 -5 42 11

List reverse question 2

• Turn your list reversal code into a reverse function.
• Accept the list of integers to reverse as a parameter.

numbers = [11, 42, -5, 27, 0, 89]

reverse(numbers)

• How do we write functions that accept lists as parameters?

• Will we need to return the new list contents after reversal?

...

Reference semantics

7

A swap function?

• Does the following swap function work? Why or why not?

def main():

a = 7

b = 35

swap a with b?

swap(a, b)

print(str(a) + " " + str(b))

def swap(a, b):

temp = a

a = b

b = temp

Value semantics

• value semantics: Behavior where values are copied when changed.

• ints, floats, strings and booleans in Python use value semantics.

• When one variable is assigned to another and then that variable is changed,
its value is copied.

• Modifying the value of one variable does not affect others.

x = 5

y = x # x = 5, y = 5

y = 17 # x = 5, y = 17

x = 8 # x = 8, y = 17

Reference semantics
• reference semantics: Behavior where variables actually store the

address of an object in memory.

• When one variable is assigned to another, the object is
not copied; both variables refer to the same object.

• Modifying the value of one variable will affect others.

a1 = [4, 15, 8]

a2 = a1 # refer to same list as a1

a2[0] = 7

print(a1) # [7, 15, 8]

index 0 1 2

value 4 15 8

index 0 1 2

value 7 15 8a1 a2

References and objects

• Lists and objects use reference semantics. Why?
• efficiency. Copying large objects slows down a program.

• sharing. It's useful to share an object's data among methods.

panel1 = DrawingPanel(80, 50)

panel2 = panel1 # same window

panel2.canvas.create_rectangle(0, 0, 80, 50, fill="cyan")

panel1

panel2

Objects as parameters

• When an object is passed as a parameter, the object is not copied.
The parameter refers to the same object.
• If the parameter is modified, it will affect the original object.

def main():

window = DrawingPanel(80, 50)

window.canvas.create_rectangle(0, 0, 80, 50, fill="yellow")

example(window)

def example(panel):

panel.canvas.create_rectangle(0, 0, 80, 50, fill="cyan")

...

panel

window

Lists pass by reference

• Lists are passed as parameters by reference.
• Changes made in the function are also seen by the caller.

def main():
iq = [126, 167, 95]
increase(iq)
print(iq)

def increase(a):
for i in range(0, len(a)):

a[i] = a[i] * 2

• Output:
[252, 334, 190] index 0 1 2

value 126 167 95

index 0 1 2

value 252 334 190

iq

a

List reverse question 2

• Turn your list reversal code into a reverse function.
• Accept the list of integers to reverse as a parameter.

numbers = [11, 42, -5, 27, 0, 89]

reverse(numbers)

• Solution:
def reverse(numbers):

for i in range(0, len(numbers) // 2):

temp = numbers[i]

numbers[i] = numbers[len(numbers) - 1 - i]

numbers[len(numbers) - 1 - i] = temp

List parameter questions

• Write a function swap that accepts a list of integers and two indexes and
swaps the elements at those indexes.

a1 = [12, 34, 56]

swap(a1, 1, 2)
print(a1) # [12, 56, 34]

• Write a function swap_all that accepts two lists of integers as
parameters and swaps their entire contents.

• Assume that the two lists are the same length.

a1 = [12, 34, 56]

a2 = [20, 50, 80]

swap_all(a1, a2)
print(a1) # [20, 50, 80]
print(a2) # [12, 34, 56]

List parameter answers

Swaps the values at the given two indexes.
def swap(a, i, j):

temp = a[i]

a[i] = a[j]

a[j] = temp

Swaps the entire contents of a1 with those of a2.
def swap_all(a1, a2):

for i in range(0, len(a1)):

temp = a1[i]

a1[i] = a2[i]

a2[i] = temp

List return question

• Write a function merge that accepts two lists of integers and returns a new list
containing all elements of the first list followed by all elements of the second.

a1 = [12, 34, 56]

a2 = [7, 8, 9, 10]

a3 = merge(a1, a2)

print(a3)

[12, 34, 56, 7, 8, 9, 10]

• Write a function merge3 that merges 3 lists similarly.

a1 = {12, 34, 56]

a2 = {7, 8, 9, 10]

a3 = {444, 222, -1]

a4 = merge3(a1, a2, a3)

print(a4)

[12, 34, 56, 7, 8, 9, 10, 444, 222, -1]

List return answer 1

Returns a new list containing all elements of a1

followed by all elements of a2.

def merge(a1, a2):

result = [0] * (len(a1) + len(a2))

for i in range(0, len(a1)):

result[i] = a1[i]

for i in range(0, len(a2)):

result[len(a1) + i] = a2[i]

return result

List return answer 2

Returns a new list containing all elements of a1,a2,a3.

def merge3(a1, a2, a3):

a4 = [0] * (len(a1) + len(a2) + len(a3)

for i in range(0, len(a1)):

a4[i] = a1[i]

for i in range(0, len(a2)):

a4[len(a1) + i] = a2[i]

for i in range(0, len(a3)):

a4[len(a1) + len(a2) + i] = a3[i]

return a4

Shorter version that calls merge.

def merge3(a1, a2, a3):

return merge(merge(a1, a2), a3)

